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—— Abstract

The k-center problem is a classical combinatorial optimization problem which asks to find &
centers such that the maximum distance of any input point in a set P to its assigned center is
minimized. The problem allows for elegant 2-approximations. However, the situation becomes
significantly more difficult when constraints are added to the problem. We raise the question
whether general methods can be derived to turn an approximation algorithm for a clustering
problem with some constraints into an approximation algorithm that respects one constraint
more. Our constraint of choice is privacy: Here, we are asked to only open a center when at least
¢ clients will be assigned to it. We show how to combine privacy with several other constraints.
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1 Introduction

Clustering is a fundamental unsupervised learning task: Given a set of objects, partition them
into clusters, such that objects in the same cluster are well matched, while different clusters
have something that clearly differentiates them. The three classical clustering objectives
studied in combinatorial optimization are k-center, k-median and facility location. Given
a point set P, k-center and k-median ask for a set of k& centers and an assignment of the
points in P to the selected centers that minimize an objective. For k-center, the objective is
the maximum distance of any point to its assigned center. For k-median, it is the sum of
the distances of all points to their assigned center (this is called connection cost). Facility
location does not restrict the number of centers. Instead, every center (here called facility)
has an opening cost. The goal is to find a set of centers such that the connection cost plus
the opening cost of all chosen facilities is minimized. In the unconstrained versions each point
will be assigned to its closest center. With the addition of constraints a different assignment
is often necessary in order to satisfy the constraints.

A lot of research has been devoted to developing approximation algorithms for these
three. The earliest success story is that of k-center: Gonzalez [21] as well as Hochbaum and
Shmoys [23] gave a 2-approximation algorithm for the problem, while Hsu and Nemhauser [24]
showed that finding a better approximation is NP-hard.

Since then, much effort has been made to approximate the other two objectives. Typically,
facility location will be first, and transferring new techniques to k-median poses additional
challenges. Significant techniques developed during the cause of many decades are LP rounding
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techniques [11, 34], greedy and primal dual methods [25, 26], local search algorithms [6, 29],
and, more recently, the use of pseudo-approximation [32]. The currently best approximation
ratio for facility location is 1.488 [31], while the best lower bound is 1.463 [22]. For k-median,
the currently best approximation algorithm achieves a ratio of 2.675+¢ [9], while the best
lower bound is 1+ 2 ~ 1.736 [25].

While the basic approximability of the objectives is well studied, a lot less is known once
constraints are added to the picture. Constraints come naturally with many applications of
clustering, and since machine learning and unsupervised learning methods become more and
more popular, there is an increasing interest in this research topic. It is one of the troubles
with approximation algorithms that they are often less easy to adapt to a different scenario
than some easy heuristic for the problem, which was easier to understand and implement
in the first place. Indeed, it turns out that adding constraints to clustering often requires
fundamentally different techniques for the design of approximation algorithms and is a very
new challenge altogether.

A good example for this is the capacity constraint: Each center ¢ is now equipped with
a capacity u(c), and can only serve u(c) points. This natural constraint is notoriously
difficult to cope with; indeed, the standard LP formulations for the problems have an
unbounded integrality gap. Capacitated k-center was first approximated with uniform upper
bounds [8, 28]. Local search provides a way out for facility location, leading to 3- and
5-approximations for uniform [1] and non-uniform capacities [7], and preprocessing together
with involved rounding proved sufficient for k-center to obtain a 9-approximation [15, 5].
However, the choice of techniques that turned out to work for capacitated clustering problems
is still very limited, and indeed no constant factor approximation is known to date for
k-median.

And all the while, new constraints for clustering problems are proposed and studied.
In private clustering [3], we demand a lower bound on the number of points assigned to a
center. As stated in [2, 3] this ensures a certain anonymity and is motivated through the
need to obtain data privacy. The more general form where each cluster has an individual
lower bound is called clustering with lower bounds [4]. Fair clustering [14] assumes that
points have a protected feature (like gender), modeled by a color, and that we want clusters
to be fair in the sense that the ratios between points of different colors is the same for every
cluster. Clustering with outliers [12] assumes that our data contains measurement errors
and searches for a solution where a prespecified number of points may be excluded from
the cost computation. Other constraints include fault tolerance [27], matroid or knapsack
constraints [13], must-link and cannot-link constraints [35], diversity [30] and chromatic
clustering constraints [18, 19].

The abundance of constraints and the difficulty to adjust methods for all of them
individually asks for ways to add a constraint to an approximation algorithm in an oblivious
way. Instead of adjusting and reproving known algorithms, we would much rather like to
take an algorithm as a black box and ensure that the solution satisfies one more constraint in
addition. This is a challenging request. We start the investigation of such add-on algorithms
by studying the privacy constraint. Indeed, we develop a method to add the privacy constraint
to approximation algorithms for constraint k-center problems. That means that we use an
approximation algorithm as a subroutine and ensure that the final solution will additionally
respect a given lower bound. The method has to be adjusted depending on the constraint,
but it is oblivious to the underlying approximation algorithm used for that constraint.

This works for the basic k-center problem (giving an algorithm for the private k-center
problem), but we also show how to use the method when the underlying approximation
algorithm is for k-center with outliers, fair k-center and capacitated k-center. We also
demonstrate that our method suffices to approximate strongly private k-center, where we
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assume a protected feature like in fair clustering, but instead of fairness, now demand that a
minimum number of points of each color is assigned to each open center to ensure anonymity
for each class individually.

Our Technique. The general structure of the algorithm is based on standard threshold-
ing [23], i.e., the algorithm tests all possible thresholds and chooses the smallest for which
it finds a feasible solution. For each threshold, it starts with the underlying algorithm
and computes a non private solution. Then it builds a suitable network to shift points to
satisfy the lower bounds. The approximation ratio of the method depends on the underlying
algorithm and on the structure of this network.

The shifting does not necessarily work right away. If it does not produce a feasible solution,
then using the max flow min cut theorem, we obtain a set of points for which we can show
that the clustering uses too many clusters (and can thus not satisfy the lower bounds). The
algorithm then recomputes the solution in this part. Depending on the objective function, we
have to overcome different hurdles to ensure that the recomputation works in the sense that
it a) makes sufficient progress towards finding a feasible solution and b) does not increase
the approximation factor. The process is then iterated until we find a feasible solution.

Results. We obtain the following results for multiple combinations of privacy with other
constraints. Note that our definition of k-center (see §2) distinguishes between the set of
points P and the set of possible center locations L. This general case is also called the
k-supplier problem, while classical k-center often assumes that P = L. Our reductions can
handle the general case (with a slight increase in approximation ratio); whether the resulting
algorithm is then for k-center or k-supplier thus depends on the evoked underlying algorithm.

We obtain a 4-approximation for private k-center with outliers (5 for the supplier version).
This matches the best known bounds [3] ([4] for the supplier version (this also holds for
non-uniform lower bounds)).

We compute an 11-approximation for private capacitated k-center (i.e., centers have a
lower bound and an upper bound), and a 8-approximation for private uniform capacitated
k-center (where the upper bounds are uniform, as well). The best known bounds for these
two problems are 9 and 6 [17]. For the supplier version we obtain a 13-approximation
which matches the best known bound [17] (for uniform upper bounds a 9-approximation-
algorithm is known [17]).

We achieve constant factor approximations for private capacitated/uncapacitated and fair
k-center/k-supplier clustering. The approximation factor depends on the balance of the
input point set and the type of upper bounds, it ranges between 10 in the uncapacitated
case where for each color ¢ the number of points with color ¢ is an integer multiple of
the number of points with the rarest color and 325 in the general supplier version with
non-uniform upper bounds. To the best of our knowledge, all these combinations have
not been studied before.

Along the way, we propose constant factor algorithms for general cases of fair clustering.
While [14] introduces a pretty general model of fairness, it only derives approximation
algorithms for inputs with two colors and a balance of 1/t for an integer t. We achieve
ratios of 14 and 15 for the general fair k-center and supplier problem, respectively.
Finally, we propose the strongly private k-center problem. As in the fair clustering
problem, the input here has a protected feature like gender, modeled by colors. Now
instead of a fair clustering, we aim for anonymity for each color, meaning that we have a
lower bound for each color. Each open center needs to be assigned this minimum number
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Table 1 An overview on the approximation results that we combine with privacy.

Capacities Fair Subset Partition
Vanilla Outlier
uniform  non-uniform 3 €N general
k-center 2 [23] 6 (28] 9 [5] 2 [10]

k-supplier 3 [23] 11 3] 3 [12] 2 [14] 12 (full version Thm.22 [33])

of points for each color. To the best of our knowledge, this problem has not been studied
before; we obtain a 4-approximation as well as a 5-approximation for the supplier version.

Since our method does not require knowledge of the underlying approximation algorithm,
the approximation guarantees improve if better approximation algorithms for the underlying
problems are found. There is also hope that our method could be used for new, not yet
studied constraints, with not too much adjustment.

Related Work. The unconstrained k-center problem can be 2-approximated [21, 23], and it
is NP-hard to approximate it better [24]. The k-supplier problem can be 3-approximated [23],
and this is also tight.

Capacitated k-center was first approximated with uniform upper bounds [8, 28]. Two
decades after the first algorithms for the uniform case, [15] provided the first constant factor
approximation for non-uniform capacities. The algorithm was improved and applied to the
k-supplier problem in [5]. In contrast to capacities, lower bounds are less studied. The
private k-center problem is introduced and 2-approximated in [3], and non-uniform lower
bounds are studied in [4]. The k-center/k-supplier problem with outliers is 3-approximated
in [12] alongside approximations to other robust variants of the k-center problem. The
approximation factor for the k-center problem with outliers was improved to 2 in [10].

The fair k-center problem was introduced in [14]. The paper describes how to approximate
the problem by using an approximation for a subproblem that we call fair subset partition
problem. Algorithms for this subproblem are derived for two special cases where the number
of colors is two, and the points are either perfectly balanced or the number of points of one
color is an integer multiple of the number of points of the other color.

These are the constraints for which we make use of known results. We state the best
known bounds and their references in Table 1. Approximation algorithms are also e.g. known
for fault tolerant k-center [27] and k-center with matroid or knapsack constraints [13].

Relatively little is known about the combination of constraints. Cygan and Kociumaka [16]
give a 25-approximation for the capacitated k-center problem with outliers. Aggarwal et.
al [3] give a 4-approximation for the private k-center problem with outliers. Ahmadian and
Swamy [4] consider the combination of k-supplier with outliers with (non-uniform) lower
bounds and derive a 5-approximation. The paper also studies the k-supplier problem with
outliers (without lower bounds), and the min-sum-of-radii problem with lower bounds and
outliers. Their algorithms are based on the Lagrangian multiplier preserving primal dual
method due to Jain and Vazirani [26].

Ding et. al [17] study the combination of capacities and lower bounds as well as capacities,
lower bounds and outliers by generalizing the LP algorithms from [5] and [16] to handle lower
bounds. They give results for several variations, including a 6-approximation for private
capacitated k-center and a 9-approximation for private capacitated k-supplier.

Friggstad, Rezapour, Salavatipour [20] consider the combination of uniform capacities
and non-uniform lower bounds for facility location and obtain bicriteria approximations.
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Outline. In §2, we introduce necessary notation. §3 then presents our method, applied to
the private k-center problem with outliers. We choose the outlier version since it is non-trivial
but still intuitive and does thus give a good impression on the application of our method.
In §4, we then briefly explain how to adjust the method to approximate private and fair
k-center, private and capacitated k-center, k-center with all three constraints as well as the
strongly private k-center problem. §5 provides a conclusion.

2 Preliminaries

Let (X, d) be a finite metric space, i.e., X is a finite set and d : X x X — R is a metric.
We use d(x,T) = minyer d(x,y) for the smallest distance between z € X and a set T C X.
For two sets S, T C X, we use d(S,T) = mingecg yer d(z,y) for the smallest distance between
any pair x € S,y € T.

Let P C X be a subset of X called points and let L C X be a subset of X called locations.
An instance of a private assignment constrained k-center problem consists of P, L, an integer
k € N, a lower bound ¢ € N and possibly more parameters. Given the input, the problem is
to compute a set of centers C' C L with |C| < k and an assignment ¢ : P — C of the points
to the selected centers that satisfies £ < |¢p~1(c)| for every selected center ¢ € C, and some
specific assignment restriction. The solution C, ¢ shall be chosen such that

max d(z, ¢(z))
is minimized. Different assignment restrictions lead to different constrained private k-center
problems. The capacity assignment restriction comes with an upper bound function v : L — N
for which we require ¢ < u(z) for all 2 € L, and then demands |¢~*(c)| < u(c). When we
have u(xz) = w for all z € L and some u € N, then we say that the capacities are uniform,
otherwise, we say they are non-uniform. The fairness assignment restriction provides a
mapping x : P — Col of points to colors and then requires that each cluster has the same
ratio between the numbers of points with different colors (see §4.2 in the full version [33] for
specifics). The strongly private k-center problem can also be cast as a k-center problem with
an assignment restriction. Again, the input now additionally contains a mapping x of points
to colors. Now the assignment is restricted to ensure that it satisfies the lower bound for the
points of each color. We even consider the slight generalization where each color has its own
lower bound, and call this problem the strongly private k-center problem.

An instance of the private k-center problem with outliers consists of P, L, an integer
k € N, a lower bound ¢, and a parameter o for the maximum number of outliers. The problem
is to compute a set of centers C' C L with |C| < k and an assignment ¢ : P — C U {out},
with |¢~1(out)| < o, which assigns each point to a center in C or to be an outlier. The choice
of C| ¢ shall minimize

d(z, ¢(z)).

max
x€P\¢—1(out)

3 Private k-center with Outliers

» Theorem 1. Assume that there exists an approximation algorithm A for the k-center
problem with outliers with approximation factor «.

Then for instances P, L, k, ¢, o of the private k-center problem with outliers, we can
compute an (a + 2)-approximation in polynomial time.
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Proof. Below, we describe an algorithm that uses a threshold graph with threshold 7. We
show that for any given 7 € R, the algorithm has polynomial runtime and, if 7 is equal to
opt, the value of the optimal solution, computes an (« + 2)-approximation. Since we know
that the value of every solution is equal to the distance between a point and a location, we
test all O(|P||L|) possible distances for 7 and return the best feasible clustering returned by
any of them. The main proof is the proof of Lemma 2 below, which concludes this proof. =

Let us start with a general idea on how the algorithm works for a fixed 7. If 7 < opt, then
the algorithm will detect this, so assume that 7 > opt for now. We first use the approximation
algorithm to obtain a clustering which does not necessarily satisfy the privacy constraint.
Then we try to reassign points to establish the lower bounds. A point p may be reassigned
to any cluster which contains at least one point which is within distance 27 of p. (Note that
any point in p’s optimum cluster is at distance < 27). If it is possible to reassign points like
that and obtain a feasible clustering, we can compute such a reassignment with a maximum
flow algorithm. Otherwise we find a set of points P(V"’) for which we can show that the
optimal clustering uses less clusters to cover all of them. We add all outliers to P(V’) to
account for the fact that P(V') may already contain outliers of the optimum solution. We
then use the approximation algorithm on P(V’) to compute a new clustering with outliers.
The output will contain fewer clusters or the same number of clusters and fewer outliers. We
repeat the process until we find a feasible solution.

» Lemma 2. Assume that there exists an approximation algorithm A for the k-center problem
with outliers with approzimation factor a. Let P, L, k, £, o be an instance of the private
k-center problem with outliers, let T > 0 and let opt denote the mazimum radius in the
optimal feasible clustering for P, L, k, {, o. We can in polynomial time compute a feasible
clustering with a mazimum radius of at most (o + 2)7 or determine T < opt.

Proof. We first use A to compute a solution without the lower bound. Let C = (C, ¢) be
an a-approximate solution for the k-center problem with outliers on P, L, k, 0. Note that
C may contain clusters with less than ¢ points. Let k' = |C| (note that k' < k is possible),
C = {c1,...,cr}, and let Cy,...,Cy be the clusters that C induces, i.e., C; := ¢~ 1(c;).
Finally, let r = max,cp d(z, ¢(z)) be the largest distance of any point to its center. Observe
that an optimal solution to the k-center problem with outliers can only have a lower objective
value than the optimal solution to our problem because we only dropped a condition.
Therefore, 7 > opt implies that r < a - opt < a - 7. If we have r > o - 7, we return 7 < opt.

We use C and 7 to create a threshold graph which we use to either reassign points between
the clusters to obtain a feasible solution or to find a set of points P’ for which we can show
that every feasible clustering with maximum radius 7 uses less clusters than our current
solution to cover it. In the latter case we compute another a-approximate solution which
uses fewer clusters on P’ and repeat the process. Note that for 7 < opt such a clustering
does not necessarily exist, but for 7 > opt the optimal clustering provides a solution for P’
with fewer clusters. If we do not find such a clustering with maximum radius at most « - 7,
we return 7 < opt.

We show that every iteration of the process reduces the number of clusters or the number
of outliers, therefore the process stops after at most k - o iterations. It may happen that
our final solution contains much less clusters than the optimal solution (but it will be an
approximate solution for the optimal solution with & centers).

We will use a network flow computation to move points from clusters with more than £
points to clusters with less than ¢ points. Moving a point to another cluster can increase the
radius of the cluster. We only want to move points between clusters such that the radius
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does not increase by too much. More precisely, we only allow a point p to be moved to

another cluster C; if the distance d(p, C;) between the point and the clusters is at most 27.

This is ensured by the structure of the network described in the next paragraph. Unless
stated otherwise, when we refer to distances between a point and a cluster in the following,
we mean the distance between the point and the cluster in its original state before any points
have been reassigned.

Given C and 7, we create the threshold graph G, = (V;, E;) as follows. V, consists of a
source s, a sink ¢, a node v; for each cluster C;, a node v,,; for the set of outliers and a node
w),, for each point p € P. For all i € [k], we connect s to v; if the cluster C; contains more
than ¢ points and set the capacity of (s,v;) to |C;| — £. If the cluster C; contains fewer than
{ points, we connect v; with ¢ and set the capacity of (v;,t) to £ — |C;|. Furthermore, we
connect v; with w, for all p € C; and set the capacity of (v;, w,) to 1. We also connect s
t0 vout With capacity o and v,y with wy, for all p € ¢~ (out) with capacity 1. Whenever a
point p and a cluster C; with p ¢ C; satisty d(p, C;) < 27 (i.e., there is a point ¢ € C; that
satisfies d(p, ¢) < 27), we connect w, with v; with capacity 1.

Formally the graph G, = (V;, E;) is defined by

Ve ={vout} U{vi | 1 <i <Kk} U{w,|p€ P}U{s,t} and (1)
Er ={(vi,wp) | p € Ci} U{(wp,v;) | p & C; Nd(p,C;) < 27} (2)
U{(Vout, wp) | ¢(p) = out} (3)
U{(s; vout) } U {(s,v:) | [Cs] = £> 0} U{(vi,t) | |Ci| — € <0} (4)

We define the capacity function cap : £ — R by

E*|C¢|, if(f:(’l}i,t)
|ICs| — ¢, ife=(s,v;)

o, if e = (8, Vout)

(5)

cap(e) =
1 otherwise.

We use G = (V, E) to refer to G, as 7 is clear from context. We now compute an integral
maximum s-t-flow f on G. According to f we can reassign points different clusters.

» Lemma 3. Let f be an integral maximal s-t-flow on G. It is possible to reassign p to C;
for all edges (wp, v;) with f((wp,v;)) = 1.

The resulting solution has a mazimum radius of at most r + 27. If f saturates all edges
of the form (v;,t), then the solution is feasible.

Proof. Let p € C;. The choice of capacity 1 on (v;,w,) and flow conservation ensure
Z(wp,v_j)eE f((wp,v;)) <1 for p. Therefore no point would have to be reassigned to more
than one cluster. Note that for every point p € C; that would be reassigned we must
have f((v;,wp)) = 1 and for every edge (v;, w,) with f((v;,w,)) =1 the point p would be
reassigned.

For any 1 < j <k, let p € C; be any point which we want to reassign to Cj. Then we
must have (wp,v;) € E and therefore there must be a point ¢ € C; with d(p, ¢) < 27. Thus
we have

d(pa Cj) S d(pa q) + d(Qacj) § 2r4+r=r+427.

Now assume that f saturates all edges of the form (v;,t) and let 1 <4 < k. If E contains
the edge (v;,t), then it can not contain the edge (s, v;) and therefore all incoming edges of v;
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are of the form (wp, v;). Flow conservation then implies that the number of points reassigned
to C; minus the points reassigned away from C; is equal to f((v;,t)), which increases the
number of points in C; to £.

If F contains the edge (s,v;), then it can not contain the edge (v;,¢) and therefore all
outgoing edges of v; are of the form (v;,w,). Flow conservation then implies that the number
of points reassigned away from C; minus the points reassigned to C; is equal to f((s,v;)),
which reduces the number of points in C; to at least /.

If E contains neither (s,v;) nor (v;,t), then the number of points in C; is equal to £ and
does not change (the points may change, but their number does not).

In all three cases C; contains at least ¢ points after the reassignment. |

If f saturates all edges of the form (v;,t) in G, then we reassign points according to
Lemma 3 and return the new clustering.

Otherwise we look at the residual network G of f on G. Let V' be the set of nodes in
Gy which can not be reached from s. V' contains all nodes representing clusters which would
not satisfy the privacy constraint after the reassignment. We say cluster C; belongs to V'
if v, € V', and a point p € C; is adjacent to V' if w, € V' and v; ¢ V’'. Let C(V’) denote
the set of clusters belonging to V'. Let k" = |C(V")|. We say a point p belongs to V' if the
cluster C; with p € C; belongs to V'. Let P(V') and P4(V’) denote the set of points that
belong to V' and the set of points adjacent to V'.

» Lemma 4. Any clustering on P with maximum radius at most T that contains at least ¢
points in every cluster uses fewer than k" clusters to cover all points in P(V').

Proof. We first observe that V' must have the following properties:

v; € V' and (wp,v;) € E implies w, € V'.

wy € V', (wp,v;) € E and f((wp,v;)) > 0 implies v; € V.

wy € V' for some p € C; and v; ¢ V' implies f((v;,w,)) = 1.

The first property follows from the fact that f can only saturate (wp,v;) if f also saturates
(vj,wp) for p € C;. So, either (wp,v;) is not saturated, which means that v; can be reached
from any vertex that reaches wy, or (wy, v;) is saturated, which means that the only incoming
edge of w, in Gy is (v;, w,). In both cases, if v; € V', then w, € V'. The second property
follows since f((wyp,v;)) > 0 implies (v;, wp,) € E(Gy). The third property is true since we
defined cap((vi, wp)) = 1.

This implies that a reassignment due to Lemma 3 would reassign all points adjacent to
V' to clusters in C'(V”) and moreover all reassignments from points in P(V’)U P4 (V") would
be to clusters in C'(V’). Let n; denote the number of points that would be assigned to C;
after the reassignment. Then |P(V')[ + [Pa(V')| = > ¢, ey -

Now we argue that this sum is smaller than &” - £ by observing that each n; < £ and at
least one n; is strictly smaller than /.

Let C; be a cluster with more than ¢ points after the reassignment. Then (s,v;) is
not saturated by f and v; can be reached from s in Gy. Therefore after the reassignment
no cluster C; € C(V') would contain more than ¢ points; in other words, n; > ¢ implies
C; ¢ C(V").

Let C; be a cluster which would still contain fewer than ¢ points after the reassignment.
This implies that f does not saturate the edge (v;,t). Therefore ¢ can be reached from v;
and since f is a maximum s-t flow, v; can not be reached from s. We must have v; € V.
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Because we assumed that the reassignment does not satisfy all lower bounds, at least one
such cluster has to exist. This implies

[PV +[Pa(V) = > ni<k'-L
C,eC (V")

Which means that the clusters in C (V') and P4(V’) do not contain enough points to satisfy
the lower bound in k" clusters.

By definition of G and V', for two points p, q with p € P(V’) and d(p, q) < 27 we must
have ¢ € P(V') U P4(V’). Let C’ be a clustering that abides the lower bounds and has a
maximal radius of at most 7. Then every cluster C’ in C’ that contains at least one point
from P(V’) can only contain points from P(V’) U P4(V’). Therefore C' must contain fewer
than k" clusters which contain at least one point from P(V”). <

If we have 7 > opt, then Lemma 4 implies that the optimal solution covers all points in
P(V’) with fewer than k” clusters. An a-approximative solution on the point set P(V') with

at most k" — 1 clusters which contains at most o outliers is then a-approximative for P(V”).

Unfortunately, we do not know how many outliers an optimal clustering has in P(V'). We
therefore involve the outliers ¢~!(out) in our new computation as well. Let o' = |¢p~*(out)]
denote the current number of outliers. We obtain the following Lemma through a counting
argument.

» Lemma 5. We call a cluster special if it contains at least one point from P(V') or only
contains points from ¢~ (out). Let C' be a clustering on P with a maximum radius of at most
T on all special clusters that respects the lower bounds, has at most o outliers and consists of
at most k clusters out of which at most k" are special. If C' has exactly k" special clusters,
then C' has at most o' — 1 outliers in P(V') U ¢~ (out).

Proof. Assume the clustering contains exactly special k” clusters. Each of these clusters has
to contain at least ¢ points from P(V') U P4(V') U ¢~ (out). We know

|IP(VYUPA(VYU ¢ Y out)| < |P(VYUPL(V)|4+0 <K'l +0.
So there remain at most o’ — 1 unclustered points in P(V') U ¢~ (out). <
Now we need to show that such a clustering exists if 7 > opt is the case.

» Lemma 6. If 7 > opt, then there exists a clustering C' on P with a mazimum radius
at most T on all special clusters that respects the lower bounds, has at most o outliers and
consists of at most k clusters out of which at most k" are special.

Proof. We look at an optimal clustering C,,;. The only way C,p+ can violate a condition
is if it contains k" > k” special clusters. Lemma 4 implies that C,,; contains at least
k" — k" clusters that contain only points in ¢~!(out). If all clusters in C,,; are special we
know P = P4(V')U P(V') U ¢~ (out). We arbitrarily select k" — k" clusters from Cop
that contain only points in ¢~!(out), declaring all points in them as outliers and closing the
corresponding centers. This leaves us with k" clusters which contain at least k”-£ points. Since
P = P4V )UP(V")U¢ ™! (out) this leaves at most o’ —1 outliers. Otherwise, if C,p contains at
least one cluster C' which is not special, we add all outliers from P\ (P4 (V') UP(V')U¢~t(out)
to C. Again we arbitrarily select k" — k" clusters from C,p; that contain only points in
¢~ !(out), declaring all points in them as outliers and closing the corresponding centers. By
creation there are no unclustered points in P\ (P4(V’)U P(V') U ¢! (out) and exactly k"
special clusters with radius at most 7. Therefore this clustering contains at most o’ — 1
outliers and has at most k clusters. |
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We now use A again to compute new solutions without the lower bound: Let Ci = (CY, ¢})
be an a-approximate solution for the k-center problem with outliers on P(V') U ¢~ (out), L,
k" —1, 0 and let C) = (C%, ¢5) be an a-approximate solution for the k-center problem with
outliers on P(V') U ¢~ (out), L, k", o' — 1. Let 7, = max,c p(vryup—1 (out) A2, 95(x)).

Note that in case 7 < opt, it can happen that no such clustering exists or that we obtain
rl > a -7 for both i = 1 and ¢ = 2. We then return 7 < opt. Otherwise for at least one
i € {1,2} C! must exist together with r; < a - 7.

If C}, exists and we have 5, < a7 we replace C(V') by C} in C and adjust ¢ accordingly
to obtain C; = (C1, ¢1) with C; = (C'\ C(V')) U CY and

(6)

(o) {cbé(p) if p € P(V') U~ (out)
¢(p)  otherwise.

Otherwise, if C] exists, we have 7] < a - 7 and either C does not exist or we have r5 > o - 7,
we analogous replace C(V’) by C to obtain C;.

» Lemma 7. If we did not return T < opt, then C1 is a solution for the k-center problem
with outliers on P, L, k, o and we have r1 = maxzecp d(z, ¢1(z)) < a- 7.

Proof. C is a solution for the k-center problem with outlier on P, L, k, o with r < «- 7 and
since we did not return 7 < opt, we must have r; < a7 for the chosen i € {1, 2}. <

We iterate the previous process with the new clustering C; until we either determine
T < opt or the reassignment of points according to Lemma 3 yields a feasible solution. Since
each iteration reduces the number of clusters or keeps the same number of clusters and
reduces the number of outliers, the process terminates after at most & - o iterations. |

» Corollary 8. We can compute a 4-approrimation for instances of the private k-center
problem with outliers and a 5-approximation for instances of the private k-supplier problem
in polynomial time.

Proof. Follows from Theorem 1 together with the 2-approximation for k-center with outliers
in [10] and the 3-approximation for k-supplier with outliers in [12]. <

4 Combining Privacy with other Constraints

In this section, we take the general idea from §3 and instead of outliers use it to combine
privacy with other restrictions on the clusters. Given a specific restriction R and an
approximation algorithm A for the k-center problem with restriction R with approximation
factor o we ask: Can we similar to §3 extend A to compute an O(«)-approximation for the
private k-center problem with restriction R?

In §3, we made use of two properties of a clustering with outliers. In Lemma 3 we used
that reassigning points to another cluster never increases the number of outliers and in
Lemma 4 we used that outliers have the somewhat local property that computing a new
clustering on the points V' from a subset of the clusters together with the set of outliers can
not create more outliers on the remaining points.

We use this section to briefly explain how the proofs with other restriction properties
differ from §3 and state our results for the general cases (for the complete proofs as well as
the approximation factors for all different cases, see §44§5 in the full version [33]).

As new restrictions we study capacities, fairness and multiple lower bounds for different
types of points. For the private capacitated k-center problem, the proof is easier than for
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private k-center with outliers. The threshold graph G, = (V;, E;) does not need to contain
nodes for the outliers anymore. It is defined by
Ve ={v; |1 <i<k}U{w,|pe P}U{s,t}and
Er ={(vi,wp) | p € Ci} U{(wp,vi) | p ¢ Cs Ad(p,C;) < 27}
U{(s,vi) | [Ci] = €> 0} U{(vi,t) | |Ci| — £ < 0},

N N
© o0
= I =

together with the capacity function cap : B, — R

€_|Ci|7 ife:(vi7t)
cap(e) = |Ci| — ¢, if e = (s,v;) (10)
1 otherwise.

The capacities on the clusters do not influence the threshold graph; they are handled by
the underlying approximation algorithm. Since we never increase the number of points of a
cluster to more than ¢, our method will not introduce any capacity violation. We obtain the
following results.

» Theorem 9. Assume that there exists an approrimation algorithm A for the capacitated k-
center problem with approximation factor . Then we can compute an (« + 2)-approximation
for the private capacitated k-center problem in polynomial time.

In order to combine privacy with fairness, we first develop an approximation algorithm
for general cases of the fair k-center problem. [14] show how to solve fair k-center based on
approximating a subproblem that we call fair subset partitioning problem (it’s called fairlet
decomposition in [14]), and which consists of partitioning the input into fair subsets such
that the maximum diameter of any subset is minimal. They give an exact algorithm for
two colors with perfect balance and a 2-approximation for two colors with balance 1/t for
an integer t. We propose an algorithm for multiple colors and general balance values. It
separates the points into the different colors, computes a capacitated clustering on the points
for one of the colors and uses a matching algorithm on threshold graphs in order to add the
points of the other colors.

» Theorem 10. A 12-approximation for the fair subset partition problem can be computed
in polynomial time. If b, = 1 for at least one color ¢ € Col, then a 2-approrimation for the
fair subset partition problem can be computed in polynomial time (even if |Col| > 2).

With that we obtain the first approximation algorithm for the general fair k-center problem.
For the private and fair k-center problem we then use a partitioning into fair subsets and let
these be the nodes of the threshold graph instead of single points. When establishing the
lower bounds, we move fair subsets as a whole. Let F' = {F7y,...} denote the fair subsets.
Then we define G, = (V,, E;) by

Ve ={vou} U{v; | 1 <i <K'}U{f; | F; € F}U{s,t} and (11)
Er ={(vi, f;) | F; € Ci} U{(fj,v3) | F; N C; =D Ad(C;, Fy) < 27} (12)
U{(s,vi) [ [Ci| = €> 0} U{(vi, ) | |Ci| — £ < 0} (13)
with the capacity function cap : E; — R

7‘—\1)@'\ , if e = (v,t)

[Ci|—¢ o )
cap(e) = . , ife=(s,v;) (14)

1 otherwise.
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We obtain the following results.

» Theorem 11. Assume that there exists an approximation algorithm A for the fair subset
partition problem with approzimation factor a. Then we can compute a (3ac+4)/(3ac + 5)-
approximation for the private fair k-center/supplier problem in polynomial time.

We also adjust our method to approximate the private fair and capacitated k-center
problem, and combine it with our results on approximating the fair subset partitioning
problem. The approximation ratio now becomes «(25 + 1), where « is the approximation
ratio for the capacitated k-center problem, and § is the approximation ratio for the fair
subset partitioning problem (see Lemma 29 in the full version [33]).

For the strongly private k-center problem (see §5 in the full version [33]) we create a
separate threshold graph for each color and separately try to satisfy the lower bound for each
color. For a color i € Col we let P* denote the points in P with color i and let C’; denote
the points in C; with color i. We create the threshold graph G, ; = (V;;, E;;) by

Vii={v; |1<j<K}U{w,|pe P}uU{st}and (15)
Er; ={(vj,wp) | p € C;} U{(wp,v;) | p € P\ Cj Ad(p,C;) <27} (16)
U{(5,05) 1165 X 0)] — £ > 0 U {0y, 1) | 1G5 0 ()] — £ < 0}, (1)

We define the capacity functions cap; : E;; — R by

l; — |C] ﬂx_l(i)|, ife= (’Uj,t)
cap(e) = 3 [C; ) - by i e = (s,1) (18)

1 otherwise.

We obtain the following result.

» Theorem 12. Assume that there exists an approrimation algorithm A for the k-center
problem with approzimation factor a. Then we can compute an (« + 2)-approzimation for
the strongly private k-center problem in polynomial time.

The following corollary summarizes the remaining results in the full version [33] for the
different constrained private k-center problems, and fair k-center clustering.

» Corollary 13. There are polynomial approximation algorithms that compute
an 11/13-approximation for the private capacitated k-center/supplier problem
(Cor. 14 + 15),
a 14 /15-approximation for the fair k-center/supplier problem (Cor. 23),
a 40 /41-approximation for the private and fair k-center/supplier problem (Cor. 25),
a 225 /325-approximation for the private fair capacitated k-center/supplier problem (C. 30),
improved approximations for the last three problems in special cases, and
a 4 /5-approximation for the strong private k-center/supplier problem (Cor. 36).

5 Conclusion and open questions

We studied k-center with capacities, fairness and outliers and have coupled these constraints
with privacy, and we proposed strongly private k-center. In addition to improving the
approximation guarantee of the presented coupling process, open questions include extending
it to arbitrary lower bounds, and to different objective functions. In Appendix A of the full
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version [33], we present a bicriteria result for facility location that violates the lower bounds.
For k-median, a similar procedure is not known at all so far. Finally, the question how to
obliviously add other constraints than privacy is completely open, too.

—— References

1

10

11

12

13

14

15

Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham
Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility location problem
with uniform capacities. Mathematical Programming, 141(1-2):527-547, 2013.

Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Panigrahy,
Dilys Thomas, and An Zhu. Approximation algorithms for k-anonymity. In Proceedings
of the International Conference on Database Theory (ICDT 2005), November 2005. URL:
http://ilpubs.stanford.edu:8090/645/.

Gagan Aggarwal, Rina Panigrahy, Tomés Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Transaction on
Algorithms, 6(3):49:1-49:19, 2010.

Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering problems
with lower bounds and outliers. In 43rd International Colloguium on Automata, Languages,
and Programming, (ICALP), pages 69:1-69:15, 2016.

Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and
Ola Svensson. Centrality of trees for capacitated k-center. Mathematical Programming,
154(1-2):29-53, 2015.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. STAM
Journal on Computing, 33(3):544-562, 2004.

Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In 20th Annual European Symposium on Algorithms (ESA), pages 133
144, 2012.

Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers. Journal
of Algorithms, 15(3):385-415, 1993.

Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transactions on Algorithms, 13(2):23:1-23:31, 2017.

Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform
k-center problem. In Proceedings of the 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), volume 55 of LIPIcs. Leibniz Int. Proc. Inform., pages
Art. No. 67, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System
Sciences, 65(1):129-149, 2002.

Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In Proceedings of the 12th Annual Symposium on
Discrete Algorithms (SODA), pages 642-651, 2001.

Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knapsack center
problems. Algorithmica, 75(1):27-52, 2016.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017 (NIPS), pages 5036-5044, 2017.
Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 273-282, 2012.

96:13

ICALP 2018


http://ilpubs.stanford.edu:8090/645/

96:14

Privacy Preserving Clustering with Constraints

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Marek Cygan and Tomasz Kociumaka. Constant factor approximation for capacitated k-
center with outliers. In Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 251-262, 2014.

Hu Ding, Lunjia Hu, Lingxiao Huang, and Jian Li. Capacitated center problems with
two-sided bounds and outliers. In Proceedings of the 15th International Symposium on
Algorithms and Data Structures (WADS), pages 325-336, 2017.

Hu Ding and Jinhui Xu. Solving the chromatic cone clustering problem via minimum span-
ning sphere. In Proceedings of the 38th International Colloguium on Automata, Languages
and Programming (ICALP), pages 773-784, 2011.

Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without
locality property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ), pages 1471-1490, 2015.

Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Approximating
connected facility location with lower and upper bounds via LP rounding. In 15th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), pages 1:1-1:14, 2016.
Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293-306, 1985.

Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31(1):228-248, 1999.

Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533-550, 1986.

Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209-215, 1979.

Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC), pages 731-740, 2002.

Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. Journal
of the ACM, 48(2):274-296, 2001.

Samir Khuller, Robert Pless, and Yoram J. Sussmann. Fault tolerant k-center problems.
Theoretical Computer Science, 242(1-2):237-245, 2000.

Samir Khuller and Yoram J. Sussmann. The capacitated K-center problem. STAM Journal
on Discrete Mathematics, 13(3):403-418, 2000.

Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. Journal of Algorithms, 37(1):146-188, 2000.
Jian Li, Ke Yi, and Qin Zhang. Clustering with diversity. In Proceedings of the 37th
International Colloquium on Automata, Languages and Programming (ICALP), pages 188
200, 2010.

Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45-58, 2013.

Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM
Journal on Computing, 45(2):530-547, 2016.

Clemens Rosner and Melanie Schmidt. Privacy preserving clustering with constraints.
CoRR, abs/1802.02497, 2018. arXiv:1802.02497.

David B. Shmoys, Eva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing (STOC), pages 265-274, 1997.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrodl. Constrained k-means clus-
tering with background knowledge. In Proceedings of the 18th International Conference on
Machine Learning (ICML), pages 577-584, 2001.


http://arxiv.org/abs/1802.02497

	Introduction
	Preliminaries
	Private k-center with Outliers
	Combining Privacy with other Constraints
	Conclusion and open questions

