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Abstract
We consider the problem of constructing a cyclic listing of all bitstrings of length 2n + 1 with
Hamming weights in the interval [n+ 1− `, n+ `], where 1 ≤ ` ≤ n+ 1, by flipping a single bit in
each step. This is a far-ranging generalization of the well-known middle two levels problem (` = 1).
We provide a solution for the case ` = 2 and solve a relaxed version of the problem for general
values of `, by constructing cycle factors for those instances. Our proof uses symmetric chain
decompositions of the hypercube, a concept known from the theory of posets, and we present
several new constructions of such decompositions. In particular, we construct four pairwise edge-
disjoint symmetric chain decompositions of the n-dimensional hypercube for any n ≥ 12.
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1 Introduction

Gray codes are named after Frank Gray, a researcher at Bell Labs, who described a simple
method to generate all 2n bitstrings of length n by flipping a single bit in each step [8],
now known as the binary reflected Gray code. This code found widespread use, e.g., in
circuit design and testing, signal processing and error correction, data compression, etc.;
many more applications are mentioned in the survey [28]. The binary reflected Gray code
is also implicit in the well-known Towers of Hanoi puzzle and the Chinese ring puzzle
that date back to the 19th century. The theory of Gray codes has developed considerably
in the last decades, and the term is now used more generally to describe an exhaustive
listing of any class of combinatorial objects where successive objects in the list differ by a

EA
T

C
S

© Petr Gregor, Sven Jäger, Torsten Mütze, Joe Sawada, and Kaja Wille;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gregor@ktiml.mff.cuni.cz
mailto:jaeger@math.tu-berlin.de
mailto:muetze@math.tu-berlin.de
mailto:jsawada@uoguelph.ca
mailto:wille@math.tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.66
https://arxiv.org/abs/1802.06021
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


66:2 Gray Codes and Symmetric Chains

small amount. In particular, such generation algorithms have been developed for several
fundamental combinatorial objects of interest for computer scientists, such as bitstrings,
permutations, partitions, trees, etc., all of which are covered in depth in the most recent
volume of Knuth’s seminal series The Art of Computer Programming [20].

Since the discovery of the binary reflected Gray code, there has been continued interest
in developing Gray codes for bitstrings of length n that satisfy various additional constraints.
For instance, a Gray code with the property that each bit is flipped (almost) the same
number of times was first constructed by Tootill [35]. Goddyn and Gvozdjak constructed an
n-bit Gray code in which any two flips of the same bit are almost n steps apart [7], which is
best possible. These are only two examples of a large body of work on possible Gray code
transition sequences; see also [3, 5, 34]. Savage and Winkler constructed a Gray code that
generates all 2n bitstrings such that all bitstrings with Hamming weight k appear before
all bitstrings with weight k + 2, for each 0 ≤ k ≤ n− 2 [29], where the Hamming weight of
a bitstring is the number of its 1-bits. They used this construction to tackle the infamous
middle two levels problem, which asks for a cyclic listing of all bitstrings of length 2n + 1
with weights in the interval [n, n+ 1] by flipping a single bit in each step. This problem was
raised in the 1980s and received considerable attention in the literature (a detailed historic
account is given in [22]). A general existence proof for such a Gray code for any n ≥ 1 has
been found only recently [12, 22], and an algorithm for computing it using O(1) amortized
time and O(n) space was subsequently presented in [23]. The starting point of this work is
the following more general problem raised in [13, 27].

I Problem M (middle 2` levels problem). For any n ≥ 1 and 1 ≤ ` ≤ n+1, construct a cyclic
listing of all bitstrings of length 2n+ 1 with Hamming weights in the interval [n+ 1− `, n+ `]
by flipping a single bit in each step.

The special case ` = 1 of Problem M is the middle two levels problem mentioned before.
The case ` = n+ 1 is solved by the binary reflected Gray code discussed in the beginning.
Moreover, the cases ` = n and ` = n− 1 were settled in [6, 21] and [13], respectively.

A natural framework for studying such Gray code problems is the n-dimensional hy-
percube Qn, or n-cube for short, the graph formed by all bitstrings of length n, with an
edge between any two bitstrings that differ in exactly one bit. The 5-cube is illustrated in
Figure 1 (a). The kth level of the n-cube is the set of all bitstrings with Hamming weight
exactly k. In this terminology, Problem M asks for a Hamilton cycle in the subgraph of the
(2n+ 1)-cube induced by the middle 2` levels.

The most general version of this problem is whether the subgraph of the n-cube induced
by all levels in an arbitrary weight interval [a, b] has an (almost) Hamilton cycle. This was
solved in [11] for all possible values of n ≥ 1 and 0 ≤ a ≤ b ≤ n, except in the cases when
the length n of the bitstrings is odd and the levels a and b are symmetric around the middle,
which is exactly Problem M. For all other cases that paper provides algorithms that generate
each bitstring in those Gray codes in constant time.

1.1 Our results

In this work we solve the case ` = 2 of Problem M, i.e., we construct a cyclic listing of all
bitstrings of length 2n+ 1 with Hamming weights in the interval [n− 1, n+ 2].

I Theorem 1. For any n ≥ 1, the subgraph of the (2n+ 1)-cube induced by the middle four
levels has a Hamilton cycle.
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Figure 1 (a) The 5-cube with the (standard) symmetric chain decomposition D0, where the
edges along the chains are highlighted by thick lines. (b) Building a cycle factor through the middle
four levels of the 5-cube as explained in the proof of Theorem 2 with SCDs D := D0 (black) and
D′ := D0 (red). The edges that are removed from D and D′ are dotted, so the solid and dashed
edges are the two matchings M and M ′ whose union forms the cycle factor. It has three cycles of
lengths 4, 4 and 22, visiting all 30 bitstrings with Hamming weight in the interval [1, 4].

Combining Theorem 1 with the results from [11] shows more generally that the subgraph
of the n-cube induced by any four consecutive levels has an ‘almost’ Hamilton cycle.1

As another partial result towards Problem M, we show that the subgraph of the (2n+ 1)-
cube induced by the middle 2` levels has a cycle factor. A cycle factor is a collection of
disjoint cycles which together visit all vertices of the graph. In particular, a Hamilton cycle
is a cycle factor consisting only of a single cycle. Note here that the existence of a cycle
factor for general values of ` is not an immediate consequence of Hall’s theorem, which is
applicable only for ` = 1 and ` = n+ 1, as only in those cases all vertices of the underlying
graph have the same degree.

I Theorem 2. For any n ≥ 1 and 1 ≤ ` ≤ n+ 1, the subgraph of the (2n+ 1)-cube induced
by the middle 2` levels has a cycle factor.

Our proof of Theorem 2 is concise and illustrative, and it motivates the subsequent
discussion, so we present it right now. It uses a well-known concept from the theory of
partially ordered sets (posets), a so-called symmetric chain decomposition. Here we define
this term for the n-cube using graph-theoretic language. A symmetric chain in Qn is a
path (xk, xk+1, . . . , xn−k) in the n-cube where xi is from level i for all k ≤ i ≤ n− k, and a
symmetric chain decomposition, or SCD for short, is a partition of the vertices of Qn into
symmetric chains. For illustration, an SCD of Q5 is shown in Figure 1 (a). We say that two
SCDs are edge-disjoint if the corresponding paths in the graph Qn are edge-disjoint, i.e., if
there are no two consecutive vertices in one chain of the first SCD that are also contained in
one chain of the second SCD. There is a well-known construction of two edge-disjoint SCDs
in the n-cube for any n ≥ 1 [31], which we will discuss momentarily.

1 If the four levels are not symmetric around the middle, then this subgraph of the n-cube has two
partition classes of different sizes, and thus cannot have a Hamilton cycle. However, it was shown in [11]
that in those cases the graph has a cycle that visits all vertices in the smaller partition class, and also a
cyclic listing of all vertices in which only few transitions flip two instead of one bit, where ‘few’ means
only as many as the difference in size between the two partition classes. Both of these notions are
natural generalizations of a Hamilton cycle.

ICALP 2018
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Figure 2 The parenthesis matching approach for constructing the symmetric chain containing a
bitstring x, yielding the symmetric chain decomposition D0. The highlighted bits are the leftmost
unmatched 0 and the rightmost unmatched 1 in each bitstring.

Proof of Theorem 2. The proof is illustrated in Figure 1 (b). Consider two edge-disjoint
SCDs D and D′ in the (2n+ 1)-cube. Let R and R′ be the chains obtained from D and D′,
respectively, by restricting them to the middle 2` levels, so chains that are longer than 2`− 1
get shortened on both sides. As all chains in R and R′ start and end at symmetric levels
and the dimension 2n + 1 is odd, all these paths have odd length (possible lengths are
1, 3, . . . , 2`− 1). Therefore, by taking every second edge on every path from R and R′, we
obtain two perfect matchings M and M ′ in the subgraph of the (2n+ 1)-cube induced by
the middle 2` levels. As the paths in R and R′ are edge-disjoint, the matchings M and M ′
are also edge-disjoint. Therefore, the union of M and M ′ is the desired cycle factor. J

This proof motivates the search for a large collection of pairwise edge-disjoint SCDs in
the n-cube. We can then use any two of them to construct a cycle factor as described in the
previous proof, and use this cycle factor as a starting point for building a Hamilton cycle.
This two-step approach of building a Hamilton cycle via a cycle factor proved to be very
successful for such problems (see e.g. [15, 16, 17, 18, 22, 24, 30]). Consequently, for the rest
of this section we focus on edge-disjoint SCDs in the n-cube.

There is a well-known construction of an SCD for the n-cube that is best described by the
following parenthesis matching approach pioneered by Greene and Kleitman [9]; see Figure 2.
For any vertex x of the n-cube, we interpret the 0s in x as opening brackets and the 1s as
closing brackets. By matching closest pairs of opening and closing brackets in the natural
way, the chain containing x is obtained by flipping the leftmost unmatched 0 to move up the
chain, or the rightmost unmatched 1 to move down the chain, until no more unmatched bits
can be flipped. It is easy to see that this indeed yields an SCD of the n-cube for any n ≥ 1.
We denote this standard SCD by D0; it is shown in Figure 1 (a) for n = 5.

By taking complements, we obtain another SCD, which we denote by D0. It is not hard
to see that D0 and D0 are in fact edge-disjoint for any n ≥ 1 [31]. Figure 1 (b) shows both
SCDs for n = 5, and how they are used for building a cycle factor. Apart from this standard
construction, we are not aware of any other construction of an SCD in the n-cube, even
though there are several different ways to describe the same SCD (see e.g. [1, 4, 36]).

Our next result is a simple construction of another SCD in the n-cube for even values
of n ≥ 2, which we call D1. This construction is based on lattice paths and will be explained
in Section 4 below. It has the additional feature that D0, D0, D1 and D1 are pairwise
edge-disjoint for n ≥ 6.

I Theorem 3. For any even n ≥ 6, the n-cube contains four pairwise edge-disjoint SCDs.
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Figure 3 The edge-disjoint SCDs D0 (dashed vertical paths) and D1 (solid paths; chains of the
same length are drawn with the same color) in the 6-cube. The bitstrings are drawn with white
squares representing 0s and black squares representing 1s.

Table 1 Known pairwise edge-disjoint SCDs in the n-cube for n = 1, 2, . . . , 11. The definitions
of X5, Y5, Z5 and X7, Y7 are given in Section 4.3.

n 1 2 3 4 5 6 7 8 9 10 11
bn/2c + 1 1 2 2 3 3 4 4 5 5 6 6
SCDs D0 D0, D0 D0, D0 D0, D0, X5, Y5, D0, D0, X7, X7 D0, D0, D0, D0 D0, D0, D0, D0

D1 Z5 D1, D1 Y7, Y7 D1, D1 D1, D1

Figure 3 shows the SCDs D0 and D1 in Q6. Their complements D0 and D1 are not shown
for clarity. Note that four edge-disjoint SCDs are best possible for Q6, as they use up all
edges incident with the middle level.

For odd values of n, we can still construct four edge-disjoint SCDs in the n-cube (except
in a few small cases). However, the construction is not as direct and explicit as for even n.

I Theorem 4. For n = 7 and any odd n ≥ 13, the n-cube contains four pairwise edge-disjoint
SCDs.

For odd n, we can combine any two of the four edge-disjoint SCDs in the n-cube guaranteed
by Theorem 4 to a cycle factor in the middle 2` levels, as explained before, yielding in total(4

2
)

= 6 distinct cycle factors, four of which are non-isomorphic. To prove Theorem 4, we
construct four edge-disjoint SCDs in the 7-cube in an ad hoc fashion and then apply the
following product construction.

I Theorem 5. If Qa and Qb each contain k pairwise edge-disjoint SCDs, then Qa+b contains k
pairwise edge-disjoint SCDs.

Theorem 5 shows in particular that from k edge-disjoint SCDs in a hypercube of fixed di-
mension n, we obtain k edge-disjoint SCDs for infinitely many larger dimensions 2n, 3n, 4n, . . ..

We conjecture that the n-cube has bn/2c+ 1 pairwise edge-disjoint SCDs, but so far we
only know that this holds for n ≤ 7. Clearly, finding this many edge-disjoint SCDs would
be best possible, as they use up all middle edges of the cube. Maximum sets of pairwise
edge-disjoint SCDs in the n-cube we found for n = 1, 2, . . . , 11 are shown in Table 1, together
with the aforementioned upper bound.

ICALP 2018
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1.2 Related work
Apart from building Gray codes, symmetric chain decompositions have many other interesting
applications, e.g., to construct rotation-symmetric Venn diagrams for n sets when n is a
prime number [14, 26], and to solve the Littlewood-Offord problem on sums of vectors [2].

A notion that is closely related to edge-disjoint SCDs is that of orthogonal chain decompo-
sitions, which were first considered by Shearer and Kleitman [31]. Two chain decompositions
are called orthogonal if every pair of chains has at most one vertex in common, where one
also allows chains that are not symmetric around the middle or chains that skip some levels.
Shearer and Kleitman showed in their paper that D0 and D0 are almost orthogonal (only
the longest chains have two elements in common), and they conjectured that the n-cube has
bn/2c+ 1 pairwise orthogonal chain decompositions where each decomposition consists of(

n
bn/2c

)
many chains. Spink recently made some progress towards this conjecture, by showing

that the n-cube has three orthogonal chain decompositions [32].
Pikhurko showed via a parenthesis matching argument that all edges of the n-cube can

be decomposed into symmetric chains [25]. However, it is not clear whether these chains
contain a subset that forms an SCD. Another interesting construction relating Hamilton
cycles and SCDs in the n-cube was presented by Streib and Trotter [33]. They inductively
construct a Hamilton cycle in the n-cube for any n ≥ 2 that can be partitioned into symmetric
chains forming an SCD. This Hamilton cycle has the minimal number of ‘peaks’ where the
differences in the Hamming weight change sign.

1.3 Outline of this paper
In Section 2 we introduce several definitions that will be used throughout this paper. In
Section 3 we sketch the main ideas for proving Theorem 1. The full proof is omitted due to
space constraints and can be found in the preprint [10]. In Section 4 we present the proofs
of Theorems 3–5, and we describe the construction of the SCD D1 and of the SCDs in Q5
and Q7 referred to in Table 1. We conclude in Section 5 with some open problems.

2 Preliminaries

We begin by introducing some terminology that is used throughout the following sections.

2.1 Bitstrings and lattice paths
We use Ln,k to denote the set of all bitstrings of length n with Hamming weight k, so this is
exactly the kth level of Qn. For any bitstring x, we write x for its complement and rev(x)
for the reversed bitstring. We often interpret a bitstring x as a path in the integer lattice Z2

starting at the origin (0, 0), where every 1-bit is interpreted as an ↗-step that changes the
current coordinate by (+1,+1) and every 0-bit is interpreted as a ↘-step that changes the
current coordinate by (+1,−1); see Figure 4. Note that for any bitstring x, the inverted
bitstring x corresponds to mirroring the lattice path horizontally, and the inverted and
reversed bitstring rev(x) corresponds to mirroring the lattice path vertically.

2.2 Lexical matchings
We now introduce certain matchings between two consecutive levels of the hypercube, which
were first described by Kierstead and Trotter [19]. Originally, these matchings were defined
and analyzed for the graph between the middle two levels of the (2n+ 1)-cube in an attempt
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Figure 4 Definition of i-lexical matchings between levels 9 and 10 of Q22, where steps flipped
along the i-lexical matching edge are marked with i. Between those two levels, the vertex x is
incident with i-lexical matching edges for each i ∈ {0, 1, . . . , 12}, and the vertex y is incident with
i-lexical matching edges for each i ∈ {0, 1, . . . , 12} \ {4, 6, 9}.

to tackle the middle two levels problem. We first generalize them to the n-cube for arbitrary n
and an arbitrary pair of consecutive levels k and k + 1. For i ∈ {0, 1, . . . , n− 1} the i-lexical
matching is defined as follows; see Figure 4. We interpret a bitstring x as a lattice path,
and we let x↑ denote the lattice path that is obtained by appending ↘-steps to x until the
resulting path ends at height −1. If x ends at a height less than −1, then x↑ := x. Similarly,
we let x↓ denote the lattice path obtained by appending ↗-steps to x until the resulting
path ends at height +1. If x ends at a height more than +1, then x↓ := x. We define the
matching by two partial mappings M i,↑

n,k : Ln,k → Ln,k+1 and M i,↓
n,k : Ln,k+1 → Ln,k defined

as follows: For any x ∈ Ln,k we consider the lattice path x↑ and scan it row-wise from top
to bottom, and from right to left in each row. The partial mapping M i,↑

n,k(x) is obtained by
flipping the ith↘-step encountered in this fashion, where counting starts with 0, 1, . . ., if this
↘-step is part of x; otherwise x is left unmatched. Similarly, for any x ∈ Ln,k+1 we consider
the lattice path x↓ and scan it row-wise from top to bottom, and from left to right in each
row. The partial mapping M i,↓

n,k(x) is obtained by flipping the ith ↗-step encountered in
this fashion if this ↗-step is part of x; otherwise x is left unmatched. It is straightforward
to verify that these two partial mappings are inverse to each other, so they indeed define a
matching between levels k and k + 1 of Qn, which we denote by M i

n,k.
The following properties of lexical matchings are direct consequences of these definitions.

I Lemma 6. Let 0 ≤ k ≤ n− 1 and l := max{k, n− k − 1}. The lexical matchings defined
before have the following properties.
(i) For every 0 ≤ i ≤ l, the matching M i

n,k saturates all vertices in the smaller of the two
levels k and k + 1.

(ii) The matchings M i
n,k, i = 0, 1, . . . , l, form a partition of all edges of the subgraph of Qn

between levels k and k + 1.
(iii) For every 0 ≤ i ≤ l we have M i

n,k = M l−i
n,n−k−1 and rev(M i

n,k) = M l−i
n,k . Consequently,

we have rev(M i
n,k) = M i

n,n−k−1.
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C ′

C1

C2

Figure 5 Joining two cycles C1 and C2 (black) from our cycle factor by taking the symmetric
difference with a 6-cycle C′ (gray).

Property (i) holds as in the smaller of the two levels k and k+1, no steps are appended to
the lattice paths when computing the i-lexical matching between those levels. Property (ii)
holds as the vertices in the smaller of the two levels k and k + 1 have degree l + 1 and the
matchings M i

n,k, i = 0, 1, . . . , l, are all disjoint. Property (iii) follows from the observation
that complementing a bitstring corresponds to mirroring the lattice path horizontally, and
reverting a bitstring corresponds to mirroring the lattice path horizontally and vertically.

3 The middle four levels problem

In this section we outline the main steps for proving Theorem 1. The proof proceeds similarly
as the proof of the middle two levels problem [12, 22]. In a first step, we construct a cycle
factor in the middle four levels of the (2n + 1)-cube, and in a second step we modify the
cycles in the factor locally to join them to a Hamilton cycle. The cycle factor is constructed
by taking the union of the following edge sets: all n-lexical and (n + 1)-lexical matching
edges between the upper two levels n+ 1 and n+ 2 and between the lower two levels n− 1
and n, as well as certain carefully chosen edges from the (n− 2)-lexical, the (n− 1)-lexical,
and the n-lexical matching between the middle two levels n and n+ 1. The most technical
step here is to choose an appropriate set of edges between the middle two levels, so that the
resulting subgraph has degree two at every vertex. When this is accomplished, we define
a set of 6-cycles between levels n + 1 and n + 2 such that any two of these 6-cycles are
edge-disjoint and every such 6-cycle C ′ intersects with two cycles C1 and C2 from our cycle
factor as shown in Figure 5. Consequently, taking the symmetric difference of the edge sets
of C1, C2, and C ′ results in a single cycle on the same vertex set as C1 and C2. We repeat
this joining process until we end up with a single Hamilton cycle. In this process, we exploit
that all of the 6-cycles used for the joining are edge-disjoint, and that on any cycle of the
factor, no pairs of edges that two 6-cycles have in common with this cycle are interleaved, so
there are never any conflicts between them. The main advantage of this two-step approach
to proving Hamiltonicity is that it effectively reduces the problem of proving that a graph
has a Hamilton cycle to the problem of proving that a suitably defined auxiliary graph is
connected, which is much easier. All details of this proof can be found in [10].

4 Pairwise edge-disjoint SCDs

We proceed to prove Theorems 3–5.

4.1 Proof of Theorem 3
To prove Theorem 3, we first give an equivalent definition of the SCD D0 defined in the
introduction via the parenthesis matching approach, which is valid only for even values of
n ≥ 2; recall Figure 1 (a) and Figure 2.
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Figure 6 The labeling procedures that define the symmetric chains C0(x) (top) and C1(x)
(bottom). The markers that define the upward and downward steps of the chains are drawn as a
square and a diamond, respectively. The chain C0(x) is the same as the one shown in Figure 2.

For even n ≥ 2, we consider a vertex x ∈ Ln,n/2 in the middle level n/2 of Qn, and we
define the sequence of vertices reached from x when moving up the corresponding chain,
and the sequence of vertices reached when moving down the chain. For this we consider the
lattice path corresponding to the bitstring x. This lattice path ends at the coordinate (n, 0)
as the number of 0s equals the number of 1s. We now label a subsequence of ↘-steps of this
lattice path with integers j = 1, 2, . . . according to the following procedure; see the top part
of Figure 6 for an illustration:
(a0) We place a marker at the rightmost highest point of x and set j := 1.
(b0) If the marker is at height h ≥ 1, we label the ↘-step starting at the marker with j,

and we move the marker to the starting point of the rightmost ↘-step starting at
height h− 1. We set j := j + 1 and repeat.

(c0) If the marker is at height h = 0, we stop.
Flipping the ↘-steps of x marked with 1, 2, . . . in this order yields the sequence of vertices
reached from x when moving up the chain containing x. An analogous labeling procedure
obtained by interchanging left and right, ↘-steps and ↗-steps, and starting with ending
points yields the sequence of vertices reached from x when moving down this chain. We
denote this chain by C0(x). Observe that C0(x) is a symmetric chain, as the height of the
marker decreases by 1 in each step, so the number of edges we move up from x equals the
number of edges we move down from x. It is easy to verify that the SCD D0 defined before
via the parenthesis matching approach satisfies D0 =

⋃
x∈Ln,n/2

C0(x).

Proof of Theorem 3. We first define a set D1 of chains in Qn for even values of n ≥ 2 via
a labeling rule similar to the rule for D0 described before. From this definition it follows
immediately that all chains in D1 are symmetric. We then use an equivalent characterization
of D0 and D1 as the unions of certain lexical matchings to show that the chains in D1 form
a partition of all vertices of Qn, proving that D1 is an SCD, and that D0, D0, D1, and D1
are pairwise edge-disjoint.

For even n ≥ 2, we consider a vertex x ∈ Ln,n/2 in the middle level of Qn. We interpret
it as a lattice path, and label some of its ↘-steps as follows; see the bottom part of Figure 6:
(a1) We place a marker at the rightmost highest point of x and set j := 1. If there is a

↘-step to the left of the marker starting at the same height, we label the nearest such
step with 1 and set j := 2.
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level 0

level 1

level 2

level 3

level 4

level 5

level 6

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M0 M1 M2 M3

M4

M4

M4

M4

M5

M5

D0 D1 D1 D0

Figure 7 Unions of lexical matchings M i = M i
n,k yielding edge-disjoint chain decompositions

in Qn for n = 6. The resulting chains in D0 and D1 in Q6 are shown in Figure 3.

(b1) If the marker is at height h ≥ 2, we label the rightmost ↘-step starting at height h− 1
with j. We consider all ↘-steps starting at height h − 2 to the right of the labeled
step and the ↘-step starting at the marker, we label the second step from the right
from this set with j + 1, and we move the marker to the starting point of the rightmost
↘-step starting at height h− 2. We set j := j + 2 and repeat.

(c1) If the marker is at height h = 1 or h = 0, we stop.
We let C1(x) denote the chain obtained by flipping bits according to this labeling rule and
the corresponding symmetric rule obtained by interchanging left and right, ↘-steps and
↗-steps, and starting with ending points. Observe that C1(x) is a symmetric chain, as the
height of the marker decreases by 2 in each iteration (and we label two steps in each iteration)
and the conditional marking in step (a1) occurs if and only if the highest point of x is unique,
so the number of edges we move up from x equals the number of edges we move down from x.
At this point it is not clear yet that the chains C1(x), x ∈ Ln,n/2, are disjoint, nor that they
cover all vertices of Qn. This is what we will argue about next, which will prove that

D1 :=
⋃

x∈Ln,n/2
C1(x) (1)

is actually an SCD of Qn.
By property (i) from Lemma 6, for any sequence i := (i0, i1, . . . , in−1) of indices

ik ∈ {0, 1, . . . ,max{k, n− k − 1}} the union

Di :=
⋃n−1

k=0
M ik
n,k (2)

is a chain decomposition of Qn. The resulting chains are not necessarily symmetric, though.
From the definitions in Section 2.2 it also follows that D0 equals the union of the 0-lexical
matchings, and that for even n ≥ 2, D1 as defined in (1) equals the union of the 1-lexical
matchings; formally we have

D0 = D(0,0,...,0) =
⋃n−1

k=0
M0
n,k , D1 = D(1,1,...,1) =

⋃n−1

k=0
M1
n,k .

Consequently, D1 is indeed a chain decomposition, and by the definition of D1 via the labeling
procedure, all chains in this decomposition are symmetric, so D1 is indeed an SCD. The fact
that D0, D0, D1, and D1 are pairwise edge-disjoint can be seen by applying property (iii)
from Lemma 6 and by observing that by property (ii), Di and Dj as defined in (2) are
edge-disjoint if and only if the sequences i and j differ in every position; see Figure 7. J
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Qa Qb Qa+b = Qa ×Qb
A

A1
A2

B

B1
B2

A×B C1

C1

(x1, y1)

(x1, yβ)

(xα, yβ)

Figure 8 Illustration of the proof of Theorem 5. Construction of two edge-disjoint SCDs in Q5

from two edge-disjoint SCDs in Q2 and two edge-disjoint SCDs in Q3. The chains of the SCD C1

of Q5 as constructed in the proof are highlighted in gray.

Clearly, D(0,0,...,0) as defined in (2) equals D0 for every n ≥ 1, so the union of all 0-lexical
matchings forms an SCD in any dimension. In contrast to that, the union of all 1-lexical
matchings D(1,1,...,1) only forms an SCD for even n ≥ 2.

4.2 Proof of Theorem 5
Proof of Theorem 5. For the reader’s convenience, this proof is illustrated in Figure 8.
Let A1,A2, . . . ,Ak and B1,B2, . . . ,Bk denote k pairwise edge-disjoint SCDs of Qa and Qb,
respectively. We will think of Qa+b as the Cartesian product Qa ×Qb of Qa and Qb. We
show how to construct for every i ∈ [k] an SCD Ci of Qa+b = Qa ×Qb which uses only edges
of the form ((u, v), (u′, v′)) where (u, u′) is an edge from Ai or (v, v′) is an edge from Bi.
From this it follows that the SCDs C1, C2, . . . , Ck are pairwise edge-disjoint.

The SCD Ci of Qa+b is defined as follows: The Cartesian products A×B of chains A ∈ Ai
and B ∈ Bi partition the vertices of Qa+b into two-dimensional grids. Ci is obtained by
partitioning each of those grids into symmetric chains in the natural way; see Figure 8 (cf. [4]):
Specifically, let A =: (x1, . . . , xα) and B =: (y1, . . . , yβ) be the vertices in the chains A and B
from bottom to top. As A and B are symmetric, we know that |x1| + |xα| = a and
|y1|+ |yβ | = b, where |x| denotes the Hamming weight of the bitstring x. This implies that
|(x1, y1)|+ |(xα, yβ)| = |x1|+ |y1|+ |xα|+ |yβ | = a+ b, i.e., the bottom and top vertex of
the grid A×B are on symmetric levels in Qa+b. We may therefore decompose A×B into
disjoint symmetric chains Cj , j = 1, 2, . . . ,min{α, β}, by setting

Cj :=
(
(x1, yj), (x2, yj), . . . , (xα−j+1, yj), (xα−j+1, yj+1), . . . , (xα−j+1, yβ)

)
. J

4.3 Proof of Theorem 4
We begin by constructing the SCDs in Q5 and Q7 mentioned in Table 1.

I Lemma 7. Q5 contains three pairwise edge-disjoint SCDs, Q7 contains four pairwise
edge-disjoint SCDs, and this is best possible.

Proof. We consider the graph Qn with the two vertices in the outermost levels 0 and n

removed, and we identify all bitstrings that differ only by rotation into so-called necklaces.
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N5

10000

11000

11100

11110

10100

10110

N7

1110000 1011000 1101000
10101001001100

1111000 1011100 1101100
10101101001110

1111100 1011110 1101110

1100000 1010000 1001000

1000000

1111110

X5

Y5

Z5

X7

X7

Y7

Y7(a) (b)Z5

Figure 9 Illustration of the three edge-disjoint SCDs in N5 (a) and four edge-disjoint SCDs
in N7 (b). The names of the SCDs correspond to the ones used in Table 1.

The resulting graph Nn is a multigraph version of the cover graph of the necklace poset.
Specifically, the multiplicity of the edges in Nn corresponds to the number of ways a bit
from a necklace can be flipped to reach the corresponding adjacent necklace. E.g., in N5
the necklace x := 10000 has two edges leading to y := 11000, as we can flip the second
or the fifth bit in x to reach y. This way, a necklace on level k has n − k edges going up,
and k edges going down, like the vertices in Qn. The multigraphs N5 and N7 are shown in
Figure 9. If n is prime, then every SCD in Nn corresponds to an SCD in Qn, by turning each
chain from Nn into n chains in Qn obtained by rotating a representative of each necklace
in all possible ways. Moreover, one of the chains of length n− 2 needs to be extended by
the all-zero and all-one bitstring to a chain of length n in Qn. Observe that in this way, k
edge-disjoint SCDs in Nn give rise to k edge-disjoint SCDs in Qn.

As n = 5 and n = 7 are prime, we thus obtain three edge-disjoint SCDs in Q5 from the
SCDs in N5 shown in Figure 9 (a), and four edge-disjoint SCDs in Q7 from the SCDs in N7
shown in Figure 9 (b). These SCDs use up all middle edges, so this is best possible. J

Proof of Theorem 4. For n = 7 the statement follows from Lemma 7. For odd n ≥ 13
we apply Theorem 5 to Qn−7 and Q7, using the four edge-disjoint SCDs in Qn−7 given
by Theorem 3 (note that n − 7 ≥ 6), and the four edge-disjoint SCDs in Q7 given by
Lemma 7. J

5 Open problems

Understanding the structure of the cycle factors constructed as in the proof of Theorem 2
is an important step towards a general solution of Problem M. We performed some
computer experiments in this direction; see [10]. What is the number and length of cycles
in these factors? Is there a combinatorial interpretation of those numbers?
Are there other explicit constructions of SCDs in the n-cube, different from D0, D1, and
their complements?
We conjecture that the n-cube has bn/2c + 1 pairwise edge-disjoint SCDs. The main
difficulty here is that we are missing a simple criterion like Hall’s matching condition
guaranteeing the existence of an SCD. Even finding five edge-disjoint SCDs in the n-cube
for some small fixed n would be interesting, as this solution would extend to infinitely
many larger values of n by Theorem 5. Beyond that, it would be very nice to construct
more than constantly many edge-disjoint SCDs in the n-cube as n grows.
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