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Abstract
Suppose a set of requests arrives online: each request gives some value vi if accepted, but requires
using some amount of each of d resources. Our cost is a convex function of the vector of total
utilization of these d resources. Which requests should be accept to maximize our profit, i.e., the
sum of values of the accepted demands, minus the convex cost?

We consider this problem in the random-order a.k.a. secretary model, and show an O(d)-
competitive algorithm for the case where the convex cost function is also supermodular. If the set
of accepted demands must also be independent in a given matroid, we give an O(d3α)-competitive
algorithm for the supermodular case, and an improved O(d2α) if the convex cost function is also
separable. Here α is the competitive ratio of the best algorithm for the submodular secretary
problem. These extend and improve previous results known for this problem. Our techniques are
simple but use powerful ideas from convex duality, which give clean interpretations of existing
work, and allow us to give the extensions and improvements.
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1 Introduction

The problem we consider is a basic convex optimization problem in the online setting: n
items appear one-by-one. Each item/element e has a d-dimensional size s(e) ∈ Rd+ and a
value v(e) ∈ R+, which are both revealed to us when the item arrives.We must either accept
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71:2 Maximizing Profit with Convex Costs in the Random-order Model

or reject an item when it arrives, before seeing the future items. If we accept a certain subset
A ⊆ [n] of the items, we get their total value v(A) :=

∑
e∈A ve, but incur a production cost

g(s(A)) := g(
∑
e∈A s(e)), where g : Rd+ → R+ is a non-decreasing convex cost function with

g(0) = 0. Optionally, we may also be given a downwards-closed family of subsets F ⊆ 2[n],
and now the accepted set of elements A must lie in F . More formally, we want to solve

max
A∈F

profit π(A) :=
[
v(A)− g(s(A))

]
. (1.1)

This question arises, e.g., when we are selling some service that depends on d commodities,
where the value is the amount of money customer e is willing to pay for the service, and the
size vector s(e) is the amount of resources she will require. The cost function g(·) captures
our operating expenses; its convexity models diseconomies of scale that arise when dealing
with scarce commodities. In particular, it can capture d-dimensional knapsack constraints,
by setting g(z) = 0 until the knapsack size, and ∞ afterwards. When the cost function
is linear g(z) = 〈a, z〉, we want to pick a max-weight subset from F using item weights
v(e)− 〈a, s(e)〉, which is tractable/approximable for F being a matroid, p-system, etc.

Blum et al. [6] defined this problem in the adversarial model, and gave posted-price
algorithms for “low-degree” separable cost functions g, that is, of the form g(z) =

∑d
i=1 gi(zi)

for 1-dimensional functions gi’s. This result was tightened by Huang and Kim [16], still for
separable functions with additonal growth control. More recently, Azar et al. [3] studied this
problem for more general supermodular non-separable convex functions g (see also [9]). A
differentiable function g is supermodular if for any vectors x ≤ x′ we have ∇g(x) ≤ ∇g(x′).
Equivalently, if g is twice-differentiable, it is supermodular if ∂2g

∂xi∂xj
≥ 0 for all i 6= j, i.e.,

increasing the consumption of a resource cannot decrease the marginal cost for another.
However, to handle the worst-case ordering, Azar et al. also require the cost functions to
have essentially low-degree.

Can we do better by going beyond the worst-case model? In this paper, we focus on the
random-order or “secretary” setting, where the set of items is fixed by an adversary but they
arrive in random order. In the single-dimensional case d = 1, it is easy to see that a solution
that learns a “good” threshold λ and picks all further items with density v(e)/s(e) at least λ
essentially gives a constant approximation, much like in the secretary and knapsack secretary
problems [13, 4]. The multi-dimensional case is much more challenging. This was studied by
Barman et al. [5], again assuming a separable cost function g(z) =

∑d
i=1 gi(zi). They give an

O(d)-competitive algorithm for the unconstrained case, and an O(d5α)-competitive algorithm
for the problem with a downward closed constraint set F , where α is the competitive ratio
for the F -secretary problem. Their main idea is to perform a clever decomposition of the
value of each item into “subvalues” vi(e) for each of the coordinate cost functions gi’s; this
effectively decomposes the problem into d 1-dimension problems with values vi’s and costs
gi’s. Unfortunately, since their solution explicitly relies on the decomposability of the cost
function, it is unclear how to extend it to general supermodular functions. We note that
when the cost function is supermodular, the profit function is a submodular set function
(Section 2.1). However, the profit can take negative values, and then existing algorithms for
submodular maximization break down.

Our work is then motivated by trying to better understand the multi-dimensional nature
of this problem, and provide a more principled algorithmic approach.

1.1 Our Results
We use techniques from convex duality to re-interpret, simplify, and improve the existing
results. First, we obtain the first approximation for non-separable supermodular cost
functions. (We omit some mild regularity conditions for brevity; see Section 3 for full details.)
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I Theorem 1 (Unconstrained & Supermodular). For the unconstrained problem with super-
modular convex cost functions g, we give an O(d)-competitive randomized algorithm in the
random-order model.

This result generalizes the O(d)-approximation of Barman et al. [5] to the non-separable
case. The factor d seems unavoidable, since our problem inherits the (offline) Ω(d1−ε)
hardness of the d-dimensional knapsack, assuming NP 6= ZPP [7].

Next, we consider the constrained case. For simplicity, we focus on the most interesting
case where F is a matroid constraint; more general results can be obtained from the results
and techniques in Section 5.

I Theorem 2 (Constrained & Separable). For the constrained problem with F being a matroid
constraint, and the cost function g being separable, we get an O(d2 log log rank)-competitive
randomized algorithm in the random-order model.

This improves by a factor of d3 the O(d5 log log rank)-approximation given by [5]. Finally,
we give a general reduction that takes an algorithm for separable functions and produces an
algorithm for supermodular functions, both with respect to a matroid constraint, implying:

I Theorem 3 (Constrained & Supermodular). For the constrained problem with F being a
matroid constraint, and the cost function g being supermodular, we get an O(d3 log log rank)-
competitive randomized algorithm in the random-order model.

On conceptual contributions are in bringing techniques from convex duality to obtain, in
a principled way, threshold-based algorithms for non-linear secretary problems. Since this is
a classical and heavily used algorithmic strategy for secretary problems [13, 4, 18, 2, 20] we
hope that the perspectives used here will find use in other contexts.

1.2 Other Related Work
There is a vast literature on secretary problems [13]. Closest to our setting, Agrawal and
Devanur study an online convex optimization problem in the random order model, and give
a powerful result showing strong regret bounds in this setting [1]. They extend this result to
give algorithms for online packing LPs with “large” right-hand sides. However, it is unclear
how to use their algorithm to obtain results in our setting. Other algorithms solving packing
LPs with large right-hand sides appear in [2, 8, 20, 17, 14, 10].

Feldman and Zenklusen [12] show how to transform any algorithm for (linear) matroid
secretary into one for submodular matroid secretary. They give an O(log log rank)-algorithm
for the latter, based on results of [19, 11]. All these algorithms critically assume the
submodular function is non-negative everywhere, which is not the case for us, since picking
too large a set may cause the profit function to go negative. Indeed, one technical contribution
is a procedure for making the profit function non-negative while preserving submodularity
(Section 4.1), which allows us to use these results as part of our solution.

1.3 Structure of the paper
Section 3 develops the convex duality perspective used in the paper for the offline version of
the unconstrained case, hopefully in an manner accessible to non-experts. Section 4 gives
the small changes required to extend this to the constrained case. Section 5 shows how
transform these into online algorithms. Section 6 shows how to convert an algorithm for
separable functions into one for supermodular functions, both subject to matroid constraints.
To improve the presentation, we make throughout mild assumptions, which are discharged in
the full version of the paper.

ICALP 2018
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2 Preliminaries

Elements from a universe U of size n are presented in random order. Each element e has
value v(e) ∈ R+ and size s(e) ∈ Rd+. We are given a convex cost function g : Rd+ → R+.
On seeing each element we must either accept or discard it. A downwards-closed collection
F ⊆ 2U of feasible sets is also given. When F = 2U , we call it the unconstrained problem.
The goal is to pick a subset A ∈ F to maximize the profit

π(A) :=
∑
e∈A

v(e)− g
(∑
e∈A

s(e)
)
. (2.2)

We often use vectors in {0, 1}n to denote subsets of U ; χA denotes the indicator vector for
set A. Hence, F ⊆ {0, 1}n is a down-ideal on the Boolean lattice, and we can succinctly
write our problem as

max
x∈F

π(x) := 〈v, x〉 − g(Sx), (2.3)

where columns of S ∈ Rd×n are the item sizes. Let opt denote the optimal value. For a subset
A ⊆ U , v(A) and s(A) denote

∑
e∈A v(e) = 〈v, χA〉 and

∑
e∈A s(e) = SχA respectively.

I Definition 4 (Exceptional). Item e ∈ U is exceptional if arg maxθ∈[0,1]
{
θ v(e)−g(θ s(e))} ∈

(0, 1).

I Definition 5 (Marginal Function). Given g : Rd → R, define the ith marginal function
gi : R→ R as gi(x) := g(xei), where ei is the ith standard unit vector.

I Definition 6 (Convex Dual). For any function g : Rd → R, its convex dual is the function
g? : Rd → R given by g?(y) := supx

[
〈y, x〉 − g(x)

]
.

2.1 Supermodular Functions
While supermodular functions defined over the Boolean lattice are widely considered, one
can define supermodularity for all real-valued functions.

I Definition 7 (Supermodular). Let X ⊆ Rd be a lattice. A function f : X → R is
supermodular if for all x, y ∈ X, f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y), where x ∧ y and x ∨ y
are the component-wise minimum and maximum operations.

This corresponds to the usual definition of (discrete) supermodularity when X = {0, 1}d. For
proof of the lemma below and other equivalent definitions, see, e.g., [21].

I Lemma 8 (Supermodularity and Gradients). A convex function f : Rd+ → R is supermodular
if and only if any of the following are true.
∇f is increasing in each coordinate, if f is differentiable.
∂2f(x)
∂xi∂xj

≥ 0 for all i, j, if f is twice-differentiable.

I Lemma 9 (Superadditivity). If f : Rd+ → R is differentiable, convex, and supermodular,
then for x, x′, y ∈ Rd+ such that x′ ≤ x, f(x′ + y)− f(x′) ≤ f(x+ y)− f(x). In particular, if
f(0) = 0, setting x′ = 0 gives f(x) + f(y) ≤ f(x+ y).

I Corollary 10 (Subadditivity of profit). The profit function π is subadditive.

The next fact shows that the cost g is also supermodular when seen in a discrete way.

I Fact 11 (Continuous vs. Discrete Supermodularity). Given a convex supermodular function
g : Rd → R and n items with sizes s1, . . . , sn ∈ Rd+, define the function h : {0, 1}n → R as
h(v) = g(

∑
i sivi) = g(Sv). Then h(·) is a (discrete) supermodular function.
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3 The Offline Unconstrained Problem

We first present an offline algorithm for supermodular functions in the unconstrained case
(where F = {0, 1}n). We focus on the main techniques and defer some technicalities and all
computational aspects for now. Just for this section, we assume item sizes are “infinitesimal”.
We make the following assumptions on the cost function g and the elements.

I Assumption 12. We assume that cost function g is non-negative, strictly convex, closed,
and differentiable. We assume g(0) = 0, g is supermodular, and that gradients of g go to
∞ along every positive direction. We assume elements are in general positionand that there
are no exceptional items. We also assume that every individual item has profit at most
M := opt/ηd for η ≥ 104 (see the full version to remove these assumptions).

Classifiers. The offline algorithm will be based on linear classifiers, where a set of weights
is used to aggregates the multidimensional size of an item into a scalar, and the algorithm
picks all items that have high-enough value/aggregated-size ratio.

I Definition 13 (Classifiers and Occupancy). Given a vector λ ∈ Rd+ (a “classifier”), define the
set of items picked by λ as Uλ := {e ∈ U | v(e) ≥ 〈λ, s(e)〉}. Let occλ :=

∑
e:v(e)≥〈λ,s(e)〉 s(e)

denote the multidimensional occupancy induced by choosing items in Uλ.

To understand the importance of classifier-based solutions it is instructive to consider the
problem with single-dimensional size. A little thought shows that an optimal solution is to
pick items in decreasing order of value density v(e)/s(e). Adding these items causes the total
occupancy – and hence the incurred cost – to increase, so we stop when the value density of the
current item becomes smaller than the derivative of the cost function at the current utilization.
That is, we find a density threshold λ such that g′(total size of items having v(e) ≥ λ s(e)) ≈
λ, and take all these high-density items. Thus, the optimal solution is one based on the
classifier λ.

To see that this holds in the multi-dimensional case, express g in terms of linearizations

g(z) = max
λ∈Rd+

(〈λ, z〉 − g?(λ)), (3.4)

where g? is its Fenchel dual. (Note we are maximizing over positive, but this is WLOG.)
Then our unconstrained problem (2.2) becomes a minimax problem:

max
x∈{0,1}n

min
λ∈Rd+

[
〈v, x〉 −

(
〈λ, Sx〉 − g?(λ)

)]
.

Consider an optimal pair (x∗, λ∗); i.e., a pair that is a saddle-point solution, so neither
x∗ nor λ∗ can be improved keeping the other one fixed. This saddle-point optimality implies:
(a) Since λ∗ = argmaxλ∈Rd+(〈λ, Sx∗〉 − g?(λ)), it is the right linearization of g at Sx∗ and

thus λ∗ = ∇g(Sx∗) (see [15, Theorem E.1.4.1] and [15, Corollary E.1.3.6]).
(b) x∗ is such that x∗i = 1 if vi > 〈λ∗, Si〉 and x∗i = 0 if vi < 〈λ∗, Si〉, with Si being the ith

column of S and the size of the ith item.

From part (b) we see the optimal solution x∗ is essentially the one picked by the classifier
λ∗ (ignoring coordinates with “0 marginal value” vi = 〈λ∗, Si〉). The converse also holds.

I Claim 14. For a classifier λ ∈ Rd+, let x be the items picked by it. If we have λ =
∇g(Sx) def= ∇g(occλ), then x is an optimal solution.

ICALP 2018
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Proof. For any solution x′,

π(x′) = 〈v, x′〉 − g(Sx′) ≤ 〈v, x′〉 − 〈λ, Sx′〉+ g?(λ)

≤ 〈v, x〉 − 〈λ, Sx〉+ g?(λ) (λ=∇g(Sx))= 〈v, x〉 − g(Sx) = π(x),

where the second inequality holds since, by definition, x maximizes 〈v, x〉 − 〈λ, Sx〉. J

Restricting the Set of Classifiers. The existence of such good classifiers is not enough,
since we need to find them online. This is difficult not only because of d degrees of freedom
and no control over the magnitude of the values/sizes (to be exploited in concentration
inequalities), but also because picking too few or too many items could lead to low profits.

So we restrict the set of candidate classifiers to be a monotone41-dimensional curve
C ⊆ Rd+, satisfying additional properties given below. The main motivation is that it imposes
a total ordering on the set of items picked by the classifiers: given λ ≤ µ on such a curve C,
the sets of items picked satisfy the inclusion Uλ ⊇ Uµ. This allows us to select a “minimally
good” classifier in C in a robust way, avoiding classifiers that select too many items.

To design the curve C so it contains a classifier with profit ≈ opt
d , we relax the condition

∇g(occλ) = λ from Claim 14 (too much to ask) and require the existence of λ ∈ C satisfying:
(P1) (don’t pick too many items) ∇g(occλ) ≤ λ.
(P2) (partial gradient equality) There is a coordinate i∗ where (∇g(occλ))i∗ = λi∗ .
(P3) (balanced curve) g?i (λi) = g?j (λj) ∀i, j ∈ [d].

Property (P1) enforces half of the equality in Claim 14, and (P2) guarantees that equality
holds for some coordinate. Now for property (P3). Since λ 6= ∇g(occλ) the optimality proof
of Claim 14 does not go though, since g(occλ) 6= 〈λ, occλ〉 − g?(λ). As we prove later, the
difference between these terms can be at most g?(λ) ≤

∑
i g
?
i (λi). Property (P3) is used

to control this sum, by charging it to the coordinate i∗ where we know we have “the right
linearization” (by property (P2)). Reinterpreting the construction of [5] in our setting, we
then define C as any monotone curve where every λ ∈ C satisfies (P3).

I Lemma 15. The curve C exists and contains a λ satisfying properties (P1)-(P3).

Proof. We first show existence, that is, the set {λ ∈ Rd+ | g?i (λi) = g?j (λj) ∀i, j} contains a
monotone curve. Notice that this set is the union of the box {λ ∈ Rd+ | g?i (λi) = 0 ∀i} =∏
i[0, g′i(0)] (range of slopes where we can swivel around gi(0) = 0) and a monotone curve
{λ(τ) | τ > 0}, where λ(τ) is the unique vector satisfying g?i (λi(τ)) = τ ; uniqueness follows
from the fact g?i stays at value zero in the interval [0, g′i(0)], but after that is strictly increasing
due to its convexity, and monotonicity of this curve also follows from monotonicity of the
g?i ’s. Thus, C is this curve plus any monotone curve extending it to the origin.

To see that C satisfies properties (P1) and (P2), we note that since the g?i ’s are increasing
and not identically 0, C is unbounded in all coordinates. Thus, a sufficiently large λ ∈ C
satisfies (P1), and we can start with such λ and move down the curve (decreasing in each
coordinate) until we obtain λ′ ∈ C with λ′ = ∇g(occλ′), since the g has increasing gradients.
(The equality in this final step uses the assumption that item sizes are infinitesimal, which
we made for simplicity in this section). J

Making the above discussion formal, we show that C has a high-value classifier. Recall
that Uλ is the set of items picked by λ (Definition 13).

4 A curve C is monotone if for every pair λ, λ′ ∈ C, one is coordinate-wise smaller than the other.
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I Theorem 16. Given Assumption 12, let λ∗ be a classifier in C satisfying properties (P1)-
(P3). Then for all x′ ∈ [0, 1]n we have π(Uλ∗) ≥ 1

d+1 · π(x′).

Proof. Let x∗ = χU∗
λ
be the solution picked by the classifier λ∗, and note that occλ∗ = Sx∗.

Let L(y, µ) := 〈v, y〉 − [〈µ, Sy〉 − g?(µ)] be the linearization of π(y) at some slope µ. From
(3.4) we know g(y) ≥ L(y, µ) for all µ ≥ 0. Since x∗ is optimal for the linearization L(y, λ∗)
(because x∗i = 1 iff vi − 〈λ∗, Si〉 ≥ 0), we have

L(x∗, λ∗) ≥ L(x′, λ∗) ≥ π(x′) for all x′ ∈ [0, 1]n. (3.5)

Now we relate the true profit π(x∗) to this linearized value. Observe that

π(x∗) = 〈v, x∗〉 − g(Sx∗) = 〈v, x∗〉 − [〈∇g(Sx∗), Sx∗〉 − g?(∇g(Sx∗))]
≥ 〈v, x∗〉 − 〈λ∗, Sx∗〉︸ ︷︷ ︸

≥0

+ g?(∇g(Sx∗))︸ ︷︷ ︸
≥0

, (3.6)

where the inequality uses that λ∗ ≥ ∇g(Sx∗) by property (P1) and Sx∗ ≥ 0. The first term
is non-negative because we only pick items for which vi − 〈λ, Si〉 ≥ 0. The second term is
non-negative because g(0) = 0. We can now prove three lemmas that imply the theorem.

I Lemma 17. For any x′ ∈ [0, 1]n, π(x∗) ≥ L(x∗, λ∗)− g?(λ∗) ≥ π(x′)− g?(λ∗).

Proof. Drop the second term from (3.6), then use the definition of L(·, ·) and (3.5). J

I Lemma 18. g?(λ∗) ≤ d · g?i∗(λ∗i∗).

Proof. Using the superadditivity of g, one can show g?(λ∗) ≤
∑
i g
?
i (λ∗i ). Now from property

(P3) of the classifier λ∗, all the terms in the sum are equal. J

I Lemma 19. π(x∗) ≥ g?i∗(λ∗i∗).

Proof. We claim that g?(∇g(Sx∗)) ≥ g?i∗(λ∗i∗); plugging this into (3.6) proves the lemma.
For the claim, define λ′ = ∇g(Sx∗). By Property (P2), λ′i∗ = λ∗i∗ , so we want to show
g?(λ′) ≥ g?i∗(λ′i∗) = g?(λ′i∗ei∗). This follows because g? is monotone. J

This completes the proof of Theorem 16. J

4 The Offline Constrained Case

Having built up tools and intuition in the unconstrained case, we turn to the case where
there is a downwards-closed constraint F ⊆ {0, 1}n, and the goal is to maximize the profit
subject to x ∈ F . We again work with Assumption 12, but do not assume anything about
items sizes. We discuss computational aspects at the end of this section.

The general idea is again to use classifiers λ ∈ Rd+, and only consider items in Uλ, namely
those with “high-enough” value vi ≥ 〈λ, Si〉. However, because of the constraints F we may
no longer be able to pick all these items. Thus, we need to consider the most profitable
solution from F in this filtered feasible set Uλ (whose quality is less clear how to analyze).

Again we restrict to the 1-dimensional curve C defined in the previous section; however,
it only satisfies slightly modified versions of properties (P1)-(P2), since we do not assume
the item sizes to be infinitesimal anymore. To make this precise, define the “open” set
U °
λ := {e ∈ U | v(e) > 〈λ, s(e)〉}; note the strict inequality. Under the assumption of

items being in general position, there is at most one “threshold” item with vi = 〈λ, Si〉, i.e.,
|Uλ \ U °

λ| ≤ 1. Now a “good” classifier is one that satisfies the following:

ICALP 2018
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(P1’) For all binary x with support(x) ⊆ U °
λ and x ∈ F , ∇g(Sx) ≤ λ.

(P2’) There exists a binary xocc with support(xocc) ⊆ Uλ and xocc ∈ F , and index i∗ such
that (∇g(Sxocc))i∗ ≥ λi∗ . (Note that if support(xocc) ⊆ U °

λ, then by property (P1’) the
above inequality holds at equality; else xocc contains the unique element in Uλ \ U °

λ.)
(P3’) This is the same as before: g?i (λi) = g?j (λj) ∀i, j ∈ [d].

The arguments of Lemma 15 show the following.

I Lemma 20. Given Assumption 12, the curve C defined in the previous section contains a
λ satisfying properties (P1’)-(P3’).

Next, we show that for a good classifier λ ∈ C, the maximum profit solution from F contained
within U °

λ essentially gives an O(1/d)-approximation.

I Theorem 21 (Offline Approach). Suppose Assumption 12 holds. Let λ∗ be a classifier in C
satisfying properties (P1’)–(P3’). Then the better of the two solutions: (a) the maximum
profit solution in F containing elements only from U °

λ∗ , and (b) the optimal single element
in Uλ∗ , has profit at least π(x′)/(2d+ 1) for any vector x′ ∈ Conv(F ) ⊆ [0, 1]n.

Proof. The idea is to follow the development in Theorem 16. There same solution x∗ satisfied
the value lower bounds of Lemmas 17 and 19; to satisfy the first lemma, we needed the
solution to be optimal for the linearization of π using “slope” λ∗; to satisfy the second, we
needed to satisfy (P2). Here, we construct two solutions in F intersect Uλ∗ to satisfy these
lemmas separately:

xlin := argmax{〈v, y〉 − 〈λ∗, Sy〉 | y ⊆ U °
λ∗ , y ∈ F}

xocc := the solution promised by property (P2’).

Since property (P1’) and (P3’) holds for xlin, Lemmas 17 and 18 hold essentially un-
changed, and thus for any vector x′ ∈ Conv(F ) we have

π(xlin) ≥ π(x′)− d · g?i∗(λ∗i∗). (4.7)

The solution xocc may not belong to the set U °
λ∗ , since it may contain the threshold item

e◦ = 〈λ∗, s(e◦)〉, if it exists (let x◦ = χ{e◦} be its characteristic vector, all 0’s vector if does
not exists). Let xrest = xocc − x◦.

I Lemma 22. These solutions satisfy π(xrest) + π(x◦) ≥ g?i∗(λ∗i∗).

Proof. Property (P1’) gives∇g(Sxrest) ≤ λ∗, and Property (P2’) implies∇g(S(xrest+x◦)) =
∇g(Sxocc) is at least λ∗ at some coordinate i∗. Since g is convex and differentiable, the
gradients are continuous [15, Remark D.6.2.6], so there is δ ∈ [0, 1] where the vector
x̂ := xrest + δx◦ satisfies ∇g(Sx̂) ≤ λ∗ and ∇g(Sx̂)i∗ = λ∗i∗ for some coordinate i∗. Due to
these properties, the proof of Lemma 19 holds for x̂ and shows π(x̂) ≥ g?i∗(λ∗i∗).

The assumption of no exceptional items gives π(δx◦) ≤ π(x◦). From subadditivity of
profit π, g?i∗(λ∗i∗) ≤ π(x̂) ≤ π(xrest)+π(δx◦) ≤ π(xrest)+π(x◦). This concludes the proof. J

Combining Lemma 22 with inequality (4.7) we have π(x′) ≤ π(xlin) +d π(xrest) +d π(x◦) for
any x′ ∈ F . Since xlin, xrest are feasible for (a) in the theorem statement, and x◦ is feasible
for (b), the best of them gives a (2d+ 1)-approximation. This proves Theorem 21. J
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Picking the most profitable singleton is trivial offline, and well-approximable online by
the secretary algorithm [13]. Moreover, we need to approximately optimize the submodular
function π (Fact 11) over F |U°

λ∗
(i.e., the sets in F with only elements of U °

λ∗). For
several constraint structures (e.g., matroids, p-systems), there are known algorithms for
approximately optimizing non-negative (and sometimes also monotone) submodular functions.
Unfortunately, our profit function π may take negative values, so we cannot directly use
these algorithms. Simply considering the truncated function max{π(z), 0} does not work
because it may be non-submodular. In the next section, when g is separable, we introduce a
way of making our profit function non-negative everywhere, while maintaining submodularity
and preserving the values at the region of interest F |U°

λ∗
.

4.1 Making the Profit Function π Non-negative
We first show that π already satisfies the desired properties over the sets in F |U°

λ∗
.

I Lemma 23. The profit function π is non-negative monotone over F |U°
λ∗
.

Proof. Since π(∅) = 0 it suffices to show monotonicity. Consider x ∈ F |U°
λ∗

and let χe be
the indicator os an item in x. Comparing the costs with and without e we have

g(Sx)
(convexity)
≤ g(S(x− χe)) + 〈∇g(Sx), Sχe〉

(Property (P1’))
≤ g(S(x− χe)) + 〈λ∗, s(e)〉.

Since x ∈ U °
λ∗ , we have v(e) > 〈λ∗, s(e)〉 and thus π(x) > π(x− χe), i.e., monotonicity. J

However, to run algorithms that approximately optimize π over F |U°
λ∗

in a black-box
fashion, non-negativity over the feasible sets F |U°

λ∗
is not enough, even if the algorithm only

probes π over these sets, since their proof of correctness may require this property outside of
feasible sets. Thus, we need to modify π to ensure non-negativity outside of F |U°

λ∗
.

For that, the idea is to truncate the gradient of the cost g so ∇g(Sx) becomes at most
λ∗ for all subsets x ⊆ U °

λ∗ (i.e., so Property (P1’) holds for all subsets); this was the crucial
element for the monotonicity (and hence non-negativity) proof above. Notice that since
Property (P1’) guarantees already ∇g(Sx) ≤ λ∗ for all x ∈ F |U°

λ∗
, this does not change the

value of π over these points. The proof of the lemma is deferred to the full version.

I Lemma 24. If g is separable, there is a submodular function π+ satisfying the following:
(i) π+ is non-negative and monotone over all subsets of U °

λ∗ , and
(ii) π+(x) = π(x) for every x ∈ F |U°

λ∗
.

4.2 The Offline Algorithm: Wrap-up
Using this non-negativization procedure, we get an O(d)-approximation offline algorithm for
constrained profit maximization for separable cost functions g; this is an offline analog of
Theorem 2. For the unconstrained case, Lemma 23 implies that the profit function π it itself
monotone, so we get an O(d)-approximation offline algorithm for the supermodular case. In
the next section we show how to convert these algorithms into online algorithms.

One issue we have not discussed is the computational cost of finding λ∗ satisfying (P1’)–
(P3’). In the full version of the paper, we show that for any ε > 0 we can efficiently find a λ∗
satisfying (P1’), (P2’), and a slightly weaker condition: |g?i (λ∗i )−g?j (λ∗j )| ≤ 2ε for all i, j ∈ [d].
Using this condition in Theorem 21 means we get a profit of at least opt−2dε

2d+1 ≥ [opt/(2d+1)]− ε;
the running time depends on log ε−1 so we can make this loss negligible.

ICALP 2018
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5 The Online Algorithm

In the previous sections we were working offline: in particular, in computing the “good”
classifier λ ∈ C, we assumed knowledge of the entire element set. We now present the online
framework for the setting where elements come in random order. Recall the definition of the
curve C from §3, and the fact that there is a total order among all λ ∈ C. Recall that for
simplicity we restrict the constraints F to be matroid constraints.

For a subset of elements A ⊆ U , let opt(A) and fopt(A) denote the integer and fractional
optimal profit for F |A, the feasible solutions restricted to elements in A. Note that in
the fractional case this means the best solution in the convex hull Conv(F |A). Clearly,
fopt(A) ≥ opt(A). We use opt and fopt to denote opt(U) and fopt(U) for the entire instance U .

Again we work under Assumption 12. We will also make use of any algorithm for
maximizing submodular functions over F in the random-order model satisfying the following.

I Assumption 25. Algorithm SubmodMS takes a nonnegative monotone submodular function
f with f(∅) = 0, and a number N . When run on a sequence X of N elements presented
in random order, it returns a (random) subset Xalg ∈ F with expected value E[f(Xalg)] ≥
1
α maxX′∈F f(X). Moreover, the it only evaluates the function f on feasible sets.

Our algorithm is very simple:

Algorithm 5.1 Online Algorithm for Profit Maximization
1: L← first Binomial(n, 1/2) items.
2: µ← largest vector on curve C s.t. fopt(Lµ) ≥ 1

12d fopt(L).
3: R← remaining instance, namely the last n− |L| items.
4: R◦µ ← {e ∈ R | v(e) > 〈µ, s(e)〉} be the (strictly) “filtered” remaining instance.
5: Un-constrained: Select items in R◦µ not decreasing the current value of the solution.

Constrained: Run algorithm SubmodMS on R◦µ using profit function π, selecting items accord-
ing to this algorithm, but do not add items that decrease the current value of the solution.

Note that Lµ denotes the set of items in the sample L picked by µ (Definition 13). In
Step 2, we can use the Ellipsoid method to find fopt within negligible error. Moreover, we
must do this for several sets Lµ and pick the largest one on C using a binary-search procedure.
We defer the technical details to the full version of the paper.

5.1 Analysis
To analyze the algorithm, we need to show that the classifier µ learned in Step 2 is large
enough that we do not waste space with useless items, but low enough that we admit enough
useful items. For that we need the following concentration bound.

I Lemma 26. Consider a submodular function f : 2U → R. Consider a set Y ⊆ U such that
f is non-negative over all of its subsets, and that for some M :

For all Y ′ ⊆ Y and element e ∈ Y ′, |f(Y ′)− f(Y ′ − e)| ≤M. (5.8)

Let Y be the random subset obtained by picking each element from Y independently with some
probability (possibly different for each item). Then Pr(|f(Y)− E[f(Y)]| ≥ t) ≤ 2M E[f(Y)]

t2 .

We then also need π to satisfy (5.8) on the optimal solutions of any given sub-instance.
For a vector y ∈ Rn and subset A ⊆ U , let yA be the same as y on A, and zero outside A.
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I Claim 27. Consider any U ′ ⊆ U , and let y be an optimal fractional solution on F |U ′ (so
π(y) = fopt(U ′)). Then for any B ⊆ A ⊆ U ′ with |A \B| = 1, we have |π(yA)−π(yB)| ≤M ,
where M is an upper bound on the profit from any single item.

From Section 4, recall λ∗ ∈ Rd+ is a classifier that satisfies properties (P1’)–(P3’).

I Lemma 28. Given Assumption 12, the classifier µ of Line 2 of Algorithm 5.1 satisfies:
(a) (Not too small) µ ≥ λ∗, with probability at least 19/20.
(b) (Not too big) fopt(Uµ) ≥ fopt

48d with probability at least 1− 1/20d ≥ 19/20.

Proof sketch. For the first part, we show that the classifier λ∗ satisfies the properties needed
in Line 2 with probability 1− 1/20; since µ is the largest such vector, we get µ ≥ λ∗. Using
Theorem 21 and the assumption that no item has large profit, we have fopt(Uλ∗) ≥ fopt

3d .
Moreover, the sample obtains at least half of this profit in expectation, i.e., E fopt(Lλ∗) ≥ fopt

3d .
Then using Lemma 26 with the Lipschitz property of Claim 27 and the no-high-profit-item
assumption, we have fopt(Lλ∗) ≥ fopt

12d ≥
fopt(L)

12d with probability at least 19/20. Thus, with
this probability λ∗ satisfies the properties needed in Line 2 of the algorithm, as desired.

For the part (b) of the lemma, notice that for each scenario fopt(Uµ) ≥ fopt(Lµ), since
feasible solutions for the sample are feasible for the whole instance. Next, by definition of
µ, fopt(Lµ) ≥ fopt(L)

12d . Finally, if x is the fractional optimal solution on U with π(x) = fopt,
then E[π(xL)] ≥ fopt/2, since g is superadditive. Again using Lemma 26, the profit π(xL) is
at least fopt

4 with probability at least (1− 1/20d). Of course, fopt(L) ≥ π(xL). Chaining these
inequalities, fopt(Uµ) ≥ fopt

48d with this probability. J

In view of Theorem 21, we show the filtered out-of-sample instance R◦µ behaves like U °
λ∗ .

I Lemma 29. The filtered out-of-sample instance R◦µ satisfies the following w.p. 19/20:
(a) For all e ∈ R◦µ, v(e) ≥ 〈λ∗, s(e)〉.
(b) For all x with support(x) ⊆ R◦µ such that x ∈ F , ∇g(Sx) ≤ λ∗.
(c) fopt(R◦µ) ≥ fopt

200d .

Proof. By Lemma 28(a), threshold µ ≥ λ∗ with probability 19/20. When that happens,
U °
µ ⊆ U °

λ∗ . Since the first two properties hold for U °
λ∗ , they also hold for U °

µ, and by
downward-closedness, also for R◦µ.

For the third part, let λ+ be the largest threshold in C such that fopt(Uλ+) ≥ fopt
48d .

From Lemma 28(b), with good probability we have µ ≤ λ+. Since µ is a smaller threshold,
the instance Uλ+ is contained in the instance Uµ, which implies that for every scenario
fopt(Rµ) ≥ fopt(Rλ+). Next we show that that with good probability fopt(Rλ+) ≥ fopt

200d ,
and hence get the same lower bound for fopt(Rµ). If y is the optimal fractional solution for
Uλ+ , then yR is feasible for Rλ+ with E[π(yR)] = 1

2 fopt(Uλ+) ≥ fopt
96d . Moreover, using the

concentration bound again, we get that π(yR) ≥ fopt
192d with probability at least 19/20. Finally,

by the assumption of general position, there is at most one item in Rµ \R◦µ. Dropping this
item from the solution y to get y◦ reduces the value by at most M = fopt

104d ; here we use
subadditivty of the profit, and that there are no exceptional items. Hence, with probability
at least 19/20: fopt(R◦µ) ≥ fopt(R◦λ+) ≥ π(y◦R) ≥ fopt

196d −M ≥
fopt
200d . J

Finally, we are ready to prove the main theorems in the online setting.

I Theorem 30 (Unconstr. Case: Supermodular Cost). Algorithm 5.1 gives an O(d)-approxi-
mation in expectation for the unconstrained case, if the cost function is supermodular.

ICALP 2018
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Proof. Define the event E that Lemmas 28 and 29 hold; Pr(E) ≥ 17/20. Now, by Lemma 29(c),
the optimal fractional solution for R◦µ has profit at least fopt/200d. Moreover, since there
are no constraints, the profit function is monotone submodular over all of U◦λ∗ by Lemma 23.
Conditioning on the good event E , Lemma 28(a) gives that R◦µ ⊆ U◦λ∗ , so the algorithm to
maximize the monotone submodular function (both integrally and fractionally) is to pick all
elements. Hence, conditioned on E , the profit we get is at least fopt/200d. In the other case, we
never pick an item that gives negative marginal value, so our solution is always non-negative.
Hence our expected profit is at least Pr[E ] · opt(Rµ) = Ω(fopt/d) ≥ Ω(opt/d). J

The analysis of the algorithm for the constrained separable-cost case is similar, only using
the constrained offline guarantees of Theorem 21, and the non-negativization Lemma 23 to
argue that SubmodMS maintains its guarantees.

I Theorem 31 (Constr. Case: Separable Cost). Suppose algorithm SubmodMS satisfies
Assumption 25 and is α-competitive in expectation. Then Algorithm 5.1 gives a O(αd2)-
approximation in expectation.

6 Separability versus Supermodularity

In this section, we show that an β-approximation algorithm for the separable-cost case gives
a O(dβ)-approximation for a slight generalization of the supermodular-cost case. Consider
the problem of picking a set A to solve

π(A) := max
A∈F

(
v(A)− g

(∑
e∈A

s(e)
))
,

where v(A) is a (discrete) submodular function over {0, 1}n with v(∅) = 0, g is a convex,
(continuous) supermodular function over Rd, and F is some downward-closed constraint set.
We show that for the case of matroid constraints, this problem can be reduced to the setting
where the cost function is separable over its d coordinates, suffering a loss of O(d).

I Theorem 32 (Reduction). Given an β-approximation algorithm for profit-maximization
for separable convex cost functions under matroid constraints, we can get an d(β + 2ed)-
approximation algorithm for the profit-maximization problem with supermodular costs g,
submodular values v, and F being a matroid constraint.

The reduction is the following:
1. Define separable costs g(y) := 1/d

∑d
i=1 gi(dyi), where gi are marginal functions for g.

2. W.p. p = β
β+2ed , run single-secretary algorithm to return element with maximum profit.

3. W.p. 1− p = 2ed
β+ed , run algorithm for value function v(·) and separable cost fn. g(·).

This reduction relies on the following simple but perhaps surprising observation that relates
separability with supermodularity, which may find other applications.

I Lemma 33. Given a monotone convex superadditive function g with g(0) = 0, let gi be
the marginal functions. Then for all y ∈ Rd+:
1. g(y) ≥

∑
i gi(yi)

2. g(y) ≤ 1
d

∑
i gi(dyi) = g(y).

Proof. The first property follows from the superadditivity of g, and the second follows from
Jensen’s inequality. J
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While the full proof of Theorem 32 is deferred to the full version of the paper, the main
idea is clean. Given an optimal integer solution x∗ for the original problem (with the original
cost function), we use Lemma 33 and the Lovász (convex) extension of submodular functions
to show that x∗/d is a good fractional solution for the separable cost function. Now using
polyhedral properties of d-dimensional faces of the matroid polytope, and other properties
of the Lovász extension, we show the existence of a good integer solution to the separable
problem. Combining this reduction with Theorem 2 proves Theorem 3.
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