
Non-Preemptive Flow-Time Minimization via
Rejections
Anupam Gupta
Carnegie Mellon University

Amit Kumar
IIT Delhi

Jason Li
Carnegie Mellon University

Abstract
We consider the online problem of minimizing weighted flow-time on unrelated machines. Al-
though much is known about this problem in the resource-augmentation setting, these results
assume that jobs can be preempted. We give the first constant-competitive algorithm for the
non-preemptive setting in the rejection model. In this rejection model, we are allowed to reject
an ε-fraction of the total weight of jobs, and compare the resulting flow-time to that of the offline
optimum which is required to schedule all jobs. This is arguably the weakest assumption in which
such a result is known for weighted flow-time on unrelated machines. While our algorithms are
simple, we need a delicate argument to bound the flow-time. Indeed, we use the dual-fitting
framework, with considerable more machinery to certify that the cost of our algorithm is within
a constant of the optimum while only a small fraction of the jobs are rejected.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Rejection, Unrelated Machines, Non-Preemptive

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.70

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
09602.

1 Introduction

Consider the problem of scheduling jobs for weighted flow-time minimization. Given a set of
m unrelated machines, jobs arrive online and have to be processed on one of these machines.
Each job j is released at some time rj , has a potentially different processing requirement
(size) pij on each machine i, and a weight wj which is a measure of its importance. The
objective function is the weighted flow time (or response time): if the job j completes its
processing at time Cj , the flow/response time is (Cj − rj), i.e., the time the job spends in
the system. The goal is now to minimize the weighted sum

∑
j wj(Cj − rj).

The problem of flow-time minimization has been extensively studied both from theoretical
and practical perspectives. The theoretical analyses have to assume that the jobs can be
pre-empted in order to prove any meaningful competitive ratio, and it is easy to see why.
If we schedule a long low-weight job and a large number of short high-weight items arrive
meanwhile, we cannot afford to delay the latter (else we suffer large flow-time), so the only
solution would be to preempt the former (See [14] for strong lower bounds.) And even with
pre-emption, the problem turns out to be difficult for multiple machines: e.g., [11] show no
bounded competitive ratio is possible for the case of unrelated machines. Hence, it is natural
to consider models with “resource augmentation” where the algorithm has slightly more

EA
T

C
S

© Anupam Gupta, Amit Kumar, and Jason Li;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 70; pp. 70:1–70:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.70
https://arxiv.org/abs/1805.09602
https://arxiv.org/abs/1805.09602
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


70:2 Non-Preemptive Flow-Time Minimization via Rejections

resources than the adversary. E.g., in the speed-augmentation setting, where the algorithm
uses machines of speed (1 + ε)-times those of the adversary, Chadha et al. [7] showed how to
get a preemptive schedule with weighted flow time at most poly(1/ε) times the optimal flow
time.

A different model of resource augmentation was proposed by Choudhury et al. [8] in the
context of load balancing and maximum weighted flow-time, where we are allowed to reject at
most ε-fraction of the total weight of the incoming jobs, but we compare with the optimum
off-line algorithm which is required to process all the jobs. The motivation was two-fold: (a)
the model is arguably more natural, since it does not involve comparing to an imaginary
optimal schedule running on a slower machine, and (b) even with speed-augmentation, there
are problems, e.g. on-line load balancing, where even a constant factor speed-up does not
suffice to give meaningful results. Indeed, getting a non-preemptive schedule for weighted
flow-time is one of these problems. Consider for example the following input: a job of
unit size and unit weight at time 0 arrives. As soon as the algorithm schedules it, the
adversary releases L jobs of size ε� 1/L2. The optimal off-line flow-time is O(1), but the
algorithm will incur total flow-time of Ω(L). The model of job rejection is intuitively more
powerful than speed-augmentation (although no such formal connection is known): loosely,
the speed-augmentation model only allows us to uniformly reject an ε-fraction of each job,
whereas the rejection model allows us to “non-uniformly” reject an arbitrary subset of jobs,
as long as they contribute only an ε-fraction of the total weight.

1.1 Our Results
We consider the problem of non-preemptive scheduling on unrelated machines where the
objective is to minimize total weighted flow-time of jobs. Our main result is the following:

I Theorem 1 (Main Theorem). For the problem of online weighted flow-time minimization
on unrelated machines, there is a deterministic algorithm that rejects at most an ε-fraction
of the total weight of incoming jobs, and ensures that the total weighted flow time for the
remaining jobs is at most an O(1/ε3) factor times the optimal weighted flow time without
rejections.

Note that we compare with the off-line optimum which is allowed to be preemptive (in fact,
migratory), but is required to process all the jobs. Our guarantees are, in fact, stronger.
Define the notion of a “departure time” Dj for the job, which is the time at which either the
job completes non-preemptively (in which case Dj = Cj) or is the time at which the job is
rejected. A different natural definition of the total weighted response time in the presence of
rejections would be the following:

total weighted response time :=
∑
j

wj(Dj − rj).

Keeping this quantity small forces us to decide on jobs early, and discourages us from letting
jobs linger in the system for a long time, only to reject them at some late date. (Such a
behaviour would be very undesirable for a scheduling policy, and would even be considered
“unprofessional” in real-world settings.)

In fact the bulk of our work is in handling the single machine case. For this case, we get a
slightly stronger bound.

I Theorem 2 (Single Machine). For the problem of online weighted flow-time minimization
on a single machine, there is a deterministic algorithm that rejects at most an ε-fraction of the
total weight of incoming jobs, and ensures that the total weighted flow time for the remaining



A. Gupta, A. Kumar, and J. Li 70:3

jobs is at most O(1/ε2) factor times the optimal weighted flow time without rejections even
when the offline optimum is given (1 + ε)-extra speedup.

The fact that we can compare with an optimum offline algorithm which has faster machine
allows us to use known immediate-dispatch algorithms for the setting of unrelated machines
in a black-box manner [7, 2].

1.2 Our Techniques
Let us first focus on the single-machine case. Our algorithm rejects jobs in two different ways:
some of the jobs are rejected immediately upon arrival, and others are rejected after receiving
some processing. Moreover, assume for the moment that we are running a preemptive
schedule, but without speed-augmentation. The high-level idea is to reject a “random”
ε-fraction of jobs that come in. At an intuitive level, this rejects only ε-fraction of the weight
(although this only in expectation, whereas we want this to hold deterministically at all
times), and should create the effect of ε-speed augmentation. To implement this, let αj be the
“effect” of job j on the system – i.e., the increase in the total flow-time of the jobs currently
in the system (assuming no future jobs arrive). The value of αj also naturally corresponds to
settings of dual variables for a natural flow-time LP. Using this we can (more-or-less) show
that (a) the αj values of the rejected jobs give us a lower bound on OPT, whereas (b) the αj
values of the non-rejected jobs upper-bound our cost. Hence, our goal becomes: at each time
cancel at most an ε-fraction of the total weight

∑
j wj , while cancelling at least an ε-fraction

(say) of the total “dual” value
∑
j αj .

A little thought shows that this abstract task is hopeless in general for any deterministic
strategy (say, if the α values rise very sharply), so we have to take the structure of the αj
values into account. We do this in two steps: we break the αj contribution into α+

j , the effect
of job j on items denser than j, and α−j , its effect on less-dense items. Now we put jobs into
buckets based on having the same (α+, w) or (α−, w) values, and rejecting each 1/εth job in
each bucket. (The actual bucketing is a little finer, see §3.) Moreover, we reject the first job
in each (α+, w) bucket. The complications arise because we are more aggresive for each such
(α+, w) bucket, and because we may not have rejected any jobs in the (α−, w) if it had less
than 1/ε items. In §4.3.1 we perform a delicate charging to relate our aggressive rejections for
the former to the total running time of the jobs, and show that (i) this aggressive rejection
does not reject too much weight, and (b) also compensates for our timid rejections in the
latter bucketing.

This high-level argument was done assuming preemptions. Since we want a non-preemptive
schedule, only immediate rejections do not suffice, and we also must reject some jobs which we
have started processing – indeed, if a large number of high-density (“important”) jobs arrive
right after we start processing some long low-density job j, delaying these more important
jobs would cause large flow-time. So we must reject job j. However, as long as the total
weight of these new jobs is wj/ε, we can charge the rejection to these new jobs. This rejection
makes the schedule very “unstable” and hence complicates the analysis. To get around this
problem, we mark the job j as “preemptible”. We then run a version of HDF with some
preemptible and other non-preemptible jobs, and show that its performance can also be
related to the LP variables.

Finally, for the multiple machines case we can perform a modular reduction to the
single-machines case. We first use the immediate dispatch algorithm of Anand et al. [2] to
assign jobs to machines, assuming speed augmenation. We then show our algorithm does
well even compared to a stronger benchmark (i.e., where the offline schedule – instead of the
online schedule – gets the speed augmentation). This gives us the theorem for the unrelated
machines.

ICALP 2018



70:4 Non-Preemptive Flow-Time Minimization via Rejections

1.3 Related Work
There has been considerable work on the problem of minimizing total flow-time in the online
setting, though most of it is in the preemptive setting. Several logarithmic competitive
algorithms are known for unweighted flow-time on identical machines setting [15, 3], and in
the related machines setting [10, 1], but there are strong lower bounds for the case of weighted
flow-time even on a single machine [5]. In the restricted assignment settings with preemption,
the unweighted flow-time problem becomes considerably harder even for 3 machines [7]. The
situation for non-preemptive flow-time is much harder. Kellerer et al. [14] showed that one
cannot achieve o(n)-competitive algorithm even for a single machine.

Much stronger results are known in the speed augmentation model, where machines in the
online algorithm have ε-fraction more speed than the corresponding machines in the offline
setting. This model was first proposed by Kalyanasundaram and Pruhs [13] for the problem
of non-clairvoyant preemptive total flow-time minimization on a single machine. They gave an
O(1/ε)-competitive algorithm for this problem. Chadha et al. [7] gave O(1/ε2)-competitive
preemptive algorithm for weighted flow-time in the unrelated machines setting. This was
extended to the non-clairvoyant setting by Im et al. [12]. However, the non-preemptive
weighted flow-time problem has strong lower bounds in the speed augmentation model even
on a single machine [16].

The rejection model was proposed by Choudhury et al. [8] in the context of load balancing
and maximum weighted flow-time in the restricted assignment setting. Lucarelli et al. [16]
considered the non-preemptive scheduling problem of minimizing weighted flow-time in the
unrelated machines setting. They showed that one can get O(1/ε)-competitive algorithm
if we allow both (1 + ε)-speed augmentation and rejection of jobs of total weight ε-times
the total weight. Assuming both, we can design a much simpler algorithm and use the dual
fitting techniques developed for speed augmentation models to give a simple analysis of this
algorithm. Independently of us, Lucarelli et al. [17] recently announced an algorithm where
they can remove the speed augmentation assumption for the simpler unweighted setting.

In the prize-collection model, one is allowed to incur a penalty term for the rejected jobs.
This model has been widely studied, see e.g. Bartal et al. [6], Eppstein et al. [9], and Bansal
et al. [4], though is considerably different from our model because here one can reject a large
fraction of the jobs.

2 Definitions and Preliminaries

We consider the unrelated machine scheduling problem, as defined in §1. Our schedules will
be non-preemptive. For a schedule S, let CSj denote the completion time of j. We use FSj to
denote the flow-time of j, and the objective function is given by FS :=

∑
j wj · FSj . We may

remove the superscript S if it is clear from the context. We use O to denote the optimal
off-line schedule. In Section 3, when considering the special case of a single machine, we use
pj to denote the processing time of job j (on this machine). Define the density ρj of a job as
the ratio wj/pj . We assume that the parameter ε satisfies ε2 ≤ 1/2, and that 1/ε ∈ Z.

Fractional weighted flow-time. Given a schedule A, let pj(t) denote the remaining pro-
cessing time of job j at time t (assuming t ≥ rj). The remaining weight of j at time t is
defined as wj(t) := ρj · pj(t). The weighted flow-time of j in this schedule is defined as
wj(Cj − rj), where Cj is the completion time of j. The fractional weighted flow-time of j is
defined as

∑
t≥rj wj(t). Since wj(t) = 0 for t 6∈ [rj , Cj ], and wj(t) ≤ wj for any time t, it is

clear that the fractional weighted flow-time is at most the (integral) weighted flow-time of j.
The following claim is easy to check.



A. Gupta, A. Kumar, and J. Li 70:5

I Claim 3. If a job j is processed without interruption during [t, t+ pj ], then its fractional
weighted flow-time is wj(t − rj) + wjpj/2. Moreover, if a job j gets rejected at time t′, its
weighted fractional flow-time is at least wj(t′−rj)/2.

Since the integral weighted flow-time of a job as in the claim above is wj(t− rj) + wjpj , we
see the integer and fractional flow times are within factor of 2 of each other. Thus, for jobs
which do not get preempted, we can argue about weighted fractional flow-time.

3 Algorithm for Single-Machine Weighted Flow Time

In this section, we consider the single-machine setting. For ease of algorithm description, we
assume that all quantities are integers so that we can schedule jobs at the level of integer
time-slots. We first describe an algorithm A which both rejects and preempts jobs. We
subsequently show how to modify this algorithm (in an online manner) to another schedule
which only rejects jobs, and does no preemptions. During our algorithm, we shall say that a
job j is active at time t if it has been released by time t, but has not finished processing until
time t, and has not been rejected. Let A(t) denote the set of active jobs at time t in our
algorithm. A subset of these jobs, denoted by L(t), will be special – these jobs are allowed
to be preempted (at time t). Once a job enters the set L(t) at some time t, it stays in L(t′)
for all subsequent times t′ ≥ t until it finishes processing.

For a job j ∈ A(t) and time t, recall that pj(t) denotes the remaining processing time.
At every point of (integer) time t, the algorithm performs the following steps (in this order):
1. If job j arrives at time t, the algorithm may choose to reject it immediately upon arrival.

We will call such rejections immediate rejections. If the job is not rejected, it gets added
to the active set A(t). For the moment, this is the only way in which a job gets rejected.

2. Let j be the job getting processed just before time t (i.e., in the time-slot [t− 1, t]). If
job j was not already in the set L(t), the algorithm may move it to the set L(t) if “many”
jobs smaller than j have arrived during its execution. We will specify the precise rule
soon. Recall that once added, the job j will remain in the set L(t) until it finishes.

3. If the job j getting processed in the time-slot [t− 1, t] did not finish at time t and it is
not in L(t), the algorithm will continue to process j during the next time-slot [t, t+ 1].
Otherwise, if j finishes or j ∈ L(t), the algorithm chooses a job in A(t) which has the
highest density (the HDF rule) and processes it during [t, t+ 1].

Note that if multiple jobs arrive at a time t, we consider them in arbitrary order, and
carry out the first two steps above iteratively for each such job, before executing step 3. This
completes the description of the algorithm, except that we have not specified the rules for
the first two steps.

We first explain the rule for adding a job to L(t). Suppose the algorithm processes a
job j during [t − 1, t], and suppose j /∈ L(t − 1). Let t′ be the time when the algorithm
started processing j. Since it was not allowed to preempt j, it must have processed j without
interruption during [t′, t]. If the total weight of jobs arriving during (t′, t] exceeds wj/ε, we
add job j to the set L(t). The intuition behind this rule is simple – the final algorithm will
eventually reject all jobs which get added to the set L(t), for all t. We can charge the weight
of the rejected job j to the weight of the jobs which arrived during [t′, t]. Moreover, consider
a job j that does not get added to L(t) over its lifetime. In a preemptive setting, we may
have preempted such a job j on the arrival of a new shorter job, whereas here we perform
such a preemption only when enough shorter jobs arrive. Since j was not added to L(t),
the total weight of such shorter jobs waiting on j is at most wj/ε, so we can pay for the
additional flow-time incurred by these shorter jobs (up to an 1/ε factor) by the flow-time
of j.

ICALP 2018



70:6 Non-Preemptive Flow-Time Minimization via Rejections

The rule for immediate rejections is more involved. We maintain two tables T+ and T−.
Each arriving job may get assigned to either T+ or T−, or both. We refer to each entry
of these tables as a bucket. At a high level, every (1/ε)th job arriving in each bucket in
either table suffers immediate rejection, though the details differ for the two tables. Let us
elaborate on this further.

With every newly arriving job j, we specify a quantity αj , which is the increase in the
total flow-time of all the jobs in the system, assuming (i) no further jobs arrive after job j,
and (ii) the scheduling algorithm follows the preemptive HDF policy from rj onwards for all
the jobs in A(rj). As in [2], we can write an expression for αj as follows.

αj :=
(
wj

∑
j′∈A(rj): ρj′≥ρj

pj′(rj)
)

+ wjpj/2 +
(
pj

∑
j′∈A(rj): ρj′<ρj

wj′(rj)
)
. (1)

We establish the convention that A(rj) does not contain job j. Moreover, if multiple jobs
are released at time rj , we consider them in arbitrary but fixed order, and add only those
jobs to A(rj) which are considered before j.

For x ∈ R, let bbxcc denote the largest integer i such that 2i ≤ x. For a job j, define its
density-class as bbρjcc. We partition jobs in A(rj) depending on their density-class as follows:

D+
j := {j′ ∈ A(rj) | bbρj′cc ≥ bbρjcc} and D−j := {j′ ∈ A(rj) | bbρj′cc < bbρjcc}. (2)

Now let α+
j be the terms in the expression for αj involving jobs in D+

j , and define α−j
similarly. In other words,

α+
j :=

(
wj

∑
j′∈D+

j
: ρj′≥ρj

pj′(rj)
)

+
(
pj

∑
j′∈D+

j
: ρj′<ρj

wj′(rj)
)

; (3)

α−j :=
(
pj

∑
j′∈D−

j
: ρj′<ρj

wj′(rj)
)
. (4)

Clearly, αj = α+
j + wjpj/2 + α−j . We now specify the definitions of the two tables.

Table T+: Buckets in this table are indexed by ordered pairs of integers (κ, λ). If an
arriving job j satisfies α+

j ≥ wjpj/ε, we assign it to the bucket indexed (bbα+
j /wjcc, bbwjcc)

in this table, and add it to the set J+ of jobs assigned to T+. For each bucket, we
cancel the first job that is assigned to that bucket, and then every (1/ε)th subsequent job
assigned to it.
Table T−: Buckets in this table are indexed by ordered triplets of integers (γ, δ, η).
Each arriving job which satisfies α−j > wjpj/ε is assigned to the bucket indexed
(bbα−j cc, bbρjcc, bbpjcc), and added to the set J− of jobs assigned to T−. For each bucket,
cancel every (1/ε)th job assigned to this bucket. Note the subtle difference with respect
to T+: here the first job to be canceled in a bucket is the (1/ε)th job assigned to it.

3.1 The Final Algorithm B
The actual online algorithm B is almost the same as A, except when the algorithm A
processes a job in L(t) during time-slot [t, t + 1], the algorithm B idles, leaving this slot
empty. In other words, when a job being executed is added to L(t), the algorithm B rejects
the job instead of eventually finishing it, perhaps after some preemptions. (We can think
of this as being a delayed rejection, as opposed to the immediate rejection that A performs
based on the above bucketing strategy.) Clearly, we can implement B in an online manner.



A. Gupta, A. Kumar, and J. Li 70:7

4 Analyzing the Single-Machine Algorithm

In this section, we provide the analysis of our single-machine algorithm B. Naturally, the
two main steps are to show that (i) an O(ε) fraction of jobs by weight get rejected, and (ii)
the total flow time is competitive with the optimal offline algorithm.

Showing (i) is relatively straightforward: a rejected job is either immediately rejected or
is later rejected in B due to its preemption in A. We will show that the rejected jobs falling
under each of the two categories is an O(ε) fraction by weight, with a separate analysis for
each category. Both of the analyses are in Section 4.1.

To show flow time competitiveness of algorithm B, we instead focus on bounding the tota
flow time of algorithm A. By Claim 3, the total (integer) flow-time of jobs that B does not
reject is within a factor of two of their fractional flow-time in A, since these are precisely the
jobs that A does not preempt. Therefore, to prove Theorem 2, it suffices to show that A is
O(1/ε2) factor competitive with the optimal offline algorithm.

Let Jimmed denote the set of jobs which get rejected immediately upon arrival, and let
O denote the optimal offline schedule and FO its fractional weighted flow time. Roughly
speaking, our goal is to establish the following chain of approximate inequalities:

εFA . ε
∑
j

αj .
∑

j∈Jimmed

αj . FO, (5)

where . hides additive
∑
j
wjpj/εO(1) factors. Since FO ≥

∑
j wjpj/2, these additive losses

still provide a 1/εO(1) competitive ratio.
For the first inequality, we will bound the flow time of algorithm A, modulo an additive∑
j
wjpj/ε factor, by the sum of αj over all jobs j /∈ Jimmed, which are precisely the jobs that

are finished by A. We do so by exploiting the facts that the αj values indicate an increase
in flow time to an HDF algorithm, and that A is “approximately” an HDF algorithm. The
details are in Lemma 5.

The second inequality is the most technically involved section of the paper. Not only
does the immediate rejection scheme reject an O(ε) fraction of jobs, but it also rejects jobs
constituting an ε fraction of the total αj value. The analysis is in Section 4.3.

Finally, the last inequality relates the optimal offline flow time to the sum of the αj values
of immediately rejected jobs. It is restated as Lemma 6 and proved in the appendix.

4.1 Bounding Weight of Rejected Jobs
In this section, we show that the total weight of rejected jobs is only an O(ε) fraction of
total. Recall that jobs either suffer immediate rejection, or are added to L(t) for some time
t, and hence suffer delayed rejection.

Let us first bound the total weight of the set L := ∪tL(t). For a job j in L(t), let sj
be the first time when it gets processed and lj be the time at which it enters the set L(t).
Since j must be processed uninterrupted in this interval (sj , lj ], the intervals associated with
different jobs are disjoint. Moreover job j entered L(t) because the total weight of jobs
released during (sj , lj ] is at least wj/ε. Thus the total weight of jobs in L can be upper
bounded by ε times the weight of all the jobs.

We now account for the weight of jobs which are rejected immediately on arrival. For job
j, let bbwjcc denote the weight-class of this job. Jobs assigned to a bucket in T+ have the
same weight-class, by construction of the buckets. Jobs assigned to a bucket in T− have the
same bbρjcc and bbpjcc, which pins down their weight wj = ρj · pj up to a factor of 4. This
gives us the following facts:

ICALP 2018



70:8 Non-Preemptive Flow-Time Minimization via Rejections

Since we reject every (1/ε)th job in each bucket of T−, the total weight of jobs in J−
which get rejected immediately is at most 4ε times the weight of all jobs in J−.
Let J+

f be the subset of jobs in J+ which happen to be the first jobs to be assigned to
their respective buckets in T+. Then the weight of all jobs in J+ \ J+

f which get rejected
immediately on arrival is at most 2ε times the total weight of all the jobs in J+.

So it remains to account for the items items in J+
f , which are all rejected. Recall that a

job in J+ is assigned to the bucket indexed (bbα+
j /wjcc, bbwjcc) in T+. Jobs in J+

f are assigned
to distinct buckets in T+. Fix an integer γ, and let Jγ denote the jobs in J+

f which are
mapped to a bucket indexed (γ, κ) for some κ. The jobs in Jγ have distinct weight-classes
and so it suffices to bound the weight of the highest weight job in Jγ – let this heaviest job
be jγ . Let S denote the set of such jobs jγ as we range over all γ. Jobs in S have distinct
bbα+

j /wjcc values. Let Γ = {γ1 < γ2 < . . . < γk} be the integers γ for which there is a job
jγ ∈ S, and let the corresponding jobs in S be called j1, j2, . . . , jk.

Now starting from the smallest index in Γ, we charge each job jr ∈ S to a subset of jobs
of total weight at least wjr/ε. The job jr may charge to a job fractionally – if it charges to a
fraction δ of some job j, then it can only use δwj amount of weight of j for its charging (and
we say that “jr charges to δpj size of this job j”). Of course, we need to ensure that the
total fraction charged to a job is at most 1. We inductively maintain the following invariant
for all r ∈ 1 . . . k:

The job jr charges to jobs of total (fractional) weight at least wjr/8ε.
Jobs j1, . . . , jr charge to jobs of total (fractional) size at most 2γr .

Assuming these invariants hold for r−1, we show that they hold for r as well. Let ρ? := bbρjrcc
be the density class for job jr. By jr’s choice of bucket, bbαjr/wjrcc = γr, so

α+
jr
≥ 2γr · wjr . (6)

Recall from (2) that D+
jr

is the set of jobs of density class ρ? or higher which are active at
the time jr is released. Let Pr :=

∑
j∈D+

jr

pj be the total processing time of these jobs. By
(3), it follows that

α+
jr
≤ wjrPr. (7)

Combining (6) and (7), Pr ≥ 2γr . By the second invariant, the first r jobs j1, . . . , jr−1 have
only charged to jobs of total size at most 2γr−1 , so we can find jobs in D+

jr
of total (fractional)

size 2γr − 2γr−1 ≥ 2γr−1 which have not been charged yet, and charge to them. This proves
the second invariant.

To prove the first invariant, we know that α+
jr
≥ wjrpjr/ε, else jr would not be assigned

to T+. Moreover, α+
jr
≤ wjr2γr+1 by the bucketing, so 2γr ≥ pjr/2ε. Consequently, we

charge to jobs of total size at least 2γr−1 ≥ pjr/4ε, and these jobs have density class at least
ρ?. Since 2ρ? ≥ ρjr = wjr/pjr , we get their total (fractional) weight is at least wjr/8ε. This
proves the first invariant, and hence the following theorem.

I Theorem 4 (Few Rejections). The weight of jobs suffering immediate rejection, plus those
in ∪tL(t), is at most an O(ε) fraction of the weight of all jobs released.

4.2 Bounding the Weighted Fractional Flow-time
Next we show that the total fractional flow-time of A can be bounded in terms of total αj
values. We first focus on relating FA to the sum of the αj values, as described in (5).



A. Gupta, A. Kumar, and J. Li 70:9

Observe that αj denotes the increase in objective function due to the arrival of j if we
had followed the preemptive HDF policy for all the jobs from time rj onwards. However, we
follow a slightly different policy – if j′ denotes the job that was running on the machine at
time j’s release time rj , we let j′ run until it finishes, or else until j′ belongs to the set L(t′)
at some time t′ ≥ rj . If no further jobs are released after j, the HDF policy after this time
t′ would be non-preemptive. Thus, we would still expect that the total fractional weighted
flow-time of our algorithm to be close to

∑
j αj . We formalise this intuition now. For every

job j, we define a job φ(j) as follows: let j′ be the job which was running just before time rj
(i.e., in the slot [rj − 1, rj ]). If j′ /∈ L(rj), we define φ(j) to be j′, otherwise we leave φ(j)
undefined. Our policy for adding a job to the set L(t) ensures that for every job j, w(φ−1(j))
is at most wj/ε. 1 Recall that Jimmed is the set of jobs which get rejected immediately upon
arrival. The following lemma, whose proof is deferred to the full version, states that the
fractional weighted flow-time of the algorithm can be charged to the αj values of the jobs
which get immediately rejected.

I Lemma 5. The fractional weighted flow-time of A is at most
∑
j:j /∈Jimmed αj +

∑
j wjpj/ε.

Proof. Jobs in Jimmed get rejected immediately, so their flow-time is 0. We now consider the
jobs which are not immediately rejected in the rest of the proof. Consider the jobs in order
of increasing release times. Let ∆j denote the increase in the objective function value due to
arrival of j. In other words, if J1 is the set of jobs released before j, then ∆j equals the total
fractional weighted flow-time of A on the input J2 := J1 ∪ {j} minus that on the input J1.
The total weighted flow time of A on the entire input would be

∑
j ∆j , the sum of these

increases. We now show that

∆j ≤ αj + wjpφ(j). (8)

Since w(φ−1(j′)) ≤ wj′/ε, we get that
∑
j wjpφ(j) =

∑
j′ w(φ−1(j′))pj′ ≤

∑
j′ wj′pj′/ε.

Hence, summing (8) over all j which are not in Jimmed proves the lemma.
Now we prove (8). Since we will be dealing with two inputs, J1 and J2, we parameterise

all quantities by J1 or J2 to clarify which input we refer to. For example, A(Jk, t), k = 1, 2
will refer to the active set A(t) on input Jk. Let F (Jk, t) denote the fractional weighted
flow-time of jobs in A(Jk, t) beyond time t, i.e., F (Jk, t) :=

∑
t′≥t

∑
j∈A(Jk,t′) wj(t

′).
There are two cases when job j arrives. If φ(j) is undefined, the job j′ running in slot

[rj − 1, rj ] belongs to L(rj). Hence the algorithm A on both inputs J1, J2 just runs HDF
starting at time rj . The difference between the corresponding flow times is precisely αj , by
definition.

Otherwise φ(j) is well-defined. Since j is the latest arrival, the job φ(j) will not be
preempted, and runs to completion. Say job φ(j) completes at time t′. During the time
[rj , t′] the difference in fractional weighted flow-time between the two runs is precisely
wj · (t′ − rj) ≤ wjpφ(j). After time t′ we run HDF on the remaining jobs, and the difference
in the fractional weighted flow-time of the two runs is precisely what αj would have been
had j arrived at time t′ instead of time rj . In other words, if J ′ := A(Jk, rj) \ {φ(j)},

F (J2, t
′)− F (J1, t

′) = wjpj/2 +
∑

j′∈J′:ρj′≥ρj

wjpj′(t′) +
∑

j′∈J′:ρj′<ρj

wj′(t′)pj

= wjpj/2 +
∑

j′∈J′:ρj′≥ρj

wjpj′(rj) +
∑

j′∈J′:ρj′<ρj

wj′(rj)pj

1 For a set S of jobs, let w(S) denote the total weight of jobs in S.

ICALP 2018



70:10 Non-Preemptive Flow-Time Minimization via Rejections

But this is a subset of the terms of αj : indeed, we’re just missing the term corresponding to
job φ(j). Hence, the total difference is at most αj + wjpφ(j), proving (8). J

To bound our flow time against the optimum using this lemma, note that
∑
j wjpj/ε ≤

2FO/ε, where we recall that O denotes the optimal offline schedule, and FO its fractional
weighted flow time. So we just need to bound

∑
j αj =

∑
j
wjpj/2 +

∑
j α

+
j +

∑
j α
−
j . The

first term is again bounded by FO, so the work is in bounding the other two terms. We first
record a convenient lemma – its proof is based on LP duality arguments and construction of
dual variables are similar to those in [2], and is deferred to the full version.

I Lemma 6 (Duality-based Lower Bound on OPT).
∑
j∈Jimmed αj ≤ FO +

∑
j
wjpj/ε.

4.3 Controlling the α Terms
In this section, our goal is to establish the approximate inequality ε

∑
j αj .

∑
j∈Jimmed αj ,

introduced in (5).

I Lemma 7.
∑
j α

+
j ≤ O(1/ε) ·

(∑
j wjpj +

∑
j∈Jimmed α

+
j

)
.

Proof. The definition of J+ implies that
∑
j /∈J+ α

+
j ≤

∑
j /∈J+ wjpj/ε. It remains to bound∑

j∈J+ α
+
j . We do an accounting per bucket in T+. Fix a bucket B indexed by a pair (κ, λ),

i.e., all jobs j in this bucket have bbα+
j /wjcc = κ, and bbwjcc = λ. Hence, if j is any job in this

bucket, then 2κ ≤ α+
j /wj ≤ 2κ+1, and 2λ ≤ wj ≤ 2λ+1. Multiplying, 2κ+λ ≤ α+

j ≤ 4 · 2κ+λ,
i.e., the α+

j values of any two jobs in this bucket differ by a factor of at most 4.
Let JB denote the jobs in J+ assigned to this bucket B, and nB denote their cardinality

|JB |. Since we reject the first job and then every subsequent (1/ε)th job in JB , we immediately
reject at least ε nB jobs in JB . Therefore,∑

j∈JB

α+
j ≤

4
ε
·

∑
j∈JB∩Jimmed

α+
j .

Summing over all buckets, the lemma follows. J

I Lemma 8.
∑
j α
−
j ≤ O(1/ε) ·

(∑
j wjpj +

∑
j∈Jimmed αj

)
.

Proof. The argument is similar to Lemma 7 in spirit, but technically more involved. The
reason is that we do not remove any jobs from a bucket of T− until it has 1/ε jobs assigned
to it. Hence, for a bucket B, if JB is non-empty but |JB | ≤ 1/ε, we have JB ∩ Jimmed = ∅.
However, if J−f is the set of jobs in J− which are the first jobs assigned to their corresponding
buckets in T−, then we get (as in the proof of Lemma 7) that

∑
j

α−j ≤ O(1/ε) ·
(∑

j

wjpj +
∑

j∈Jimmed

α−j +
∑
j∈J−

f

α−j

)
. (9)

It remains to bound
∑
j∈J−

f
α−j , which we accomplish via the following claim. Since the

proof is more technical, we defer it to the next section.

I Claim 9.
∑
j∈J−

f
α−j ≤ O(ε) ·

(∑
j wjpj +

∑
j α

+
j

)
.

Combining this with (9) and Lemma 7, using that α+
j + wjpj/2 + α−j = αj , the lemma

follows. J

Combining Lemmas 7 and 8 along with Lemma 5 and Lemma 6, we get

I Theorem 10. The fractional weighted flow-time of the non-rejected jobs in A is O(FO/ε2).



A. Gupta, A. Kumar, and J. Li 70:11

4.3.1 Proof of Claim 9
Define Λ+ :=

∑
j α

+
j . Recall that for a job j, its density class is given by bbρjcc = bbwj/pjcc.

For each density class δ ∈ Z, let us define some notation:
Let Aδ(t) := {j ∈ A(t) | bbρjcc = δ} denote jobs in A(t) whose density class is δ.
Let P δ(t) :=

∑
j∈Aδ(t) pj(t) and W δ(t) :=

∑
j∈Aδ(t) wj(t) be the total processing time

and residual weight of jobs in Aδ(t), respectively. Since all jobs in this set have the same
density class, observe that W δ(t)

P δ(t) also lies in the range [2δ, 2δ+1).
Define P δ := maxt P δ(t) and W δ := maxtW δ(t).

Our proof shows that
∑
δ P

δW δ is small; then we bound
∑
j∈J−

f
α−j by

∑
δ P

δW δ. The
proof of the following technical lemma is deferred to the full version.

I Lemma 11.
∑
δ P

δW δ ≤ O(1) ·
(∑

j wjpj + Λ+
)
.

I Lemma 12.
∑
j∈J−

f
α−j ≤ O(ε) ·

∑
δ P

δW δ.

Proof. Let us first give a general method for bounding α−j of any job j ∈ J−, and then we
can apply it to the jobs in J−f ⊆ J−. Recall that the jobs which contribute to α−j are the
ones with a strictly smaller density class than that of j. We now show that one need not
look at jobs of all such classes, and a subset of these classes suffice. Fix a job j ∈ J− of
density class δ, and define an index set Ij as {θ < δ | P θ(rj) ≥ (1.5)δ−θpj/8ε}.

I Claim 13. For any job j ∈ J− with density class δ, α−j ≤ 4pj ·
∑
θ∈Ij W

θ.

Proof. Let j′ be a job in A(rj) of strictly lower density class than j. Its contribution towards
α−j is pjwj′(rj). Therefore, α−j is at most∑

θ<δ

pjW
θ(rj) = pj ·

∑
θ∈Ij

W θ(rj) + pj ·
∑

θ/∈Ij ,θ<δ

W θ(rj). (10)

Let us bound the summation from the second expression.

∑
θ/∈Ij ,θ<δ

W θ(rj) ≤
∑

θ/∈Ij ,θ<δ

2θ+1 P θ(rj) ≤
∑
θ<δ

(1.5)δ−θ

2δ−θ · 2δpj
4ε ≤

3wj
4ε . (11)

Substituting (11) into (10), and using that α−j ≥ wjpj/ε for all jobs j ∈ J−, we get that
αj/4 ≤ pj

∑
θ∈Ij W

θ(rj) ≤ pj
∑
θ∈Ij W

θ, which proves the desired result. J

Recall that job j ∈ J− is mapped in table T− to the bucket indexed by (bbα−j cc, bbρjcc, bbpjcc).
For a fixed pair (δ, η), consider the jobs in J−f which are mapped to buckets indexed (γ, δ, η)
with various values of γ, and denote these jobs by J(δ,η). Since J−f only contains the first job
in each bucket, the bbα−j cc values of the various jobs in J(δ,η) are all distinct. It follows that if
j? is the job in J(δ,η) with the highest α−j value, then

∑
j∈J(δ,η)

α−j ≤ 4α−j? . Thus, we just
need to worry about one job per J(δ,η) – let S denote this set of jobs.

The ordered pairs (bbρjcc, bbpjcc) corresponding to jobs j ∈ S are all distinct. For density
class δ, let Sδ denote the jobs in S with density class δ. Using Claim 13,∑

j∈Sδ
α−j ≤ 4

∑
j∈Sδ

pj
∑
θ∈Ij

W θ = 4
∑
θ<δ

W θ
∑

j∈Sδ:θ∈Ij

pj . (12)

ICALP 2018



70:12 Non-Preemptive Flow-Time Minimization via Rejections

The jobs in Sδ also have different bbpjcc values, so the sum
∑
j∈Sδ:θ∈Ij pj ≤ 4pj′ for the job

j′ := arg max{pj | j ∈ Sδ, θ ∈ Ij}. By definition of Ij , pj′ ≤ 8εP θ/(1.5)δ−θ. Substituting
into (12),∑

j∈Sδ
α−j ≤ 16

∑
θ<δ

8ε W θP θ

(1.5)δ−θ . (13)

To complete the argument,
∑
j∈J−

f
α−j is at most

4
∑
δ

∑
j∈Sδ

α−j
eq.(13)
≤ 29ε

∑
δ

∑
θ<δ

W θP θ

(1.5)δ−θ = 29ε
∑
θ

W θP θ ·
∑
δ>θ

1
(1.5)δ−θ = O

(
ε
∑
θ

W θP θ
)
.

This completes the proof of Lemma 12. J

Combining Lemmas 11 and 12 completes the proof of Claim 9, and hence for Theorem 10.
In the full version of the paper we show that the algorithm is competitive even against an
optimal algorithm that is allowed (1 + ε)-speed augmentation – and hence prove Theorem 2.

5 Extension to Unrelated Machines

The extension of our result on single machine to the more general scenario of unrelated
machines can be done very modularly. We shall use the following result from [7, 2].

I Theorem 14. There is an online algorithm D which dispatches each arriving job j imme-
diately upon arrival to one of the m machines such that the following property holds: if J (i)

is the set of jobs which are dispatched to machine i and Oε′,i is the optimal solution to J (i)

when we have only one machine with speed (1 + ε′), then
∑
i F
Oε
′,i is at most 1/ε′ times the

optimal weighted flow-time of J .

The algorithms in [7, 2] actually build a schedule as well and use this schedule to immediately
dispatch a job. The algorithm D can build this schedule in the background and use it to
dispatch jobs, but not use it for actual processing. It follows from Theorem 14 and our
result showing that our algorithm is also competitive against an optimal algorithm that is
allowed (1 + ε)-speed augmentation (which we defer to the full version), that if we run our
algorithm on each of the machines i (with input J (i) arriving on-line) independently, then
the total weighted flow-time of non-rejected jobs in our algorithm is at most O(1/ε3) times
the optimal value.

References
1 S Anand. Algorithms for flow time scheduling. PhD thesis, Indian Institute of Technology,

Delhi, 2013.
2 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time

explained by dual fitting. In SODA’12, pages 1228–1241. ACM, New York, 2012.
3 Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with

immediate dispatching. In SPAA, pages 11–18, 2003.
4 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Kedar Dhamdhere. Scheduling for flow-

time with admission control. In Proc. ESA, 2003, pages 43–54. Springer, 2003. doi:
10.1007/978-3-540-39658-1_7.

5 Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-competitive
algorithms. In SODA, pages 1238–1244, 2009.

http://dx.doi.org/10.1007/978-3-540-39658-1_7
http://dx.doi.org/10.1007/978-3-540-39658-1_7


A. Gupta, A. Kumar, and J. Li 70:13

6 Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, and Leen Stougie.
Multiprocessor scheduling with rejection. SIAM J. Discrete Math., 13(1):64–78, 2000.

7 Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-
gorithm for minimizing weighted flow time on unrelated machines with speed augmentation.
In STOC’09, pages 679–683. ACM, New York, 2009.

8 Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar. Rejecting
jobs to minimize load and maximum flow-time. J. Comput. System Sci., 91:42–68, 2018.

9 Leah Epstein and Hanan Zebedat-Haider. Preemptive online scheduling with rejection of
unit jobs on two uniformly related machines. J. Scheduling, 17(1):87–93, 2014.

10 Naveen Garg and Amit Kumar. Better algorithms for minimizing average flow-time on
related machines. In ICALP, volume 4051, pages 181–190. 2006.

11 Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, pages 603–613, 2007.

12 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 531–540, 2014.

13 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

14 Hans Kellerer, Thomas Tautenhahn, and Gerhard J. Woeginger. Approximability and
nonapproximability results for minimizing total flow time on a single machine. SIAM J.
Comput., 28(4):1155–1166, 1999.

15 Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines.
Journal of Computer and Systems Sciences, 73(6):875–891, 2007.

16 Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram. Online non-
preemptive scheduling in a resource augmentation model based on duality. In 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark,
pages 63:1–63:17, 2016.

17 Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram. Online
min-sum flow scheduling with rejections. In In 13th Workshop on Models and Algorithms
for Planning and Scheduling Problems (MAPSP 2017), 2017, 2017.

ICALP 2018


	Introduction
	Our Results
	Our Techniques
	Related Work

	Definitions and Preliminaries
	Algorithm for Single-Machine Weighted Flow Time
	The Final Algorithm {B}

	Analyzing the Single-Machine Algorithm
	Bounding Weight of Rejected Jobs
	Bounding the Weighted Fractional Flow-time
	Controlling the alpha Terms
	Proof of Claim 9


	Extension to Unrelated Machines

