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Abstract
An edge-weighted graph G = (V,E) is called stable if the value of a maximum-weight matching
equals the value of a maximum-weight fractional matching. Stable graphs play an important role
in some interesting game theory problems, such as network bargaining games and cooperative
matching games, because they characterize instances which admit stable outcomes. Motivated
by this, in the last few years many researchers have investigated the algorithmic problem of
turning a given graph into a stable one, via edge- and vertex-removal operations. However, all
the algorithmic results developed in the literature so far only hold for unweighted instances, i.e.,
assuming unit weights on the edges of G.

We give the first polynomial-time algorithm to find a minimum cardinality subset of ver-
tices whose removal from G yields a stable graph, for any weighted graph G. The algorithm is
combinatorial and exploits new structural properties of basic fractional matchings, which are of
independent interest. In particular, one of the main ingredients of our result is the development
of a polynomial-time algorithm to compute a basic maximum-weight fractional matching with
minimum number of odd cycles in its support. This generalizes a fundamental and classical result
on unweighted matchings given by Balas more than 30 years ago, which we expect to prove useful
beyond this particular application.

In contrast, we show that the problem of finding a minimum cardinality subset of edges whose
removal from a weighted graph G yields a stable graph, does not admit any constant-factor
approximation algorithm, unless P = NP . In this setting, we develop an O(∆)-approximation
algorithm for the problem, where ∆ is the maximum degree of a node in G.
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1 Introduction

Several interesting game theory problems are defined on networks, where the vertices represent
players and the edges model the way players can interact with each other. In many such
games, the structure of the underlying graph that describes the interactions among players
is essential in determining the existence of stable outcomes for the corresponding games,
i.e., outcomes where players have no incentive to deviate. Popular examples are cooperative
matching games, introduced by Shapley and Shubik [17], and network bargaining games,
defined by Kleinberg and Tardos [13], both extensively studied in the game theory community.
Instances of such games are described by a graph G = (V,E) with edge weights w ∈ RE≥0,
where V represents a set of players, and the value of a maximum-weight matching, denoted
as ν(G), is the total value that the players could get by interacting with each other.

An important role in such games is played by so-called stable graphs. An edge-weighted
graph G = (V,E) is called stable if the value ν(G) of a maximum-weight matching equals
the value of a maximum-weight fractional matching, denoted as νf (G). Formally, νf (G) is
given by the optimal value of the standard linear programming relaxation of the matching
problem, defined as

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0

}
(P)

Here x is a vector in RE , δ(v) denotes the set of edges incident to the node v, and for a set
F ⊆ E, x(F ) =

∑
e∈F xe. Feasible solutions of the above LP are called fractional matchings.

The relation that interplays between stable graphs and network games is as follows. In
cooperative matching games [17], the goal is to find an allocation of the value ν(G) among
the vertices, given as a vector y ∈ RV≥0, such that no subset S ⊆ V has an incentive to
form a coalition to deviate. This condition is formally defined by the constraints

∑
v∈S yv ≥

ν(G[S]) ∀S ⊆ V , where G[S] denotes the subgraph induced by S, and an allocation y that
satisfies the above set of constraints is called stable. Deng et al. [8] proved that a stable
allocation exists if and only if the graph describing the game is a stable graph. This is an easy
consequence from LP duality. If y is a stable allocation, then y is a feasible solution to the
dual of (P) and has value ν(G), showing that νf (G) = ν(G). Conversely, if νf (G) = ν(G),
then an optimal dual solution yields a stable allocation of ν(G).

In network bargaining games [13], each edge e represents a deal of value we. A player
can enter in a deal with at most one neighbor, and when a deal is made, the players have
to agree on how to split the value of the deal between them. An outcome of the game is
given by a pair (M,y), where M is a matching of G and stands for the set of deals made
by the players, and y ∈ RV≥0 is an allocation vector representing how the deal values have
been split. Kleinberg and Tardos have defined a notion of stable outcome for such games, as
well as a notion of balanced outcome, that are outcomes where players have no incentive to
deviate, and in addition the deal values are “fairly” split among players. They proved that a
balanced outcome exists if and only if a stable outcome exists, and this happens if and only
if the graph G describing the game is stable.

Motivated by the above connection, in the last few years many researchers have investig-
ated the algorithmic problem of turning a given graph into a stable one, by performing a
minimum number of modifications on the input graph [6, 1, 10, 7, 14, 4, 5]. Two natural
operations which have a nice network game interpretation, are vertex-deletion and edge-
deletion. They correspond to blocking players and blocking deals, respectively, in order to
achieve stability in the corresponding games. Formally, a subset of vertices S ⊆ V is called a
vertex-stabilizer if the graph G \ S := G[V \ S] is stable. Similarly, a subset of edges F ⊆ E
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is called an edge-stabilizer if the graph G \ F := (V,E \ F ) is stable. The corresponding
optimization problems, which are the focus of this paper, are:

Minimum Vertex-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality vertex-stabilizer.
Minimum Edge-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality edge-stabilizer.

The above problems have been studied quite intensively in the last few years on unweighted
graphs. In particular, Bock et al. [6] have showed that finding a minimum-cardinality edge-
stabilizer is hard to approximate within a factor of (2−ε), assuming Unique Game Conjecture
(UGC) [11]. On the positive side, they have given an approximation algorithm for the edge-
stabilizer problem, whose approximation factor depends on the sparsity of the input graph
G. In other work, Ahmadian et al. [1] and Ito et al. [10] have shown independently that
finding a minimum-cardinality vertex-stabilizer is a polynomial-time solvable problem. These
(exact and approximate) algorithmic results, developed for unweighted instances, do not
easily generalize when dealing with arbitrary edge-weights, since they heavily rely on the
structure of maximum matchings in unweighted graphs. In fact, unweighted instances of
the above problems exhibit a very nice property, as shown in [6, 1]: the removal of any
inclusion-wise minimal edge-stabilizer (resp. vertex-stabilizer) from a graph G does not
decrease the cardinality of a maximum matching in the resulting graph. This property
ensures that there is at least one maximum-cardinality matching that survives in the modified
graph, and this insight can be successfully exploited when designing (exact and approximate)
algorithms. Unfortunately, it is not difficult to realize that this crucial property does not
hold anymore when dealing with edge-weighted graphs, and in fact, the development of
algorithmic results for weighted graphs requires substantial new ideas.

Our results and techniques

Vertex-stabilizers. We give the first polynomial-time algorithm to find a minimum-car-
dinality vertex-stabilizer S, in any weighted graph G. Our algorithm also ensures that
ν(G \ S) ≥ 2

3ν(G), i.e., the value of a maximum-weight matching is preserved up to a factor
of 2

3 , and we show that this factor is tight in general. Specifically, as previously mentioned, a
minimum-cardinality vertex-stabilizer for a weighted graph might decrease the value of a
maximum-weight matching in the resulting graph. From a network bargaining perspective,
this means we are decreasing the total value which the players are able to get, which is of
course undesirable. However, we can show this is inevitable, since deciding whether there
exists any vertex-stabilizer S that preserves the value of a maximum-weight matching (i.e.,
such that ν(G \ S) = ν(G)) is an NP-complete problem. Furthermore, we give an example of
a graph G where any vertex-stabilizer S decreases the value of a maximum-weight matching
by a factor of essentially 1

3 , i.e. ν(G \ S) ≤
( 2

3 + ε
)
ν(G) (for an arbitrary small ε > 0). This

shows that the bounds of our algorithm are essentially best possible: the algorithm finds a
vertex-stabilizer S whose cardinality is the smallest possible, and preserves the value of a
maximum-weight matching up to a factor of 2

3 , that is the tightest factor that holds for all
instances.

The above result is based on two main ingredients. The first one is giving a lower bound
on the cardinality of a minimum vertex-stabilizer, which generalizes the lower bound used in
the unweighted setting, and is based on the structure of optimal basic solutions of (P). In
particular, it was shown in [1] that a lower bound on the cardinality of a vertex-stabilizer for
unweighted graphs is given by the minimum number of odd-cycles in the support of an optimal
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basic solution to (P). We show that this lower bound holds also for weighted graphs, though
this generalization is not obvious (in fact, as we will show later, the same generalization
does not hold for edge-stabilizers). Consequently, our proof is much more involved, and
requires different ideas. The second main ingredient is giving a polynomial-time algorithm
for computing an optimal basic solution to (P) with the smallest number of odd-cycles in its
support, which is of independent interest, as highlighted in the next paragraph.

Computing maximum fractional matchings with minimum cycle support. The fractional
matching polytope given by (P) has been extensively studied in the literature, and character-
izing instances for which a maximum fractional matching equals an integral one is a natural
graph theory question (see [6, 1]). It is well-known that basic solutions of (P) are half-integral,
and the support of a basic solution is a disjoint union of a matching (given by 1-valued entries)
and a set of odd-cycles (given by half-valued entries). Balas [2] gave a polynomial-time
algorithm to compute a basic maximum fractional matching in an unweighted graph, with
minimum number of odd-cycles in its support. This is a classical result on matching theory,
which has been known for more than 30 years. In this paper, we generalize this result to
arbitrary weighted instances, exploiting structural properties of basic fractional matchings.
Our algorithm is based on combinatorial techniques, and we expect that this result will prove
useful beyond this particular application.

Edge-stabilizers. When dealing with edge-removal operations, the stabilizer problem be-
comes harder, already in the unweighted setting. It is shown in [6] that finding a minimum
edge-stabilizer is as hard as vertex cover, and whether the problem admits a constant factor
approximation algorithm is an interesting open question. We here show that the answer to
this question is negative for weighted graphs, since we prove that the minimum edge-stabilizer
problem for a weighted graph G does not admit any constant-factor approximation algorithm,
unless P = NP . From an approximation point of view, we show that the algorithm we
developed for the vertex-stabilizer problem translates into a O(∆)-approximation algorithm
for the edge-stabilizer problem, where ∆ is the maximum degree of a node in G.

Once again, the analysis relies on proving a lower bound on the cardinality of a minimum
edge-stabilizer. It was shown in [6] that a lower-bound on the cardinality of a minimum
edge-stabilizer for unweighted graphs is again given by the minimum number of odd-cycles
in the support of an optimal solution to (P) (called γ(G)). Interestingly, we show that,
differently from the vertex-stabilizer setting, here this lower bound does not generalize, and
γ(G) is not a lower bound on the cardinality of an edge-stabilizer for arbitrary weighted
graphs. However, we are able to show that dγ(G)/2e is a lower bound on the cardinality of
a minimum edge-stabilizer, and this is enough for our approximation purposes.

Additional results. Lastly, we also generalize a result given in [1] on finding a minimum
vertex-stabilizer which avoids a fixed maximum matching M , on unweighted graphs. We
prove that if M is a maximum-weight matching of a weighted graph G, then finding a
minimum vertex-stabilizer that is element-disjoint from M is a polynomial-time solvable
problem. Otherwise, if M is not a maximum-weight matching, the problem is at least as
hard as vertex cover. We supplement this result with a 2-approximation algorithm for this
case, that is best possible assuming UGC [12].

Related work. Biró et al. [4] were the first to consider the edge-stabilizer problem in
weighted graphs, and they showed NP-hardness for this case. Stabilizing a graph via different
operations on the input graph (other than removing edges/vertices) has also been studied. In
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particular, Ito et al. [10] have given polynomial-time algorithms to stabilize an unweighted
graph by adding edges and by adding vertices. Chandrasekaran et al. [7] have recently
studied the problem of stabilizing unweighted graphs by fractionally increasing edge weights.
Ahmadian et al. [1] have also studied the vertex-stabilizer problem on unweighted graphs,
but in the more-general setting where there are (non-uniform) costs for removing vertices,
and gave approximation algorithms for this case.

Biró et al. [5] and Könemann et al. [14] studied a variant of the problem where the goal is
to compute a minimum-cardinality set of blocking pairs, that are edges whose removal from
the graph yield the existence of a fractional vertex cover of size at most ν(G) (but note that
the resulting graph might not be stable). Mishra et al. [15] studied the problem of converting
a graph into a König-Egerváry graph, via vertex-deletion and edge-deletion operations. A
König-Egerváry graph is a graph where the size of a maximum matching equals the size of an
(integral) minimum vertex cover. They gave an O(logn log logn)-approximation algorithm
for the vertex-removal setting in unweighted graphs, and showed constant-factor hardness
of approximation (assuming UGC) for both the minimum vertex-removal and edge-removal
problem.

Paper Organization. In Section 2, we give some preliminaries and discuss notation. In
Section 3, we give a polynomial-time algorithm to compute an optimal basic solution to (P)
with minimum number of odd cycles in its support. This algorithm will be crucially used in
Section 4, where we give our results on vertex-stabilizers. The sections on edge-stabilizers
and additional results can be found in the full version of this paper. All missing proofs also
appear in the full version.

2 Preliminaries and notation

A key concept that we will use is LP duality. The dual of (P) is given by

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E, y ≥ 0

}
. (D)

As feasible solutions to (P) are called fractional matchings, we call feasible solutions to
(D) fractional w-vertex covers. In fact, (D) is the standard LP-relaxation of the problem
of finding a minimum w-vertex cover, obtained by adding integrality constraints on (D).
We also call basic feasible solutions to (P) as basic fractional matchings. An application of
duality theory yields the following relationship ν(G) ≤ νf (G) = τf (G). Recall that a graph
G is stable if ν(G) = νf (G) = τf (G).

For a vector x ∈ RE and any subset F ⊆ E, we denote x−F ∈ RE−F as the subvector
obtained by dropping the entries corresponding to F . For any multisubset F ⊆ E, we define
x(F ) :=

∑
e∈F xe. Note that an element may be accounted for multiple times in the sum if

it appears more than once in F . We denote supp(x) := {e ∈ E : xe 6= 0} as the support of x.
For any positive integer k, [k] represents the set {1, 2, . . . , k}.

Given an undirected graph G, we denote by n the number of vertices and by m the number
of edges. For a matching M in G, a path is called M-alternating if its edges alternately
belong to M and E \M . We say that an M -alternating path is valid if it starts with an
M -exposed vertex or an edge in M , and ends with an M -exposed vertex or an edge in
M . For edge weights w ∈ Rm+ , a valid M -alternating path P is called M-augmenting if
w(P \M) > w(P ∩M). We will need the following classical result on the structure of basic
fractional matchings:

ICALP 2018
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I Theorem 1 ([3]). A fractional matching x in G = (V,E) is basic if and only if xe ={
0, 1

2 , 1
}
for all e ∈ E and the edges e having xe = 1

2 induce vertex-disjoint odd cycles in G.

Let x̂ be a basic fractional matching in G. We partition the support of x̂ into two parts.
Define

C(x̂) := {C1, . . . , Cq} and M(x̂) := {e ∈ E : x̂e = 1}

as the set of odd cycles such that x̂e = 1
2 for all e ∈ E(Ci) and the set of matched edges

in x̂ respectively. For ease of notation, we use V (C(x̂)) = ∪C∈C(x̂)V (C) and E(C(x̂)) =
∪C∈C(x̂)E(C) to denote the vertex set and edge set of C(x̂) respectively. We define two
operations on the entries of x̂ associated with certain edge sets of G:

I Definition 2. By complementing on E′ ⊆ E, we mean replacing x̂e by x̄e = 1− x̂e for all
e ∈ E′.

I Definition 3. By alternate rounding on C ∈ C(x̂) at v where C = {e1, . . . , e2k+1} and
v = e1 ∩ e2k+1, we mean replacing x̂e by x̄e = 0 for all e ∈ {e1, e3, . . . , e2k+1} and x̄e = 1 for
all e ∈ {e2, e4, . . . , e2k}. When v is clear from the context, we just say alternate rounding on
C.

Let X be the set of basic maximum-weight fractional matchings in G. Define γ(G) :=
minx̂∈X |C(x̂)| . Note that G is stable if and only if γ(G) = 0.

3 Maximum fractional matching with minimum support

In this section, we give a polynomial-time algorithm to compute a basic maximum-weight
fractional matching x̂ for a weighted graph G with minimum number of odd cycles in its
support, i.e., satisfying |C(x̂)| = γ(G). This algorithm will be used as a subroutine by our
vertex-stabilizer algorithm, which we will develop in Section 4.

Our first step is to characterize basic maximum-weight fractional matchings which have
more than γ(G) odd cycles. Balas [2] considered this problem on unweighted graphs, and
gave the following characterization:

I Theorem 4 ([2]). Let x̂ be a basic maximum fractional matching in an unweighted graph
G. If |C(x̂)| > γ(G), then there exists an M(x̂)-alternating path which connects two odd
cycles Ci, Cj ∈ C(x̂). Furthermore, alternate rounding on the odd cycles and complementing
on the path produces a basic maximum fractional matching x̄ such that C(x̄) ⊂ C(x̂).

We generalize this to weighted graphs. Before stating the theorem, we need to introduce
the concept of connector (see Figure 1 for some examples):

I Definition 5. Let C be a cycle and S0, S1, . . . , Sk be a partition of V (C) such that |S0| is
even and k ≥ 2, where S0 is allowed to be empty and S1, . . . , Sk are non-empty. Let M be a
perfect matching on the vertex set S0. We call the graph C ∪M a connector. Each Si is
called a terminal set for i ≥ 1. An edge e ∈M is called a chord if e /∈ E(C).

Connectors are useful because of the following property:

I Lemma 6. Let C ∪M be a connector. For every terminal set Si, there exists an M-
alternating path in the connector from a vertex v ∈ Si to a vertex u ∈ Sj , for some j /∈ {0, i}.

Let y be a minimum fractional w-vertex cover in G. We say that an edge uv is tight if
yu + yv = wuv. Similarly, we say that a path is tight if all of its edges are tight.
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Figure 1 Two examples of connectors. Bold edges indicate M . Vertices of the same color belong
to the same terminal set. White vertices are the ones in S0.

I Theorem 7. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. If |C(x̂)| > γ(G), then there exists
(i) a vertex v ∈ V (Ci) for some odd cycle Ci ∈ C(x̂) such that yv = 0; or
(ii) a tight M(x̂)-alternating path P which connects two odd cycles Ci, Cj ∈ C(x̂); or
(iii) a tight and valid M(x̂)-alternating path P which connects an odd cycle Ci ∈ C(x̂) and

a vertex v /∈ V (C(x̂)) such that yv = 0.
Furthermore, alternate rounding on the odd cycles and complementing on the path produces
a basic maximum-weight fractional matching x̄ such that C(x̄) ⊂ C(x̂).

Proof. We will start by proving the second part of the theorem, namely that alternate
rounding and complementing produces a basic maximum-weight fractional matching with
lesser odd cycles. For Case (i), let x̄ be the basic fractional matching obtained by alternate
rounding on Ci at v. Since yv = 0, both x̄ and y satisfy complementary slackness. Hence,
x̄ is optimal to (P) and C(x̄) = C(x̂) \ Ci. For Case (ii), denote u = V (P ) ∩ V (Ci) and
v = V (P ) ∩ V (Cj) as the endpoints of P . Let x̄ be the basic fractional matching obtained
by alternate rounding on Ci, Cj at u, v respectively and complementing on P . Note that u
and v are exposed after the alternate rounding, and covered after complementing. Since x̄
and y satisfy complementary slackness, x̄ is optimal to (P) and C(x̄) = C(x̂) \ {Ci, Cj}. For
Case (iii), denote u = V (P ) ∩ V (Ci) and v /∈ V (C(x̂)) as the endpoints of P . Let x̄ be the
basic fractional matching obtained by alternate rounding on Ci at u and complementing on
P . Since yv = 0, both x̄ and y satisfy complementary slackness. Thus, x̄ is optimal to (P)
and C(x̄) = C(x̂) \ Ci.

Next, we prove the first part of the theorem. We may assume yv > 0 for every vertex
v ∈ V (C(x̂)). Let x∗ be a basic maximum-weight fractional matching in G such that
|C(x∗)| = γ(G). Define N(x̂) := M(x̂) \ E(C(x∗)) and N(x∗) := M(x∗) \ E(C(x̂)). Consider
the following subgraph

J = (V,N(x̂)4N(x∗)).

Since N(x̂) and N(x∗) are matchings in G, J is made up of vertex-disjoint paths and cycles of
G. For each such path or cycle, its edges alternately belong to N(x̂) or N(x∗). Moreover, its
intermediate vertices are disjoint from C(x̂) and C(x∗). Since x̂ and x∗ are maximum-weight
fractional matchings in G, every path in J is tight by complementary slackness. If there
exists a path in J which connects two odd cycles from C(x̂), then we are done. If there exists
a path in J which connects an odd cycle from C(x̂) and a vertex v /∈ V (C(x̂) ∪ C(x∗)), then
yv = 0 because v is either exposed by M(x̂) or M(x∗). Hence, we are also done. So we may
assume every path in J belongs to one of the following three categories:
(a) Vertex disjoint from C(x̂) and C(x∗).
(b) Starts and ends at the same cycle of C(x̂) ∪ C(x∗).
(c) Connects an odd cycle from C(x̂) and an odd cycle from C(x∗).

ICALP 2018
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Note that by the second part of the theorem, there is no path in J which connects two odd
cycles from C(x∗) or an odd cycle from C(x∗) and a vertex v /∈ V (C(x̂)∪ C(x∗)). We say that
two odd cycles Ci and Cj are adjacent if V (Ci) ∩ V (Cj) 6= ∅ or if they are connected by a
path in J .

I Claim 1. Every cycle in C(x̂) is adjacent to a cycle in C(x∗).

Proof. Let C be an odd cycle in C(x̂). For every vertex v ∈ V (C), since we assumed
yv > 0, by complementary slackness it is either M(x∗)-covered or belongs to V (C(x∗)). If
v ∈ V (C(x∗)), then we are done. So we may assume that every vertex in C is M(x∗)-covered.
Let uv ∈M(x∗) where u ∈ V (C) and v /∈ V (C). Observe that uv is the first edge of a path
in J , so it either ends at an odd cycle in C(x∗) or C. Since C has an odd number of vertices,
by the pigeonhole principle there exists a path in J which connects C and an odd cycle in
C(x∗). J

Recall that we assumed no two cycles in C(x̂) are adjacent. We also know that no two
cycles in C(x∗) are adjacent. Since |C(x̂)| > |C(x∗)|, by the previous claim there exists an
odd cycle in C(x∗) which is adjacent to at least two odd cycles in C(x̂). Let C∗ ∈ C(x∗) be
adjacent to C1, . . . , Ck ∈ C(x̂) for some k ≥ 2. For every i ∈ [k], define

Si := {v ∈ V (C∗) : v ∈ V (Ci) or ∃ a path in J from v to Ci}

and S0 := V (C∗) \ ∪ki=1Si. Note that yv > 0 for every vertex v ∈ V (C∗). Hence, by
complementary slackness every vertex in S0 is M(x̂)-covered. Let v ∈ S0. It is either
matched to another vertex in S0 or is an endpoint of a path in J whose other endpoint is also
a vertex in S0. Hence, |S0| is even. Moreover, Si 6= ∅ for all i ≥ 1, and the sets S0, . . . , Sk
partition V (C∗). Let P be the set of paths in J that start and end at C∗, and consider the
subgraph C∗ ∪ P. We claim that there exists an M(x̂)-alternating path from Si to Sj in
C∗ ∪ P where i 6= j and i, j 6= 0. Since every path in P starts and ends with an edge in
M(x̂), we can perform the following reduction: contract every path in P into a single edge in
M(x̂). It is easy to see that an M(x̂)-alternating path from Si to Sj in C∗ ∪ P corresponds
to an M(x̂)-alternating path from Si to Sj in the reduced graph. Then, observe that the
reduced graph along with the matching M(x̂) forms a connector. By Lemma 6, there exists
an M(x̂)-alternating path P from Si to Sj in C∗ ∪ P.

Let vi ∈ Si and vj ∈ Sj be the endpoints of P . Let Pi and Pj be the paths in J connecting
vi to Ci and vj to Cj respectively. If vi ∈ V (Ci), set Pi = ∅. Similarly if vj ∈ V (Cj), set
Pj = ∅. Then, Pi ∪ P ∪ Pj forms a tight M(x̂)-alternating path which connects Ci and
Cj . J

Given a basic maximum-weight fractional matching x̂ in G, we would like to reduce the
number of odd cycles in C(x̂) to γ(G). One way to accomplish this is to search for the
structures described in Theorem 7. Fix a minimum fractional w-vertex cover y in G. Let G′
be the unweighted graph obtained by applying the following operations to G (see Figure 2):
1. Delete all non-tight edges.
2. Add a vertex z.
3. For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add the edge vz.
4. For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the vertex v′ and the edges

vv′, v′z.
5. Shrink every odd cycle Ci ∈ C(x̂) into a pseudonode i.
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z

Figure 2 The auxiliary graph G′ and the matching M ′. Vertices in the ellipse are from the
original graph G. Gray vertices represent pseudonodes.

Note that none of the edges in M(x̂) and C(x̂) were deleted because they are tight. Consider
the edge set M ′ := M(x̂) ∪ {vv′ : v ∈ V }. It is easy to see that M ′ is a matching in G′. The
significance of the auxiliary graph G′ is given by the following lemma:

I Lemma 8. M ′ is a maximum matching in G′ if and only if |C(x̂)| = γ(G).

Thus, searching for the structures in Theorem 7 is equivalent to searching for an M ′-
augmenting path in G′. This immediately gives us the following algorithm.

Algorithm 1: Minimize number of odd cycles.
1 Compute a basic maximum-weight fractional matching x̂ in G
2 Compute a minimum fractional w-vertex cover y in G
3 Construct G′ and M ′
4 while ∃ an M ′-exposed pseudonode r in G′ do
5 Grow an M ′-alternating tree T rooted at r using Edmonds’ algorithm [9]
6 if an M ′-augmenting r-s path P ′ is found in G′ then
7 Let P be the corresponding tight M(x̂)-alternating path in G
8 if s is a pseudonode then
9 Alternate round on Cr, Cs and complement on P

10 else
11 Alternate round on Cr and complement on P
12 Update G′ and M ′

13 else
14 G′ ← G′ \ V (T )

15 return x̂

After an M ′-augmenting path P ′ is found, let x̄ denote the new basic maximum-weight
fractional matching inG obtained by alternate rounding and complementing x̂. We can update
G′ as follows. If s is a pseudonode, we unshrink Cr and Cs inG′ because C(x̄) = C(x̂)\{Cr, Cs}.
Otherwise, s = z and we only unshrink Cr. Then, there are two cases. In the first case,
we have vz ∈ E(P ′) for some v ∈ V . Observe that x̂(δ(v)) = 1 but x̄(δ(v)) = 0. Hence we
replace the edge vz with edges vv′, v′z. In the second case, we have v′z ∈ E(P ′) for some
v ∈ V . This implies x̂(δ(v)) = 0 but x̄(δ(v)) = 1. So we replace edges vv′, v′z with the edge
vz.

I Theorem 9. Algorithm 1 computes a basic maximum-weight fractional matching with γ(G)
odd cycles in polynomial time.

We remark here that in Algorithm 1, we can avoid solving linear programs to obtain
x̂ and y in Steps 1 and 2. They can be computed using a simple duplication technique
by Nemhauser and Trotter [16], which involves solving the problem on a suitable bipartite
graph.
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4 Computing vertex-stabilizers

The goal of this section is to prove the following theorem:

I Theorem 10. There exists a polynomial-time algorithm that computes a minimum vertex-
stabilizer S for a weighted graph G. Moreover, ν(G \ S) ≥ 2

3ν(G).

Let us start with discussing a lower bound on the size of a minimum vertex-stabilizer.

Lower bound. We will here prove that γ(G) is a lower bound on the number of vertices to
remove in order to stabilize a graph. Recall that a graph is stable if and only if γ(G) = 0.
One strategy to achieve this is by showing that γ(G) drops by at most 1 when a vertex is
deleted (Lemma 12). We first develop a couple of claims.

I Claim 2. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. Pick a vertex s from any odd cycle C ∈ C(x̂). If x̄ is
the fractional matching obtained by alternate rounding on C at s, then x̄−δ(s) is a basic
maximum-weight fractional matching and y−s is a minimum fractional w-vertex cover in
G \ s.

The following operation allows us to switch between fractional matchings on a set of
edges:

I Definition 11. Let x and x′ be fractional matchings in G. By switching on E′ ⊆ E from
x to x′, we mean replacing xe by x′e for all e ∈ E′.

Switching does not necessarily yield a feasible fractional matching. Hence, we will only
use it on the components of a specific subgraph of G:

I Claim 3. Given two basic fractional matchings x and x′, let H be the subgraph of G
induced by supp(x+ x′). For any component K in H, switching on E(K) from x to x′ yields
a basic fractional matching in G.

I Lemma 12. For every vertex v ∈ V , γ(G \ v) ≥ γ(G)− 1.

Proof. Let x∗ be a basic maximum-weight fractional matching in G such that |C(x∗)| = γ(G).
Let y be a minimum fractional w-vertex cover in G. For the purpose of contradiction, suppose
there exists a vertex u ∈ V such that γ(G \ u) < γ(G)− 1. There are two cases:

Case 1: u ∈ V (C) for some odd cycle C ∈ C(x∗). Let x̄ be the fractional matching obtained
from x∗ by alternate rounding on C at u. By Claim 2, we know that x̄−δ(u) is a basic
maximum-weight fractional matching and y−u is a minimum fractional w-vertex cover in
G \ u. We first give a proof sketch for this case. If x̄−δ(u) is not an optimal basic solution
yielding γ(G \ u) odd cycles, then one of the structures given by Theorem 7 must exist. This
same structure would be a structure corresponding to the basic solution x∗, but this yields a
contradiction since x∗ is an optimal basic solution with γ(G) odd cycles.

For notational convenience, we can use C(x̄) and M(x̄) to refer to the odd cycles and
matched edges of x̄−δ(u) respectively because C(x̄) = C

(
x̄−δ(u)

)
and M(x̄) = M

(
x̄−δ(u)

)
.

Since |C(x̄)| = |C(x∗)| − 1 = γ(G) − 1 > γ(G \ u), Theorem 7 tells us that G \ u contains
one of the following structures. The first structure is a vertex v ∈ V (Ci) for some odd cycle
Ci ∈ C(x̄) such that yv = 0. However, since Ci ∈ C(x∗), by Theorem 7 we arrive at the
contradiction |C(x∗)| > γ(G). The second structure is a tight and valid M(x̄)-alternating
path P which connects two odd cycles Ci, Cj ∈ C(x̄), or an odd cycle Ci ∈ C(x̄) and a vertex
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v /∈ V (C(x̄)) such that yv = 0. Note that Ci, Cj ∈ C(x∗). If V (P )∩ V (C) = ∅, then P is also
a tight and valid M(x∗)-alternating path in G which connects Ci and Cj , or Ci and v. So,
let s = V (Ci) ∩ V (P ) and t denote the first vertex of C encountered while traversing along
P from s. Then, the s-t subpath of P is a tight M(x∗)-alternating path which connects
Ci, C ∈ C(x∗). We again obtain the contradiction |C(x∗)| > γ(G) by Theorem 7.

Case 2: u /∈ V (C(x∗)). If u is M(x∗)-exposed, then νf (G \ u) = νf (G) and γ(G \ u) = γ(G).
So we may assume u is M(x∗)-covered. Let x̂ be a basic maximum-weight fractional
matching in G \ u such that |C(x̂)| < γ(G) − 1. Define N(x̂) := M(x̂) \ E(C(x∗)) and
N(x∗) := M(x∗) \ E(C(x̂)). Consider the subgraph J = (V,N(x∗)4N(x̂)). Note that u is
covered by N(x∗) and exposed by N(x̂). Let P be the component in J which contains u.
We know that P is a path with u as an endpoint. Let v be the other endpoint of P . There
are 3 subcases, but before jumping into them, we first give an overview of how we arrive at a
contradiction in each subcase. We show that one can move from x∗ to a new solution x̃ such
that:
(i) x̃ is a basic maximum-weight fractional matching for a subgraph G′ obtained by deleting

at most 1 vertex from a cycle of C(x∗); and
(ii) |C(x̃)| < γ(G′).
Clearly, both of the above properties cannot hold, so this yields a contradiction.

Subcase 2.1: v ∈ C for some odd cycle C ∈ C(x∗). In this subcase, the path P has even
length. Let x̄ be the fractional matching obtained from x∗ by alternate rounding on C at v.
By Claim 2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ v. Let H be the
subgraph of G induced by supp(x̂+ x̄). Note that x̂e + x̄e = 0 for every edge e /∈ E(P ) which
is incident to a vertex in P . Thus, P is a component in H. Since |C(x̄)| = γ(G)− 1 > |C(x̂)|,
there exists a component K in H which has more odd cycles from C(x̄) than C(x̂). Switching
on K from x̄−δ(v) to x̂ yields a basic fractional matching in G \ v with less than γ(G)− 1
odd cycles. To yield a contradiction to Case 1, it is left to show that it is maximum-weight.
This is because we are deleting a vertex v from an odd cycle of C(x∗), but γ(G \ v) decreases
by more than 1. Now, since x̂ and x̄−δ(v) are maximum-weight fractional matchings in G \ u
and G \ v respectively, we have

∑
e∈E(K) wex̂e =

∑
e∈E(K) wex̄e because u, v /∈ V (K). Thus,

the resulting matching is indeed maximum-weight in G \ v.

Subcase 2.2: v ∈ C for some odd cycle C ∈ C(x̂). In this subcase, the path P has odd
length. Let x̄ be the fractional matching obtained from x̂ by alternate rounding on C at v. By
Claim 2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ {u, v}. Let H be the
subgraph ofG induced by supp(x∗+x̄). Note that x∗e+x̄e = 0 for every edge e /∈ E(P ) incident
to a vertex in P . Thus, P is a component in H. Since |C(x̄)| = |C(x̂)|−1 < γ(G)−2 < |C(x∗)|,
there exists a component K in H which has more odd cycles from C(x∗) than C(x̄). Switching
on K from x∗ to x̄ yields a basic fractional matching in G with less than γ(G) odd cycles.
To yield a contradiction, it is left to show that it is maximum-weight. Since x∗ and
x̄−δ(v) are maximum-weight fractional matchings in G and G \ {u, v} respectively, we have∑
e∈E(K) wex

∗
e =

∑
e∈E(K) wex̄e because u, v /∈ V (K). Thus, the resulting basic fractional

matching is maximum-weight in G.

Subcase 2.3: v /∈ V (C(x∗) ∪ C(x̂)). Let H be the subgraph of G induced by supp(x∗ + x̂).
Note that x∗e + x̂e = 0 for every edge e /∈ E(P ) which is incident to a vertex in P . Thus, the
path P is a component in H. Since |C(x∗)| > γ(G)− 1 > |C(x̂)|, there exists a component K
in H which has more odd cycles from C(x∗) than C(x̂). Switching on K from x∗ to x̂ yields
a basic fractional matching in G with less than γ(G) odd cycles. To yield a contradiction, it
is left to show that it is maximum-weight. Since x∗ and x̂ are maximum-weight fractional
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matchings in G and G \ u respectively, we have
∑
e∈E(K) wex

∗
e =

∑
e∈E(K) wex̂e because

u /∈ V (K). Hence, the resulting basic fractional matching is maximum-weight in G. J

As a corollary to the above lemma, we obtain the claimed lower bound.

I Lemma 13. For every vertex-stabilizer S of G, |S| ≥ γ(G).

The algorithm. The algorithm we use to stabilize a graph is very simple: it computes a
basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles (this can be done
using Algorithm 1) and a minimum fractional w-vertex cover y in G, and then removes
one vertex from every cycle in C(x̂), namely, the vertex with the least y-value in the cycle.
Algorithm 2 formalizes this.

Algorithm 2: Minimum vertex-stabilizer
1 Initialize S ← ∅
2 Compute a minimum fractional w-vertex cover y in G
3 Compute a basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles
4 Let C(x̂) =

{
C1, C2, . . . , Cγ(G)

}
5 for i = 1 to γ(G) do
6 Let vi = arg minv∈V (Ci) yv

7 S ← S + vi

8 return S

We are now ready to prove the main theorem stated at the beginning of the section, Theorem
10.

Proof of Theorem 10. Let S =
{
v1, v2, . . . , vγ(G)

}
be the set of vertices returned by the

algorithm. Let x̄ be the vector obtained from x̂ by alternate rounding on Ci at vi for all
i respectively. By Lemma 2, x̄−∪γ(G)

i=1 δ(vi)
is a basic maximum-weight fractional matching

in G \ S. Note that it is also a maximum-weight integral matching in G \ S. Thus,
ν(G \ S) = νf (G \ S) and G \ S is stable. Moreover, S is minimum by Lemma 13. It is left
to show that ν(G \ S) ≥ 2

3ν(G). For every odd cycle Ci ∈ C(x̂), we have

yvi ≤
y(V (Ci))
|V (Ci)|

≤ y(V (Ci))
3

because vi has the smallest fractional w-vertex cover in Ci. From Lemma 2, we also know
that y−S is a minimum fractional w-vertex cover in G \ S. Then,

ν(G\S) = τf (G\S) = 1
>y−

γ(G)∑
i=1

yvi ≥ 1
>y− 1

3

γ(G)∑
i=1

y(Ci) ≥ 1
>y− 1

31
>y = 2

3τf (G) ≥ 2
3ν(G)J

Note that removing any single vertex from each cycle of C(x̂) yields a minimum-cardinality
vertex stabilizer. The reason we chose the vertex with the smallest yv is to preserve the value
of the original maximum-weight matching by a factor of 2

3 .

Tightness of the matching bound. A natural question is whether it is possible to design
an algorithm that always returns a vertex-stabilizer S satisfying ν(G \ S) ≥ αν(G), for some
α > 2

3 . We report an example in the full version of this paper showing that, in general, this
is not possible since the bound of 2

3 can be asymptotically tight.
Another natural question is whether one can at least distinguish if, for a specific instance,

there exists a vertex-stabilizer S such that ν(G \ S) = ν(G). Once again, we show that
the answer is negative. Specifically, let us call a vertex-stabilizer S weight-preserving if
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ν(G \ S) = ν(G). We show that finding such a vertex-stabilizer is hard in general. The proof
is based on a reduction from the independent set problem, similar to the one given by Biró
et al. [4].

I Theorem 14. Deciding whether a graph has a weight-preserving vertex-stabilizer is NP-
complete.
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