
Approximate Sparse Linear Regression
Sariel Har-Peled1

Department of Computer Science, University of Illinois, Urbana, IL, USA
sariel@illinois.edu

Piotr Indyk
Department of Computer Science, MIT, Cambridge, MA, USA
indyk@mit.edu

Sepideh Mahabadi2

Data Science Institute, Columbia University, New York, NY, USA
mahabadi@mit.edu

Abstract
In the Sparse Linear Regression (SLR) problem, given a d × n matrix M and a d-dimensional
query q, the goal is to compute a k-sparse n-dimensional vector τ such that the error ‖Mτ − q‖
is minimized. This problem is equivalent to the following geometric problem: given a set P of n
points and a query point q in d dimensions, find the closest k-dimensional subspace to q, that is
spanned by a subset of k points in P . In this paper, we present data-structures/algorithms and
conditional lower bounds for several variants of this problem (such as finding the closest induced
k dimensional flat/simplex instead of a subspace).

In particular, we present approximation algorithms for the online variants of the above prob-
lems with query time Õ(nk−1), which are of interest in the "low sparsity regime" where k is small,
e.g., 2 or 3. For k = d, this matches, up to polylogarithmic factors, the lower bound that relies on
the affinely degenerate conjecture (i.e., deciding if n points in Rd contains d+ 1 points contained
in a hyperplane takes Ω(nd) time). Moreover, our algorithms involve formulating and solving
several geometric subproblems, which we believe to be of independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry, Theory
of computation → Data structures design and analysis

Keywords and phrases Sparse Linear Regression, Approximate Nearest Neighbor, Sparse Recov-
ery, Nearest Induced Flat, Nearest Subspace Search

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.77

Related Version A full version of the paper is available at https://arxiv.org/abs/1609.
08739.

Funding This research was supported by NSF and Simons Foundation.

1 Introduction

The goal of the Sparse Linear Regression (SLR) problem is to find a sparse linear model
explaining a given set of observations. Formally, we are given a matrix M ∈ Rd×n, and a
vector q ∈ Rd, and the goal is to find a vector τ that is k-sparse (has at most k non-zero
entries) and that minimizes ‖q −Mτ‖2. The problem also has a natural query/online variant

1 [Work on this paper was partially supported by NSF AF awards CCF-1421231, and CCF-1217462.]
2 [This work was done while this author was at MIT.]

EA
T

C
S

© Sariel Har-Peled, Piotr Indyk, and Sepideh Mahabadi;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 77; pp. 77:1–77:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sariel@illinois.edu
mailto:indyk@mit.edu
mailto:mahabadi@mit.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.77
https://arxiv.org/abs/1609.08739
https://arxiv.org/abs/1609.08739
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

77:2 Approximate Sparse Linear Regression

where the matrix M is given in advance (so that it can be preprocessed) and the goal is to
quickly find τ given q.

Various variants of SLR have been extensively studied, in a wide range of fields including
(i) statistics and machine learning [15, 16],
(ii) compressed sensing [6], and
(iii) computer vision [17].
The query/online variant is of particular interest in the application described by Wright et al.
[17], where the matrix M describes a set of image examples with known labels and q is a
new image that the algorithm wants to label.

If the matrix M is generated at random or satisfies certain assumptions, it is known
that a natural convex relaxation of the problem finds the optimum solution in polynomial
time [3, 4]. However, in general the problem is known to be NP-Hard [13, 5], and even hard
to approximate up to a polynomial factor [8] (see below for a more detailed discussion). Thus,
it is likely that any algorithm for this problem that guarantees "low" approximation factor
must run in exponential time. A simple upper bound for the offline problem is obtained by
enumerating

(
n
k

)
possible supports of τ and then solving an instance of the d×k least squares

problem. This results in nk(d+ k)O(1) running time, which (to the best of our knowledge)
constitutes the fastest known algorithm for this problem. At the same time, one can test
whether a given set of n points in a d-dimensional space is degenerate by reducing it to n
instances of SLR with sparsity d. The former problem is conjectured to require Ω(nd) time [7]
– this is the affinely degenerate conjecture. This provides a natural barrier for running time
improvements (we elaborate on this below in Section 1.1.1).

In this paper, we study the complexity of the problem in the case where the sparsity
parameter k is constant. In addition to the formulation above, we also consider two more
constrained variants of the problem. First, we consider the Affine SLR where the vector τ is
required to satisfy ‖τ‖1 = 1, and second, we consider the Convex SLR where additionally τ
should be non-negative. We focus on the approximate version of these problems, where the
algorithm is allowed to output a k-sparse vector τ ′ such that ‖Mτ ′ − q‖2 is within a factor
of 1 + ε of the optimum.

Geometric interpretation. The SLR problem is equivalent to the Nearest Linear Induced
Flat problem defined as follows. Given a set P of n points in d dimensions and a d-dimensional
vector q, the task is to find a k-dimensional flat spanning a subset B of k points in P and the
origin, such that the (Euclidean) distance from q to the flat is minimized. The Affine and
Convex variants of SLR respectively correspond to finding the Nearest Induced Flat and the
Nearest Induced Simplex problems, where the goal is to find the closest (k − 1)-dimensional
flat/simplex spanned by a subset of k points in P to the query.

Motivation for the problems studied. Given a large3 set of items (e.g., images), one would
like to store them efficiently for various purposes. One option is to pick a relatively smaller
subset of representative items (i.e., support vectors), and represent all items as a combination
of this supporting set. Note, that if our data-set is diverse and is made out of several distinct
groups (say, images of the sky, and images of children), then naturally, the data items would
use only some of the supporting set for representation (i.e., the representation over the

3 Bigger than the biggest thing ever and then some. Much bigger than that in fact, really amazingly
immense, a totally stunning size, “wow, that’s big”, time. – The Restaurant at the End of the Universe,
Douglas Adams.

S. Har-Peled, P. Indyk, and S. Mahabadi 77:3

Table 1 Summary of results. Here, S(n, d, ε) denotes the preprocessing time and space used by a
(1 + ε)-ANN (approximate nearest-neighbor) data-structure, and TQ(n, d, ε) denotes the query time
(we assume all these bounds are at least linear in the dimension d). All the data-structures, except
the last one, provide (1 + ε)-approximation. In the nearest induced segment case (i.e., this is the
offline convex SLR case) the algorithm answers a single query.

Comment Space Query See

SLR nk−1S(n, d, ε) nk−1TQ(n, d, ε) Theorem 12

Affine SLR nk−1S(n, d, ε) nk−1TQ(n, d, ε) Theorem 11

Convex SLR nk−1S(n, d, ε) logk n nk−1TQ(n, d, ε) logk n Lemma 25

k = 2 & ε ≤ 1 nS(n, d, ε) logn nTQ(n, d, ε)ε−2 logn Full version
Approximate

nearest
k = 2
2(1 + ε) Approx n

1+O(1
(1+ε)2) Full version

induced segment d = O(1) O(n logn+ n/εd) Full version

supporting set is naturally sparse). As such, it is natural to ask for a sparse representation
of each item over the (sparse but still relatively large) supporting set. (As a side note,
surprisingly little is known about how to choose such a supporting set in theory, and the
problem seems to be surprisingly hard even for points in the plane.)

Now, when a new item arrives to the system, the task is to compute its best sparse
representation using the supporting set, and we would like to do this as fast as possible
(which admittedly is not going to be that fast, see below for details).

1.1 Our results
Data-structures. We present data-structures to solve the online variants of the SLR, Affine
SLR and Convex SLR problems, for general value of k. Our algorithms use a provided
approximate nearest-neighbor (ANN) data-structure as a black box. The new results are
summarized in Table 1.

For small values of k, our algorithms offer notable improvements of the query time over
the aforementioned naive algorithm, albeit at a cost of preprocessing. Below in Section 1.1.1,
we show how our result matches the lower bound that relies on the affinely degenerate
conjecture. Moreover, our algorithms involve formulating and solving several interesting
geometric subproblems, which we believe to be of independent interest.

Conditional lower bound. We show a conditional lower bound of Ω(nk/2/(ek logΘ(1) n)),
for the offline variants of all three problems. Improving this lower bound further, for the
case of k = 4, would imply a nontrivial lower bound for famous Hopcroft’s problem. See full
version of the paper for the description. Our conditional lower bound result presented in the
full version of the paper follows by a reduction from the k-sum problem which is conjectured
to require Ω(ndk/2e/ logΘ(1) n) time (see e.g., [14], Section 5). This provides further evidence
that the off-line variants of the problem require nΩ(k) time.

1.1.1 Detecting affine degeneracy
Given a point set P in Rd (here d is conceptually small), it is natural to ask if the points
are in general position – that is, all subsets of d+ 1 points are affinely independent. The
affinely degenerate conjecture states that this problem requires Ω(nd) time to solve [7]. This
can be achieved by building the arrangement of hyperplanes in the dual, and detecting

ICALP 2018

77:4 Approximate Sparse Linear Regression

any vertex that has d + 1 hyperplanes passing through it. This problem is also solvable
using our data-structure. (We note that since the approximation of our data structure is
multiplicative, and in the reduction we only need to detect distance of 0 from larger than 0,
we are able to solve the exact degeneracy problem as described next). Indeed, we instantiate
Theorem 11, for k = d, and using a low-dimensional (1 + ε)-ANN data-structure of Arya
et al. [1]. Such an ANN data-structure uses S(n, d, ε) = O(n) space, O(n logn) preprocessing
time, and TQ(n, d, ε) = O(logn+ 1/εd) = O(logn) query time (for a fixed constant ε < 1).
Thus, by Theorem 11, our data structure has total space usage and preprocessing time of
Õ(nk) and a query time of Õ(nk−1). Detecting affine degeneracy then reduces to solving for
each point of q ∈ P , the problem of finding the closest (d− 1)-dimensional induced flat (i.e.,
passing through d points) of P \ {q} to q. It is easy to show that this can be solved using our
data-structure with an extra log factor4. This means that the total runtime (including the
preprocessing and the n queries) will be Õ(nk) = Õ(nd). Thus, up to polylogarithmic factor,
the data-structure of Theorem 11 provides an optimal trade-off under the affinely degenerate
conjecture. We emphasize that this reduction only rules out the existence of algorithms for
online variants of our problems that improve both the preprocessing time from O(nk), and
query time from O(nk−1) by much; it does not rule out for example the algorithms with
large preprocessing time (in fact much larger than nk) but small query time.

1.2 Related work
The computational complexity of the approximate sparse linear regression problem has been
studied, e.g., in [13, 5, 8]. In particular, the last paper proved a strong hardness result,
showing that the problem is hard even if the algorithm is allowed to output a solution with
sparsity k′ = k2log1−δ n whose error is within a factor of ncm1−α from the optimum, for any
constants δ, α > 0 and c > 1.

The query/online version of the Affine SLR problem can be reduced to the Nearest k-flat
Search Problem studied in [11, 2, 12], where the database consists of a set of k-flats (affine
subspaces) of size N and the goal is to find the closest k-flat to a given query point q. Let P
be a set of n points in Rd that correspond to the columns of M . The reduction proceeds by
creating a database of all N =

(
n
k

)
possible k-flats that pass through k points of P . However,

the result of [2] does not provide multiplicative approximation guarantees, although it does
provide some alternative guarantees and has been validated by several experiments. The
result of [11], provides provable guarantees and fast query time of (d+ logN + 1/ε)O(1), but
the space requirement is quasi-polynomial of the form 2(logN)O(1) = 2(k logn)O(1) . Finally the
result of [12] only works for the special case of k = 2, and yields an algorithm with space
usage O

(
n14ε−3S

(
n2, d, ε

))
and query time O

(
TQ
(
n2ε−4, d, ε

)
log2 n

)5. Similar results can
be achieved for the other variants.

The SLR problem has a close relationship with the Approximate Nearest Neighbor (ANN)
problem. In this problem, we are given a collection of N points, and the goal is to build a
data structure which, given any query point q, reports the data point whose distance to the
query is within a (1 + ε) factor of the distance of the closest point to the query. There are

4 The details are somewhat tedious – one generates O(logn) random samples of P where each point is
picked with probability half. Now, we build the data-structure for each of the random samples. With
high probability, for each of the query point q ∈ P , one of the samples contains, with high probability,
the d points defining the closest flat, while not containing q.

5 The exact exponent is not specified in the main theorem of [12] and it was obtained by an inspection of
the proofs in that paper.

S. Har-Peled, P. Indyk, and S. Mahabadi 77:5

many efficient algorithms known for the latter problem. One of the state of the art results
for ANN in Euclidean space answers queries in time (d log(N)/ε2)O(1) using (dN)O(1/ε2)

space [10, 9].

1.3 Our techniques and sketch of the algorithms

Affine SLR (nearest flat). To solve this problem, we first fix a subset B ⊆ P of k − 1
points, and search for the closest (k − 1)-flat among those that contain B. Note, that there
are at most n− k + 1 such flats. Each such flat f, as well as the query flat Qflat (containing
B and the query q), has only one additional degree of freedom, which is represented by a
vector vH (vQ, resp.) in a d− k + 1 space. The vector vH that is closest to vQ corresponds
to the flat that is closest to q. This can be found approximately using standard ANN data
structure, resulting in an algorithm with running time O(nk−1 · TQ(n, d, ε)). Similarly, by
adding the origin to the set B, we could solve the SLR problem in a similar way.

Convex SLR (nearest simplex). This case requires an intricate combination of low and
high dimensional data structures, and is the most challenging part of this work. To find the
closest (k − 1)-dimensional induced simplex, one approach would be to fix B as before, and
find the closest corresponding flat. This will work only if the projection of the query onto the
closest flat falls inside of its corresponding simplex. Because of that, we need to restrict our
search to the flats of feasible simplices, i.e., the simplices S such that the projection of the
query point onto the corresponding flat falls inside S. If we manage to find this set, we can
use the algorithm for affine SLR to find the closest one. Note that finding the distance of the
query to the closest non-feasible simplex can easily be computed in time nk−1 as the closest
point of such a simplex to the query lies on its boundary which is a lower dimensional object.

Let S be the unique simplex obtained from B and an additional point p. Then we can
determine whether S is feasible or not only by looking at (i) the relative positioning of p
with respect to B, that is, how the simplex looks like in the flat going through S, (ii) the
relative positioning of q with respect to B, and (iii) the distance between the query and the
flat of the simplex. Thus, if we were given a set of simplices through B such that all their
flats were at a distance r from the query, we could build a single data structure for retrieving
all the feasible flats. This can be done by mapping all of them in advance onto a unified
(k − 1) dimensional space (the “parameterized space”), and then using k − 1 dimensional
orthogonal range-searching trees in that space.

However, the minimum distance r is not known in general. Fortunately, as we show the
feasibility property is monotone in the distance: the farther the flat of the simplex is from the
query point, the weaker constraints it needs to satisfy. Thus, given a threshold value r, our
algorithm retrieves the simplices satisfying the restrictions they need to satisfy if they were
at a distance r from the query. This allows us to use binary search for finding the right value
of r by random sampling. The final challenge is that, since our access is to an approximate
NN data structure (and not an exact one), the above procedure yields a superset of feasible
simplices. The algorithm then finds the closest flat corresponding to the simplices in this
superset. We show that although the reported simplex may not be feasible, its distance to
the query is still approximately at most r.

For overview of the offline nearest segment, and conditional lower bound, see the full
version.

ICALP 2018

77:6 Approximate Sparse Linear Regression

2 Preliminaries

2.1 Notations
Throughout the paper, we assume P ⊆ Rd is the set of input points which is of size n. In
this paper, for simplicity, we assume that the point-sets are non-degenerate, however this
assumption is not necessary for the algorithms. We use the notation X ⊂i B to denote that
X is a subset of B of size i, and use 0 to denote the origin. For two points y, u ∈ Rd, the
segment the form is denoted by yu, and the line formed by them by line(y, u).

I Definition 1. For a set of points S, let fS = aff(S) =
{∑|S|

i=1 αipi

∣∣∣ pi ∈ S, and
∑|S|

i=1 αi = 1
}

be the (|S| − 1)-dimensional flat (or (|S| − 1)-flat for short) passing through the points in
the set S (aka the affine hull of S). The (|S| − 1)-dimensional simplex ((|S| − 1)-simplex for
short) that is formed by the convex-hull of the points of S is denoted by 4S . We denote the
interior of a simplex 4S by int(4S).

I Definition 2 (distance and nearest-neighbor). For a point q ∈ Rd, and a point p ∈ Rd, we
use d(q, p) = ‖q − p‖2 to denote the distance between q and p. For a closed set X ⊆ Rd,
we denote by d(q,X) = minp∈X ‖q − p‖2 the distance between q and X. The point of X
realizing the distance between q and X is the nearest neighbor to q in X, denoted by nn(q,X).
We sometimes refer to nn(q,X) as the projection of q onto X.

More generally, given a finite family of such sets G =
{
Xi ⊆ Rd

∣∣ i = 1, . . . ,m
}
, the

distance of q from G is d(q,G) = minX∈G d(q,X). The nearest-neighbor nn(q,G) is defined
analogously to the above.

I Assumption 3. Throughout the paper, we assume we have access to a data structure that
can answer (1 + ε)-ANN queries on a set of n points in Rd. We use S(n, d, ε) to denote the
space requirement of this data structure, and by TQ(n, d, ε) to denote the query time.

2.1.1 Induced stars, bouquets, books, simplices and flats
I Definition 4. Given a point b and a set P of points in Rd, the star of P , with the
base b, is the set of segments star(b, P) = {bp | p ∈ P \ {b}} . Similarly, given a set B of
points in Rd, with |B| = k − 1 ≤ d, the book of P , with the base B, is the set of simplices
∆(B,P) =

{
4B∪{p}

∣∣ p ∈ P \B} . Finally, the set of flats induced by these simplices, is the
bouquet of P , denoted by bqt(B,P) =

{
fB∪{p}

∣∣ p ∈ P \B} .
If B is a single point, then the corresponding book is a star, and the corresponding bouquet
is a set of lines all passing through the single point in B.

I Definition 5. For a set P ⊆ Rd, let Lk(P) =
{

fS∪{0}
∣∣ S ⊂k P} be the set of all linear

k-dimensional subspaces induced by P , and Fk(P) = {fS | S ⊂k P} be the set of all (k − 1)-
flats induced by P . Similarly, let ∆k(P) = {4S | S ⊂k P} be the set of all (k − 1)-simplices
induced by P .

2.2 Problems
In the following, we are given a set P of n points in Rd, a query point q and parameters k
and ε > 0. We are interested in the following problems:

I. SLR (nearest induced linear subspace): Compute nn
(
q,Lk(P)

)
.

II. ANLIF (approximate nearest linear induced flat): Compute a k-flat f ∈ Lk(P), such
that d(q, f) ≤ (1 + ε)d(q,Lk(P)).

S. Har-Peled, P. Indyk, and S. Mahabadi 77:7

III. Affine SLR (nearest induced flat): Compute nn
(
q,Fk(P)

)
.

IV. ANIF (Approximate Nearest Induced Flat): Compute a (k − 1)-flat f ∈ Fk(P), such
that d(q, f) ≤ (1 + ε)d(q,Fk(P)).

V. Convex SLR (Nearest Induced Simplex): Compute nn
(
q,∆k(P)

)
.

VI. ANIS (Approximate Nearest Induced Simplex): Compute a (k− 1)-simplex 4 ∈∆k(P),
such that d(q,4) ≤ (1 + ε)d(q,∆k(P)).

Here, the parameter k corresponds to the sparsity of the solution.

3 Approximating the nearest induced flats and subspaces

Here, we show how to solve approximately the online variants of SLR and affine SLR problems.
These are later used in Section 4. We start with the simplified case of the uniform star.

3.1 Approximating the nearest neighbor in a uniform star
Input & task. We are given a base point b, a set P of n points in Rd, and a parameter
ε > 0. We assume that ‖b− p‖ = 1, for all p ∈ P . The task is to build a data structure that
can report quickly, for a query point q that is also at distance one from b, the (1 + ε)-ANN
segment to q in star(b, P).

Preprocessing. The algorithm computes the set V = {p− b | p ∈ P \ {b}}, which lies on a
unit sphere in Rd. Next, the algorithm builds a data structure DV for answering (1 + ε)-ANN
queries on V .

Answering a query. For a query point q, the algorithm does the following:
(A) Compute τ = q − b.
(B) Compute (1 + ε)-ANN to τ in V , denoted by u using DV .
(C) Let y be the point in P corresponding to u.
(D) Return min

(
d(q, by), 1

)
.

I Lemma 6. Consider a base point b, and a set P of n points in Rd all on S(b, 1), where
S = S(b, 1) is the sphere of radius 1 centered at b. Given a query point q ∈ S, the above
algorithm reports correctly a (1 + ε)-ANN in star(b, P). The query time is dominated by the
time to perform a single (1 + ε)-ANN query. (Proof in the full version)

3.2 Approximating the nearest flat in a bouquet
I Definition 7. For a set X and a point p in Rd, let p′ = nn(p,X). We use dir(X, p) to
denote the unit vector (p− p′)/ ‖p− p′‖, which is the direction of p in relation to X.

Input & task. We are given sets B and P of k − 1 and n points, respectively, in Rd, and a
parameter ε > 0. The task is to build a data structure that can report quickly, for a query
point q, a (1 + ε)-ANN flat to q in bqt(B,P), see Definition 4.

Preprocessing. Let F = fB . The algorithm computes the set

V = {dir(F, p),−dir(F, p) | p ∈ P \B} ,

which lies on a d− k+ 2 dimensional unit sphere in Rd−k+1, and then builds a data structure
DV for answering (standard) ANN queries on V .

ICALP 2018

77:8 Approximate Sparse Linear Regression

Answering a query. For a query point q, the algorithm does the following:
(A) Compute τ = dir(F, q).
(B) Compute ANN to τ in V , denoted by u using the data structure DV .
(C) Let p be the point in P corresponding to u.
(D) Return the distance d(q, fB∪{p}).

I Definition 8. For sets X,Y ⊆ Rd, let projX(Y) = {nn(q,X) | q ∈ Y } be the projection of
Y on X.

I Lemma 9. Consider two affine subspaces F ⊆ H with a base point b ∈ F , and the orthogonal
complement affine subspace F⊥ =

{
b+ τ

∣∣ 〈τ, u− v〉 = 0 for all u, v ∈ F, τ ∈ Rd
}
. For an

arbitrary point q ∈ Rd, let q⊥ = projF⊥(q).We have that d(q,H) = d(q⊥, projF⊥(H)). (Proof
in the full version)

Using the notation of Assumption 3 and Definition 4, we have the following:

I Lemma 10 (ANN flat in a bouquet). Given sets B and P of k−1 and n points, respectively,
in Rd, and a parameter ε > 0, one can preprocess them, using a single ANN data structure,
such that given a query point, the algorithm can compute a (1 + ε)-ANN to the closest
(k − 1)-flat in bqt(B,P). The algorithm space and preprocessing time is O(S(n, d, ε)), and
the query time is O(TQ(n, d, ε)). (Proof in the full version)

3.3 The result
Here, we show simple algorithms for the ANIF and the ANLIF problems by employing
Lemma 10. We assume ε > 0 is a prespecified approximation parameter.

Approximating the affine SLR. As discussed earlier, the goal is to find an approximately
closest (k − 1)-dimensional flat that passes through k points of P , to the query. To this end,
we enumerate all possible k − 1 subsets of points of B ⊂k−1 P , and build for each such base
set B, the data structure of Lemma 10. Given a query, we compute the ANN flat in each one
of these data structures, and return the closest one found.

I Theorem 11. The aforementioned algorithm computes a (1+ε)-ANN to the closest (k−1)-
flat in Fk(P), see Definition 5. The space and preprocessing time is O(nk−1S(n, d, ε)), and
the query time is O(nk−1TQ(n, d, ε)).

Approximating the SLR. The goal here is to find an approximately closest k-dimensional
flat that passes through k points of P and the origin 0, to the query. We enumerate all
possible k − 1 subsets of points of B′ ⊂k−1 P , and build for each base set B = B′ ∪ {0}, the
data structure of Lemma 10. Given a query, we compute the ANN flat in each one of these
data structures, and return the closest one found.

I Theorem 12. The aforementioned algorithm computes a (1 + ε)-ANN to the closest k-flat
in Lk(P), see Definition 5, with space and preprocessing time of O(nk−1S(n, d, ε)), and the
query time of O(nk−1TQ(n, d, ε)).

4 Approximating the nearest induced simplex

In this section we consider the online variant of the ANIS problem. Here, we are given the
parameter k, and the goal is to build a data structure, such that given a query point q, it
can find a (1 + ε)-ANN induced (k − 1)-simplex.

S. Har-Peled, P. Indyk, and S. Mahabadi 77:9

As before, we would like to fix a set B of k − 1 points and look for the closest simplex
that contains B and an additional point from P . The plan is to filter out the simplices for
which the projection of the query on to them falls outside of the interior of the simplex. Then
we can use the algorithm of the previous section to find the closest flat corresponding to the
feasible simplices (the ones that are not filtered out). First we define a canonical space and
map all these simplices and the query point to a unique (k + 1)-dimensional space. As it
will become clear shortly, the goal of this conversion is to have a common lower dimensional
space through which we can find all feasible simplices using range searching queries.

4.1 Simplices and distances
4.1.1 Canonical realization
In the following, we fix a sequence B = (p1, . . . , pk−1) of k−1 points in Rd. We are interested
in arguing about simplices induced by k+ 1 points, i.e., B, an additional input point pk, and
a query point q. Since the ambient dimension is much higher (i.e., d), it would be useful to
have a common canonical space, where we can argue about all entities.

I Definition 13. For a given set of points B, let F = fB . Let p /∈ F be a given point in Rd,
and consider the two connected components of fB∪{p} \ F , which are halfflats. The halfflat
containing p is the positive halfflat, and it is denoted by f+(B, p).

Fix some arbitrary point s∗ ∈ Rd \ F , and let G = f+(B, s∗) be a canonical such halfflat.
Similarly, for a fixed point s∗∗ ∈ Rd \ fB∪{s∗}, let H = f+(B ∪ s∗, s∗∗). Conceptually, it is
convenient to consider H = Rk−2 × R× R+, where the first k − 2 coordinates correspond to
F , and the first k−1 coordinates correspond to G (this can be done by applying a translation
and a rotation that maps H into this desired coordinates system). This is the canonical
parameterization of H.

The following observation formalizes the following: Given a (k− 1) dimensional halfflat G
passing through B, a point on G is uniquely identified by its distances from the points in B.

I Observation 14. Given a sequence of distances ` = (`1, . . . , `k−1), there might be only
one unique point p = pG(`) ∈ G, such that ‖p− pi‖ = `i, for i = 1, . . . , k − 1. Such a point
might not exist at all6.

Next, given G and H, a point q and a value ` < d(q, F), we aim to define the points
qG(`) and qH(`). Consider a point q ∈ Rd \F (not necessarily the query point), and consider
any positive (k − 1)-halfflat g that contains B, and is in distance ` from q. Furthermore
assume that ` = d(q, g) < d(q, F). Let qg be the projection of q to g. Observe that, by the

Pythagorean theorem, we have that di =
∥∥qg − pi

∥∥ =
√
‖q − pi‖2 − `2, for i = 1, . . . , k − 1.

Thus, the above observation implies, that the canonical point qG(`) = pG
(
d1, . . . , dk−1

)
(see

Observation 14) is uniquely defined. Note that this is somewhat counterintuitive as the flat g
and thus the point qg are not uniquely defined. Similarly, there is a unique point qH(`) ∈ H,
such that:
(i) the projection of qH(`) to G is the point qG(`),
(ii) ‖qH(`)− qG(`)‖ = `, and these two also imply that
(iii) ‖qH(`)− pi‖ = ‖q − pi‖, for i = 1, . . . , k − 1.

6 Trilateration is the process of determining the location of p ∈ G given `. Triangulation is the process of
determining the location when one knows the angles (not the distances).

ICALP 2018

77:10 Approximate Sparse Linear Regression

Therefore, given G and H, a point q and a value ` < d(q, F), the points qG(`) and qH(`)
are uniquely defined. Intuitively, for a halfflat that passes through B and is at distance `
from the query, qG(`) models the position of the projection of the query onto the halfflat,
and qH(`) models the position of the query point itself with respect to this halfflat. Next, we
prove certain properties of these points.

4.1.2 Orbits
I Definition 15. For a set of points B in Rd, define ΦB to be the open set of all points in
Rd, such that their projection into F lies in the interior of the simplex 4B = ConvexHull(B).
The set ΦB is a prism.

Consider a query point q ∈ ΦB, and its projection qB = nn(q, F). Let r = rB(q) =
‖q − qB‖ be the radius of q in relation to B. Using the above canonical parameterization, we
have that qG(0) = (qB , r), and qH(0) = (qG(0), 0) = (qB , r, 0). More generally, for ` ∈ [0, r],
we have

qG(`) =
(
qB ,
√
r2 − `2

)
and qH(`) =

(
qB ,
√
r2 − `2, `

)
. (1)

The curve traced by qH(`), as ` varies from 0 to r, is the orbit of q – it is a quarter circle
with radius r. The following lemma states a monotonicity property that is the basis for the
binary search over the value of `.

I Lemma 16. (i) Define q̂(`) =
(√
r2 − `2, `

)
, and consider any point p = (x, 0), where

x ≥ 0. Then, the function d(`) = ‖q̂(`)− p‖ is monotonically increasing for ` ∈ [0, r].
(ii) For any point p in the halfflat G, the function ‖qH(`)− p‖ is monotonically increasing.

(Proof in the full version).

4.1.3 Distance to a simplex via distance to the flat
I Definition 17. Given a point q, and a distance `, let 4G(q, `) be the unique simplex in G,
having the points of B and the point qG(`) as its vertices. Similarly, let 4G(q) = 4G(q, 0).

Next, we provide the necessary and sufficient conditions for a simplex to be feasible. This
lemma lies at the heart of our data structure.

I Lemma 18. (Proof in the full version) Given a query point q ∈ ΦB, and a point pk ∈ P \B,
for a number 0 < x ≤ d(q, F) we have
(A) qG(x) ∈ 4G(pk) and d(q, f+(B, pk)) ≤ x =⇒ d(q,4B∪{pk}) ≤ x.
(B) d(q,4B∪{pk}) ≤ x and q ∈ ΦB∪{pk} =⇒ qG(x) ∈ 4G(pk) and d(q, f+(B, pk)) ≤ x.

4.2 Approximating the nearest page in a book
I Definition 19. Let P be a set of n points in Rd, and let B be a sequence of k − 1
points. Consider the set of simplices having B and one additional point from P ; that is,
∆ = ∆(B,P) =

{
4B∪{p}

∣∣ p ∈ P \B} . The set ∆ is the book induced by (B,P), and to a
single simplex in this book is (naturally) a page.

The task at hand, is to preprocess ∆ for ANN queries, as long as (i) the nearest point
lies in the interior of one of these simplices and (ii) q ∈ ΦB. To this end, we consider the
canonical representation of this set of simplices ∆G = {4G(p) | p ∈ P \B} .

S. Har-Peled, P. Indyk, and S. Mahabadi 77:11

Pbase

α2(p) α1(p)
p2

p

p1

Figure 1 Example base angles when k = 3

Idea. The algorithm follows Lemma 18 (A). Given a query point, using standard range-
searching techniques, we extract a small number of canonical sets of the points, that in the
parametric space, their simplex contains the parameterized query point. This is described in
Section 4.2.1. For each of these canonical sets, we use the data structure of Lemma 10 to
quickly query each one of these canonical sets for their nearest positive flat (see Remark 4.2.2
below). This would give us the desired ANN.

4.2.1 Reporting all simplices containing a point

I Definition 20. Let B = (p1, . . . , pk−1) be a sequence of k − 1 points in Rd. For a point
p ∈ Rd, consider the (k − 1)-simplex 4B∪{p}, which is a full dimensional simplex in the
flat fB∪{p} (see Definition 1). The base angles of p (with respect to B), is the (k − 1)-
tuple αB(p) =

(
α1(p), . . . , αk−1(p)

)
, where αi(p) is the dihedral angle between the facet

4B∪{p}\{pi} and the base facet 4B . See Figure 1, where k = 3.

I Observation 21 (Inclusion and base angles). Let B be a set of k − 1 points in Rk−1 all
with their (k − 1)th coordinate being zero, and let p be an additional point with its (k − 1)th
coordinate being a positive number. Then, for a point q ∈ Rk−1, we have that q ∈ 4B∪{p}
⇐⇒ αB(q) ≤ αB(p) (i.e., (∀i : αi(q) ≤ αi(p)).

I Lemma 22. Given a set n of (k − 1)-simplices ∆G in Rk−1, that all share common k − 1
vertices, one can build a data structure of size O(n logk−1 n), such that given a query point
q ∈ Rk−1, one can compute O(logk−1 n) disjoint canonical sets, such that the union of these
sets, is the set of all simplices in ∆G that contain q. The query time is O(logk−1 n). (Proof
in the full version)

I Lemma 23. The data structure of Lemma 22 can be used to report all simplices that
contain a specific point p, and do not contain another point p′, which is vertically above
p (i.e., the same point with larger (k − 1)th coordinate). This corresponds to k (possibly
unbounded) box queries instead of quadrant query in the orthogonal data structure. The query
time and number of canonical sets will be multiplied by at most k. The space bound remains
the same. Moreover, we ensure these set of k boxes are disjoint. (Proof in the full version)

4.2.2 Data structure and correctness

I Remark. For a set of points P and a base set B, consider the set of positive halfspaces
(the positive bouquet) bqt+(B,P) = {f+(B, p) | p ∈ P \B} . We can preprocess such a set
for ANN queries readily, by using the data structure of Lemma 10. The only modification is
that for every positive flat we assign one vector (in the positive direction), instead of two
vectors in both directions which we put in the data structure of Section 3.2.

ICALP 2018

77:12 Approximate Sparse Linear Regression

Preprocessing. The algorithm computes the set of canonical simplices ∆G, see Eq. (4.2).
Next, the algorithm builds the data structure of Lemma 22 for this set of simplices. For
each canonical set V in this data structure, for the corresponding set of original points, we
build the data structure of Remark 4.2.2 to answer ANN queries on the positive bouquet
bqt+(B, V). (Observe that the total size of these canonical sets is O(n logk−1 n).)

Answering a query. Given a query point q ∈ ΦB, the algorithm computes its projection
qB = nn(q, F), where F = fB . Let r = ‖q − qB‖ be the radius of q. The desired ANN distance
is somewhere in the interval [0, r], and the algorithm maintains an interval [α, β] where this
distance lies, and uses binary search to keep pruning away on this interval, till reaching the
desired approximation.

Observe that for every point p ∈ P , there is a critical value γ(p), such that for x ≥ γ(p),
the parameterized point qG(x) is inside the simplex 4G(p), and is outside if x < γ(p). Note
that this statement only holds for queries in ΦB (otherwise it could have been false on
simplices 4B∪{p} with obtuse angles, see Remark 4.3 for handling the case of q /∈ ΦB).

Now, by Lemma 23, we can compute a polylogarithmic number of canonical sets, such
that the union of these sets, are (exactly) all the points with critical values in the range
[α, β). As long as the number of critical values is at least one, we randomly pick one of these
values (by sampling from the canonical sets – one can assume each canonical set is stored in
an array), and let γ be this value. We have to decide if the desired ANN is smaller or larger
than γ. To this end, we compute a representation, by polylogarithmic number of canonical
sets, of all the points of P such that their simplex contains the parameterized point qG(γ),
using Lemma 22. For each such canonical set, the algorithm computes the approximate
closest positive halfflat, see Remark 4.2.2. Let τ be the minimum distance of such a halfflat
computed. If this distance is smaller than γ, then the desired ANN is smaller than γ, and
the algorithm continues the search in the interval [α, γ), otherwise, the algorithm continues
the search in the interval [γ, β).

After logarithmic number of steps, in expectation, we have an interval [α′, β′), that
contains no critical value in it, and the desired ANN distance lies in this interval. We compute
the ANN positive flats for all the points that their parameterized simplex contains qG(β′),
and we return this as the desired ANN distance.

For proof of correctness and query time analysis see the full version.

I Lemma 24 (Approximate nearest induced page). Given a set P of n points in Rd, a set B of
k − 1 points, and a parameter ε > 0, one can preprocess them, such that given a query point,
the algorithm computes an (1 + ε)-ANN to the closest page in ∆(B,P), see Definition 19.
This assumes that (i) the nearest point to the query lies in the interior of the nearest page,
and (ii) q ∈ ΦB. The algorithm space and preprocessing time is O(S(n, d, ε) logk n), and the
query time is O(TQ(n, d, ε) logk n).

4.3 Result: nearest induced simplex
The idea is to use brute-force to handle the distance of the query to the ≤ (k − 2)-simplices
induced by the given point set which takes O(nk−1) time. As such, the remaining task is to
handle the (k− 1)-simplices, and thus we can assume that the nearest point to the query lies
in the interior of the nearest simplex, as desired by Lemma 24. To this end, we generate the(
n
k−1
)

= O(nk−1) choices for B ⊆ P , and for each one of them we build the data structure of
Lemma 24, and query each one of them, returning the closet one found.

S. Har-Peled, P. Indyk, and S. Mahabadi 77:13

I Remark. Note that for a set of k points X ⊂k P , if the projection of the query onto the
simplex 4A falls inside the simplex, i.e. q ∈ ΦA, then there exists a subset of k − 1 points
B ⊂k−1 X such that the projection of the query onto the simplex 4B falls inside the simplex,
i.e., q ∈ ΦB . Therefore, either the brute-force component of the algorithm finds an ANN, or
there exists a set B for which the corresponding data structure reports the correct ANN.

We thus get the following result.

I Theorem 25 (Convex SLR). Given a set P of n points in Rd, and parameters k and ε > 0,
one can preprocess them, such that given a query point, the algorithm can compute a (1 + ε)-
ANN to the closest (k− 1)-simplex in ∆k(P), see Definition 5. The algorithm space and pre-
processing time is O(nk−1S(n, d, ε) logk n), and the query time is O(nk−1TQ(n, d, ε) logk n).

References
1 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm

for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach.,
45(6):891–923, 1998. doi:10.1145/293347.293348.

2 Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor. Approximate nearest subspace search.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2):266–278, 2011.

3 E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor.,
52(2):489–509, February 2006. doi:10.1109/TIT.2005.862083.

4 Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decom-
position by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998. doi:10.1137/
S1064827596304010.

5 G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constructive
Approx., 13(1):57–98, 1997. doi:10.1007/BF02678430.

6 David L. Donoho. Compressed sensing. IEEE Trans. Inf. Theor., 52(4):1289–1306, 2006.
doi:10.1109/TIT.2006.871582.

7 J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degen-
eracies. Discrete Comput. Geom., 13:41–57, 1995. doi:10.1007/BF02574027.

8 Dean P. Foster, Howard J. Karloff, and Justin Thaler. Variable selection is hard. In Peter
Grünwald, Elad Hazan, and Satyen Kale, editors, Proc. 28th Annu. Conf. Comp. Learn.
Theo. (COLT), volume 40 of JMLR Proceedings, pages 696–709. JMLR.org, 2015. URL:
http://jmlr.org/proceedings/papers/v40/Foster15.html.

9 P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC), pages
604–613, 1998. doi:10.1145/276698.276876.

10 E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput., 2(30):457–474, 2000. doi:10.
1137/S0097539798347177.

11 Avner Magen. Dimensionality reductions that preserve volumes and distance to affine
spaces, and their algorithmic applications. In International Workshop on Randomization
and Approximation Techniques in Computer Science, pages 239–253. Springer, 2002.

12 Sepideh Mahabadi. Approximate nearest line search in high dimensions. In Proc. 26th
ACM-SIAM Sympos. Discrete Algs. (SODA), SODA ’15, pages 337–354. SIAM, 2015. URL:
http://dl.acm.org/citation.cfm?id=2722129.2722154.

13 Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234, 1995. doi:10.1137/S0097539792240406.

ICALP 2018

http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1007/BF02678430
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1007/BF02574027
http://jmlr.org/proceedings/papers/v40/Foster15.html
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1137/S0097539798347177
http://dx.doi.org/10.1137/S0097539798347177
http://dl.acm.org/citation.cfm?id=2722129.2722154
http://dx.doi.org/10.1137/S0097539792240406

77:14 Approximate Sparse Linear Regression

14 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses
Charikar, editor, Proc. 21st ACM-SIAM Sympos. Discrete Algs. (SODA), pages 1065–1075.
SIAM, 2010. doi:10.1137/1.9781611973075.86.

15 R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Series
B, 58(1):267–288, 1996. URL: http://statweb.stanford.edu/~tibs/lasso/lasso.pdf.

16 Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospective. J.
Royal Stat. Soc. Series B, 73(3):273–282, 2011. doi:10.1111/j.1467-9868.2011.00771.
x.

17 John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sastry, and Yi Ma. Robust face
recognition via sparse representation. IEEE Trans. Pattern Anal. Machine Intel., 31(2):210–
227, 2009. doi:10.1109/TPAMI.2008.79.

http://dx.doi.org/10.1137/1.9781611973075.86
http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1109/TPAMI.2008.79

	Introduction
	Our results
	Detecting affine degeneracy

	Related work
	Our techniques and sketch of the algorithms

	Preliminaries
	Notations
	Induced stars, bouquets, books, simplices and flats

	Problems

	Approximating the nearest induced flats and subspaces
	Approximating the nearest neighbor in a uniform star
	Approximating the nearest flat in a bouquet
	The result

	Approximating the nearest induced simplex
	Simplices and distances
	Canonical realization
	Orbits
	Distance to a simplex via distance to the flat

	Approximating the nearest page in a book
	Reporting all simplices containing a point
	Data structure and correctness

	Result: nearest induced simplex

