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Abstract
We consider the problem of sketching the p-th frequency moment of a vector, p > 2, with
multiplicative error at most 1 ± ε and with high confidence 1 − δ. Despite the long sequence
of work on this problem, tight bounds on this quantity are only known for constant δ. While
one can obtain an upper bound with error probability δ by repeating a sketching algorithm with
constant error probability O(log(1/δ)) times in parallel, and taking the median of the outputs,
we show this is a suboptimal algorithm! Namely, we show optimal upper and lower bounds
of Θ(n1−2/p log(1/δ) + n1−2/p log2/p(1/δ) logn) on the sketching dimension, for any constant
approximation. Our result should be contrasted with results for estimating frequency moments
for 1 ≤ p ≤ 2, for which we show the optimal algorithm for general δ is obtained by repeating
the optimal algorithm for constant error probability O(log(1/δ)) times and taking the median
output. We also obtain a matching lower bound for this problem, up to constant factors.

2012 ACM Subject Classification Theory of computation → Lower bounds and information
complexity

Keywords and phrases Data Streams, Frequency Moments, High Confidence

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.58

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
10885.

1 Introduction

The frequency moments problem is a very well-studied and foundational problem in the data
stream literature. In the data stream model, an algorithm may use only sub-linear memory
and a single pass over the data to summarize a data stream that appears as a sequence
of incremental updates. A data stream may be viewed as a sequence of m records of the
form ((i1, v1), (i2, v2), . . . , (im, vm)), where, ij ∈ [n] = {1, 2, . . . , n} and vj ∈ R. The record
(ij , vj) changes the ijth coordinate xij of an underlying n-dimensional vector x to xij + vj .
Equivalently, for i ∈ [n], xi =

∑
j:ij=i vj . Note that vj may be positive or negative, which

corresponds to the so-called turnstile model in data streams. Also, the i-th coordinate of
x is sometimes referred to as the frequency of item i, though note that it can be negative
in the turnstile model. The p-th moment of x is defined to be Fp =

∑
i∈[n]|xi|p, for a real

number p ≥ 0, which for p ≥ 1 corresponds to the p-th power of the `p-norm ‖x‖pp of x.
The Fp estimation problem with approximation parameter ε and failure probability δ is:

design an algorithm that makes one pass over the input stream and returns F̂p such that
Pr
[
|F̂p−Fp| ≤ εFp

]
≥ 1− δ. Such an algorithm is also referred to as an (ε, δ)-approximation

of Fp. This is a problem that is among the ones that has received the most attention
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58:2 High Probability Frequency Moment Sketches

Table 1 Here, g(p, n) = minc constant gc(n), where g1(n) = logn, gc(n) = log(gc−1(n))/(1− 2/p).
We start the upper bound timeline with [19], since that is the first work which achieved an exponent
of 1− 2/p for n. For earlier work which achieved worse exponents for n, see [1, 12, 14, 15].

Fp Algorithm Sketching Dimension
[19] O(n1−2/pε−O(1) logO(1) n log(1/δ))
[7] O(n1−2/pε−2−4/p logn log(M) log(1/δ))
[31] O(n1−2/pε−O(1) logO(1) n log(1/δ))
[3] O(n1−2/pε−2−6/p logn log(1/δ))
[8] O(n1−2/pε−2−4/p logn · g(p, n) log(1/δ))
[2] O(n1−2/p lognε−O(1) log(1/δ))

[16], Best upper bound O(n1−2/pε−2 log(1/δ) + n1−2/pε−4/p logn log(1/δ))

in the data stream literature, and we only give a partial list of work on this problem
[1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 19, 25, 26, 27, 30, 31, 34].

We study the class of algorithms based on linear sketches, which store only a sketch S · x
of the input vector x and a (possibly randomized) matrix A. This model is well-studied, both
for the problem of estimating norms and frequency moments [4, 18, 30, 32], and for other
problems such as estimating matrix norms [29], and matching size [5, 28]. The efficiency is
measured in terms of the sketching dimension which is the maximum number of rows of a
matrix S used by the algorithm. Since the algorithm is randomized, it may choose different
S based on its randomness, so the maximum is taken over its randomness. Linear sketches
are particularly useful for data streams since given an update (ij , vj), one can update Sx
as S(x+ vjeij ) = Sx+ Svjeij , where eij is the standard unit vector in the ij-th direction.
They are also used in distributed environments, since given S · x and618 S · y, one can add
these to obtain S · (x+ y), the sketch of x+ y.

When 0 < p ≤ 2, one can achieve a sketching dimension of O(ε−2 log(1/δ)) independent of
n [1, 25, 27], while for p = 0 the sketching dimension is O(ε−2(log(1/ε) + log logn) log(1/δ))
[26]. For p = 2 there is a sketching lower bound of Ω(ε−2 log(1/δ)) [24], which implies an
optimal algorithm for general δ is to run an optimal algorithm with error probability 1/3
and take the median of O(log(1/δ)) independent repetitions. As a side result, we show in the
full version a lower bound of Ω(ε−2 log(1/δ)) for any 1 ≤ p < 2, which shows this strategy of
amplifying the success probability by O(log 1/δ) independent repetitions is also optimal for
any 1 ≤ p < 2.

Perhaps surprisingly, for p > 2, the sketching dimension needs to be polynomial in n, as
first shown in [32], with the best known lower bounds being Ω(n1−2/p logn) [4] for constant
ε and δ, and Ω(n1−2/pε−2) for constant δ [30]. Regarding upper bounds, we present the
long list of bounds in Table 1. The best known upper bound is O(n1−2/pε−2 log(1/δ) +
n1−2/pε−4/p logn log(1/δ)) [16]. This is tight only when ε and δ are constant, in which case
it matches [4], or when δ is constant and ε < 1/poly(logn), since it matches [30].

1.1 Our Contributions
In this work, we show optimal upper and lower bounds of Θ(n1−2/p log(1/δ) + n1−2/p

log2/p(1/δ) logn) on the sketching dimension for Fp-estimation, for any p > 2, and for
any constant ε. Our upper bound shows, perhaps surprisingly, that the optimal bound is
not to run O(log(1/δ)) independent repetitions of a constant success probability algorithm
and report the median of the outputs. Indeed, such an algorithm would give a worse
O(n1−2/p log(1/δ) logn) sketching dimension.
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Figure 1 Shelf structure and level sets for each shelf index j whose contribution to Fp is estimated
accurately.

For general ε, our upper bound is O(n1−2/pε−2 log(1/δ) + n1−2/pε−4/p log2/p(1/δ) logn)
and our lower bound is Ω(n1−2/pε−2 log(1/δ) +n1−2/pε−2/p log2/p(1/δ) logn), which differ by
at most an ε−2/p factor. Our results thus come close to resolving the complexity for general
ε as well.

Our results should be contrasted to 1 ≤ p ≤ 2, for which the optimal sketching dimension
for such p is Θ(ε−2 log(1/δ)), and so for these p it is optimal to run O(log(1/δ)) independent
repetitions of a constant probability algorithm. Here we strengthen the Ω(ε−2 log(1/δ))
bound for p = 2 of [24] by showing the same bound for 1 ≤ p ≤ 2.

1.1.1 Overview of Upper Bound

In order to obtain a confidence of 1− δ, we use the d = dlog(1/δ)eth moment of an estimate
F̂p of Fp. Since we are unable to use the dth moment of the Taylor polynomial estimator of
[17], we employ a different estimator Xi for estimating individual coordinates |xi| and use
it as Xp

i to estimate |xi|p. This estimator is based on (a) using random qth roots of unity
for sketches instead of standard Rademacher variables, and (b) taking the average of the
estimates from those tables where the item does not collide with the set of top-k estimated
heavy hitters.

The Shelf Structure. The algorithm uses two structures, namely, a ghss-like structure
from [17] and a new shelf structure , which is our main algorithmic novelty (both formally
defined later). The shelf structure is necessary when the failure probability is δ = n−ω(1);
otherwise, for δ = n−Θ(1), somewhat surprisingly the ghss structure of [17] alone suffices with
parameter C = n1−2/p(ε−2 log(1/δ)/ log(n)+ε−4/p log2/p(1/δ)) and number of measurements
O(C logn), which requires an intricate d-th moment analysis of the ghss structure.

The shelf structure is partitioned into shelves, indexed from j = 0, . . . , J , for a value J
which is specified below. Each shelf consists of a pair of CountSketch like structures, HHj
and AvgEstj . The number of buckets in the tables of the jth shelf is Hj and the number of
tables in the jth shelf of the HHj structure is wj and of the AvgEstj structure is 2wj . We
set HJ = Θ(n1−2/pε−2) and wJ = Θ(log(1/δ)), while H0 = Θ(n1−2/pε−4/p log2/p(1/δ)) and
w0 = s = Θ(logn).

ICALP 2018



58:4 High Probability Frequency Moment Sketches

The input vector x is provided as input to all the shelves’ structures. The table height
Hj = H0b

j decays geometrically with parameter 0 < b < 1 and the table width wj = w0a
j

increases geometrically with parameter a > 1. Note that the parameters a and b determine
J . By requiring that |1 − ab| = Ω(1), we ensure that the total number of measurements
of the shelf structure is

∑J
j=0Hjwj = O(H0w0 + HJwJ), no matter which value of J we

choose. For the shelf structure, frequency-wise thresholds are defined as Uj = O(F̂2/Hj)1/2,
for j = 0, 1, . . . , J . The shelf frequency group corresponding to shelf j is Sj = [Uj , Uj+1),
where, UJ+1 = ∞ and U0 = T0. We sometimes conflate Sj with the set of items whose
frequency belongs to Sj . The frequency group G0 is defined as [T0, U1] and coincides with
S0. See Figure 1.

So why a shelf structure? Suppose for simplicity that ε is a constant. Consider a vector
x which has a constant number of “large” coordinates of value Θ(n1/p), and Θ(n) remaining
“small” coordinates of absolute value O(1). Then we need to find all the large coordinates
to accurately estimate Fp up to a small constant factor. This is well-known to be possible
with Θ(n1−2/p) buckets in the J-th shelf, since with probability 1 − δ, each of the large
coordinates will not collide with any other large coordinate in more than a small constant
fraction of tables. Note that in each table, in each bucket containing a large coordinate, the
“noise” in the bucket from small coordinates will be Cn1/p for an arbitrarily small constant
C > 0 with constant probability, and so this will happen in most buckets containing a large
coordinate in most tables with probability 1− δ.

However, now consider a vector x which has Θ(log(1/δ)) “large-ish” coordinates of value
Θ(n1/p/ log1/p(1/δ)), and Θ(n) remaining “small” coordinates of absolute value O(1), as
before. Then we again need to find most of the “large-ish” coordinates to accurately estimate
Fp up to a constant factor. We also cannot subsample and try to estimate how many large-ish
coordinates there are from a subsample. Indeed, since there are only O(log(1/δ)) total
large-ish coordinates, sub-sampling would not accurately estimate this total with probability
at least 1− δ. However, to find these “large-ish” coordinates, we need to increase the number
of buckets from Θ(n1−2/p) to Θ(n1−2/p · log2/p(1/δ)) just so that in a bucket containing one
of these coordinates, with constant probability the noise will not be too large. But if we then
want this to happen for a 1 − δ fraction of tables, we still need Θ(log(1/δ)) tables, which
gives overall Θ(n1−2/p · log1+2/p(1/δ)) measurements, which is above our desired total of
O(n1−2/p(log(1/δ) + log(n) log2/p(1/δ))) measurements.

So what went wrong? The key idea in our analysis is to relax the requirement of trying
to recover all the larg-ish coordinates with probability 1− δ. Suppose instead of Θ(log(1/δ))
tables we just use Θ(logn) tables. Then with probability 1− 1/n, there may be two large-ish
coordinates which collide and cancel with each other in every single table, and we have no
way of recovering them. However, we are able to show that with probability 1 − δ, only
O(log(1/δ)/ logn) large-ish coordinates will fall into this category, and neglecting this roughly
(1− 1/ logn) fraction of the large-ish coordinates will not affect our estimate of Fp by more
than a constant factor. And indeed, our 0-th shelf has exactly Θ(n1−2/p · log2/p(1/δ)) buckets
and Θ(logn) tables, so is exactly suited for finding these large-ish coordinates. In general,
we can show that one of our shelves will be able to handle every vector with coordinates
of magnitude between the large and large-ish coordinates. Again, by choosing the shelf
structure carefully, the total number of measurements is dominated by that in the zero-th
plus the J-th shelf, giving us O(n1−2/p(log(1/δ) + log(n) log2/p(1/δ))) total measurements,
and explaining where the log2/p(1/δ) in the upper bound comes from.
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The Non-Large-ish Coordinates. Our shelves are designed to estimate the contribution to
Fp from all coordinates of absolute value at least Θ(n1/p/ log1/p(1/δ)). For coordinates of
smaller value, we can now afford to sub-sample and apply the same 0-th shelf structure to
estimate their contribution to Fp. We apply the ghss structure, which is analogous to the
structure presented in [17] and has L+ 1 levels corresponding to l = 0, . . . , L, and consists
of a pair of CountSketch like structures HHl and AvgEstl at each level. The sub-sampling
technique and the associated frequency-wise thresholds and frequency groups are defined
analogously (with new parameters) to [17].

A notable difference with [17] is that the AvgEst structures in the ghss and shelf structures
use complex qth roots of unity and return the average of table estimates instead of the median
of table estimates used by CountSketch, which are novelties in this context, though have been
used for other data stream problems [23]. We have that E [Xp

i ] = |xi|p(1± n−Ω(1)) for our
estimator Xi of |xi|, and thus Xp

i provides a nearly unbiased estimator of |xi|p. Additionally,
we use averaging in the definition of Xi instead of the median to allow for a tractable, though
intricate calculation of the d-th moment of the sum of the p-th powers of Xi.

1.1.2 Overview of Lower Bounds
We give an overview for the case of constant ε. In both cases we start by applying Yao’s
minimax principle for which we fix S and then design a pair of distributions α and β which
must be distinguished by an (ε, δ)-approximation algorithm for Fp. We can also assume
the rows of S are orthonormal, since a change of basis to the row space of S can always be
applied in post-processing.

Our Ω(n1−2/pε−2/p(log2/p 1/δ) logn) bound. This is our technically more involved
lower bound. We first upper bound the variation distance using the χ2-divergence as in [4]
and work only with the latter. We let α = N(0, In) be an n-dimensional isotropic Gaussian
distribution, while β is a distribution formed by sampling an x ∼ N(0, In), together with
a random subset T ⊂ [n] of size O(log(1/δ)), and outputting z = x+

∑
i∈T (Cn1/p/t1/p)ei,

where ei is the i-th standard unit vector and C > 0 is a constant. For y ∼ α and z ∼ β, one
can show that with probability 1−O(δ), one has that ‖z‖pp is a constant factor larger than
‖y‖pp, since ‖y‖pp and ‖x‖pp are concentrated at Θ(n), while

∑
i∈T C

pn/t = Θ(n).
A common technique in upper bounds, including our own, is the notion of subsampling,

whereby a random fraction of roughly 1/2i of the n coordinates are sampled, for each value
of i ∈ O(logn), and information is then gathered for each i and combined into an overall
estimate of Fp. We choose our hard distributions so that subsampling does not help. Indeed,
if one subsamples half of the coordinates of z ∼ β, with probability Ω(δ) all of the coordinates
in T will be removed, at which point z is indistinguishable from y ∼ α. Therefore, our pair
of distributions suggests itself as being hard for (Θ(1), δ)-approximate Fp algorithms.

What drives our analysis is conditioning our distributions on an event G which only
happens with probability Ω(δ). Note that for any algorithm which can distinguish samples
from α from those from β with probability at least 1− δ, it must still have probability 9/10,
say, of distinguishing the distributions given an event G which occurs for samples drawn
from β. The event G corresponds to every i ∈ T having the property that the corresponding
column Si of our sketching matrix S has squared length at most 2r/n, where r is the number
of rows of S. By a Markov bound, half of the columns of S have this property, and since T
has size O(log 1/δ), with probability Ω(δ), event G occurs.

We analyze the χ2-divergence of the distributions α and β conditioned on G. One
technique helpful for this is an equality that we show in the full version, which states that for
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58:6 High Probability Frequency Moment Sketches

p a distribution on Rn, that χ2(N(0, In) ∗ p,N(0, In)) = E[e〈X,X′〉]− 1, where X and X ′ are
independently drawn from p. This equality was used in [4, 29, 35] among other places. In our
case, the inner product of X and X ′ corresponds to an inner product P of two independent
random sums of t columns of S, restricted to only those columns with squared length at
most 2r/n. Let the t columns forming X be denoted by T and the t columns forming X ′ be
denoted by U .

Critical to our analysis is bounding E[P j ] for large powers of j, as shown in the lemma
the full version. One can think of indexing the rows of STS by T and the columns of STS
by U , where STS is an n × n matrix. Let M denote the resulting submatrix. The inner
product of interest is then eTTMeU , where eT =

∑
i∈T ei and eU =

∑
i∈U ei.

Our bound, given in the above-referred to lemma in the full version, is very sensitive
to minor changes. Indeed, if instead of showing E[P j ] ≤

(
t2

r1/2

)
·
( 16r
n

)j , we had shown

E[P j ] ≤
(

t2

r1/2

)
·
( 16rt

n

)j or E[P j ] ≤
(

t2

r1/2

)
·
(

16r logn
n

)j
, our resulting bound for the χ2-

divergence would be larger than 1. For instance, a natural approach is to instead consider
eT =

∑
i∈T σiei and eU =

∑
i∈U σiei where the σi are independent random signs (i.e.,

Pr[σi = 1] = Pr[σi = −1] = 1/2), which would correspond to redefining the distribution
β above to sample z = x +

∑
i∈T (Cn1/p/t1/p)σiei. Without further conditioning the σi

variables, the χ2-divergence can be as large as nΘ(log(1/δ)). This is because with probability
roughly 2−2t, over the choice of the σi, one has

∑
i∈T σiei and

∑
i∈U σiei both being very well

aligned with the top singular vector of M (if say, S were a random matrix with orthonormal
rows), at which point our desired inner product is too large. Instead, by setting all σi = 1,
that is, by considering eT =

∑
i∈T ei and eU =

∑
i∈U ei as we do, we rule out this possibility.

We prove our lemma by expanding E[P j ] into a sum of products, each having the form∏j
w=1 |〈Saw , Sbw〉| where the Saw , Sbw are columns of S. One thing that matters in such

products is the multiplicities of duplicate columns that appear in a product. We split
the summation by what we call y-patterns. We can think of a y-pattern as a partition
of {1, 2, . . . , j} into y non-empty pieces. We can also define a z-pattern as a partition of
{1, 2, . . . , j} into z non-empty pieces. We analyze the expectation for a particular pair
P,Q, where P is a y-pattern and Q is a z-pattern for some y, z ∈ {1, 2, . . . , j}, that is, we
only sum over pairs of j-tuples a1, . . . , aj and b1, . . . , bj for which for each non-empty piece
{d1, . . . , d`} in P , where di ∈ {1, 2, . . . , j} for all i and ` ≤ j, we have ad1 = ad2 = · · · = ad` .
Similarly for each {e1, . . . , em} in Q, where ei ∈ {1, 2, . . . , j} for all i and m ≤ j, we have
be1 = be2 = · · · = bem . We also require if d, d′ ∈ {1, 2, . . . , j} are in different pieces of P , then
ad 6= ad′ . Similarly, if e, e′ ∈ {1, 2, . . . , j} are in different pieces of Q, then be 6= be′ . Thus,
each pair of j-tuples is valid for exactly one pair P,Q of patterns.

The valid pairs of j-tuples for P and Q define a bipartite multi-graph as follows. In the
left partition we create a node for each non-empty piece of P , and in the right partition
we create a node for each non-empty piece of Q. We include an edge from a node a in the
left to a node b in the right if i ∈ a and i ∈ b for some i ∈ {1, 2, . . . , j}. If there is more
than one such i, we include an edge with multiplicity corresponding to the number of such i.
This bipartite graph only depends on P and Q. We consider a maximum matching in this
multi-graph, and we upper bound the contribution of valid pairs for P and Q based on that
matching. By summing over all pairs P,Q, we obtain our bound on E[P j ].

Our Ω(n1−2/pε−2 log(1/δ)) bound. This bound uses the same distributions α and β as
in [30], where an Ω(n1−2/pε−2) bound was shown, but we strengthen it to hold for general δ.
To do so, we use an exact characterization of the variation distance between multi-variate
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Gaussians with shifted mean by relating it to the univariate case (given in the full version),
and a strong concentration of bounded Lipshitz functions with respect to the Euclidean
norm (given in the full version). These enable us to show with probability 1−O(δ), vectors
sampled from α and β have łp-norm differing by a 1 + ε factor. By the definition of α and β,
we can then reduce the problem to distinguishing an isotropic Gaussian from an isotropic
Gaussian plus a small multiple of a fixed column of S, which typically has small norm since
S has orthonormal rows. We then apply a bound as derived above (see full version).

Our Ω(ε−2 log(1/δ)) bound for 1 ≤ p < 2. This lower bound uses similar techniques to
our lower bound of Ω(n1−2/pε−2 log(1/δ)), but considers distinguishing an isotropic Gaussian
N(0, In) from an N(0, (1+ε)In) random variable. Here we set n = Θ(ε−2 log(1/δ)), and show
the p-norms of samples from the two distributions differ by a (1 + ε)-factor with probability
1 − δ. Using that S has orthonormal rows, the images of the two distributions under our
sketching matrix S correspond to N(0, Ir) and N(0, (1 + ε)Ir), where r is the number of rows
of S. The result then follows by using the product structure of Hellinger distance.

2 Our Lower Bounds

We first describe our lower bounds in a little more detail. Due to space constraints,
we present a highly abridged version without proofs here (see full version). We defer
both our Ω(n1−2/pε−2 log(1/δ)) lower bound for p > 2 and our Ω(ε−2 log(1/δ)) lower
bound for 1 ≤ p < 2 entirely to the full version. Here we focus on our lower bound
of Ω(n1−2/pε−2/p(log2/p(1/δ)) logn) for p > 2. See also Section 1 for an overview of all of
our lower bounds.

We assume δ-Bound4, which is that log(1/δ) ≤ (n1−2/pε−2/p(log2/p 1/δ) logn)1/4n−c
′ ,

for a sufficiently small constant c′ > 0. Since p > 2 is an absolute constant, independent of
n, this just states that δ ≥ 2−nc

′′

for a sufficiently small constant c′′ > 0. There are other
bounds - δ-Bound1, δ-Bound2, and δ-Bound3 - see the full version, but these are not
assumptions but rather implied by relations between the various parameters (e.g., otherwise
the Ω(n1−2/pε−2 log(1/δ)) lower bound is stronger).

Let p and q be probability density functions of continuous distributions. The χ2-divergence
from p to q is χ2(p, q) =

∫
x

(
p(x)
q(x) − 1

)2
q(x)dx.

I Fact 1. ([33], p.90) For any two distributions p and q, we have DTV (p, q) ≤
√
χ2(p, q).

We need a fact about the distance between a Gaussian location mixture to a Gaussian
distribution.

I Fact 2. (p.97 of [21]) Let p be a distribution on Rn. Then χ2(N(0, In) ∗ p,N(0, In)) =
E[e〈X,X′〉]− 1, where X and X ′ are independently drawn from p.

Let T be a sample of t def= log3(1/
√
δ) coordinates i ∈ [n] without replacement.

Case 1: Suppose y ∼ N(0, In), and let α′ be the distribution of y.
Case 2: Let z = x+

∑
i∈T

C′ε1/pEn−t
t1/p

ei, where x ∼ N(0, In) and En−t = Ex∼N(0,In−t)[‖x‖p].
Note that x and T are independent. Also, C ′ > 0 is a sufficiently large constant. Let β′
be the distribution of z.

In the full version we show that for the sketching algorithm to be correct, DTV (ᾱ′, β̄′) ≥
1− 2δ, where ᾱ′ is the distribution of S · y for y ∼ α′ and β̄′ is the distribution of S · z for
z ∼ β′.

ICALP 2018
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Fix an r×n matrix S with orthonormal rows. Important to our proof will be the existence
of a subset W of n/2 of the columns for which ‖Si‖2 ≤ 2r/n for all i ∈W . To see that W
exists, consider a uniformly random column Si for i ∈ [n]. Then E[‖Si‖2] = r/n and so by
Markov’s inequality, at least a 1/2-fraction of columns Si satisfy ‖Si‖2 ≤ 2r/n. We fix W to
be an arbitrary subset of n/2 of these columns.

Suppose we sample t columns of S without replacement, indexed by T ⊂ [n]. Let G be
the event that the set T of sampled columns belongs to the set W .

I Lemma 3. Pr[G] ≥
√
δ.

Let αG = ᾱ′ | G and βG = β̄′ | G. By the triangle inequality, 1 − 2δ ≤ DTV (ᾱ′, β̄′) ≤
Pr[G]DTV (αg, βG) + 1− Pr[G] ≤

√
δ

2 DTV (αG, βG) + 1−
√
δ

2 , which implies that 1− 4
√
δ ≤

DTV (αG, βG). We can assume δ is less than a sufficiently small positive constant, and
so it suffices to show for sketching dimension r = o(n1−2/pε−2/p(log2/p 1/δ) logn), that
DTV (αG, βG) ≤ 1/2. By Fact 1, it suffices to show χ2(αG, βG) ≤ 1/4.

Since S has orthonormal rows, ᾱ′ is distributed as N(0, Ir). Note that, by definition of α,
we in fact have ᾱ′ = αG since conditioning on G does not affect this distribution. On the
other hand, βG is a Gaussian location mixture, that is, it has the form N(0, Ir)∗p, where p is
the distribution of a random variable chosen by sampling a set T subject to event G occurring
and outputting

∑
i∈T

C′ε1/pEn−tSi
t1/p

. We can thus apply Fact 2 and it suffices to show for

r = o(n1−2/pε−2/p(log2/p 1/δ) logn) that E[e
(C′)2ε2/pE2

n−t
t2/p

〈
∑

i∈T
Si,
∑

j∈U
Sj〉]− 1 ≤ 1

4 , where
the expectation is over independent samples T and U conditioned on G. Note that under
this conditioning T and U are uniformly random subsets of W .

To bound the χ2-divergence, we define variables xT,U , where xT,U = (C′)2ε2/pE2
n−t

t2/p
〈
∑

i∈T Si,∑
j∈U Sj〉. Consider the following, where the expectation is over independent samples T and

U conditioned on G:

E
[

exp
{

(C′)2ε2/pE2
n−t

t2/p
〈
∑
i∈T

Si,
∑
j∈U

Sj〉
}]

= E
[
exT,U

]
=
∑

0≤j<∞

E
[
xjT,U
j!

]

= 1 +
∑
j≥1

(C′)2jε2j/pE2j
n−t

t2j/pj!
E

[
〈
∑
i∈T

Si,
∑
j∈U

Sj〉j
]

= 1 +
∑
j≥1

O(1)2jε2j/pn2j/p

t2j/pj!
E

[
〈
∑
i∈T

Si,
∑
j∈U

Sj〉j
]
.

The final equality uses that En−t = Θ(n1/p) and here O(1)2j denotes an absolute constant
raised to the 2j-th power. We can think of T as indexing a subset of rows of STS and U
indexing a subset of columns. Let M denote the resulting t × t submatrix of STS. Then
〈
∑
i∈T Si,

∑
j∈U Sj〉 =

∑
i,j∈[t]Mi,j ≤

∑
i,j∈[t] |Mi,j |

def= P , and we seek to understand the
value of E[P j ] for integers j ≥ 1.

The following lemma is the key to the argument; its proof is described in Section 1. The
proof is based on defining y-patterns and looking at matchings in an associated bipartite
multi-graph.

I Lemma 4. For integers j ≥ 1, E[P j ] ≤
(

t2

r1/2

)
·
( 16r
n

)j
.

Given the previous lemma, by δ-Bound4, we have t2

r1/2 = 1
nΩ(1) , and therefore Lemma 4 estab-

lishes that E[P j ] ≤ 1
nΩ(1) ·

( 16r
n

)j
.We thus have, E

[
exp
{

(C′)2ε2/pE2
n−t

t2/p
〈
∑

i∈T Si,
∑

j∈U Sj〉
}]

=
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E[exT,U ] = 1+ 1
nΩ(1) ·

∑
j≥1

O(1)2jε2j/pn2j/p

j!t2j/p ·
(
r
n

)j = 1+ 1
nΩ(1) ·

∑
j≥1

(c logn)j
j! ≤ 1+ 1

nΩ(1) ·ec(logn) ≤
1 + 1

4 , since c > 0 is an arbitrarily small constant independent of the constant in the nΩ(1).
The proof is complete.

For 1 ≤ p < 2, we now show that the sketching dimension is Ω(ε−2 log(1/δ)), which as
discussed in Section 1, matches known upper bounds up to a constant factor.

I Theorem 5. The sketching dimension for (ε, δ)-approximating Fp for 1 ≤ p < 2 is
Ω(ε−2 log(1/δ)).

3 Algorithm

As outlined earlier, the algorithm uses two level-based structures, namely, ghss, which is
similar to the ghss structure presented in [17], and the shelf structure. The shelf structure
is needed only when δ = n−ω(1), otherwise, the ghss structure suffices. The ghss has
L+ 1 levels, corresponding to l = 0, 1, . . . , L, and the shelf structure has J shelves numbered
0, 1, . . . , J . In particular, shelf 0 is identical to ghss level 0.

3.1 Estimating Fp
ghss structure. Corresponding to each ghss level l ∈ {0, 1, . . . , L − 1}, a pair of Count-
Sketch like structures named HHl = HH(Cl, s) (denoting that the number of buckets per
table is 16Cl and number of independent repetitions is s) and AvgEstl = AvgEst(Cl, 2s)
are kept. Here, s = Θ(logn), recall C = n1−2/p(ε−2 log(1/δ)/ log(n) + ε−4/p log2/p(1/δ)),
C = C0 = Θ(p2n1−2/pε−4/p log2/p(1/δ)) and Cl = C0α

l, for l = 0, 1, 2, . . . , L − 1, where,
α = 1− (1− 2/p)ν and ν is a constant. The number of levels is L = dlog2α(n/C)e. The final
level L of the ghss structure uses an `2/`1 deterministic sparse-recovery algorithm [9, 13]. We
will show that the number of items that are subsampled into level L is O(CL) with probability
1 − O(δ) and therefore from [9, 13], by using O(CL log(n/CL)) measurements, these item
frequencies are recovered deterministically. Following [17], the ghss structure subsamples
the stream hierarchically using independent random hash functions g1, . . . , gL : [n]→ {0, 1}.
All items are mapped to level 0; an item is mapped to each of levels 1 through l iff
g1(i) = . . . = gl(i) = 1, where, the gl’s are O(log(1/δ) + logn)-wise independent.

HH and AvgEst structures. The HH(Cl, s) is a CountSketch structure [11]. The
AvgEst(Cl, 2s) structure is similar, except that instead of Rademacher sketches, it uses
random qth roots of unity sketches, where, q = O(log(1/δ) + logn). At level l and for table
indexed r ∈ [2s], the corresponding hash function is hlr : [n] → [16Cl], and the sketch for
bucket index b is given by Tlr[b] =

∑
hlr(i)=b xiωlr(i), where, {ωlr(i)}i∈[n] is a random family

of qth roots of unity that is O(log(1/δ) + logn)-wise independent. The hash functions across
the tables and distinct levels, and the seeds of the family of the random roots of unity, are
independent.

Shelf structure. The shelves, indexed from j = 0, . . . , J , each also consist of an analogous
pair of structures, namely, HH(Hj , wj) and AvgEst(Hj , 2wj), where, O(Hj) is the number of
buckets per hash table in these structures, and there are O(wj) independent repetitions per
structure. The AvgEst structures of the shelves also use sketches using qth roots of unity,
instead of Rademacher sketches. In particular, H0 = C0 and w0 = s, ensuring that shelf 0
coincides with level 0 of ghss. Further, HJ = Θ(n1−2/pε−2) and wJ = O(log(1/δ)). There
are two cases, namely, (1) HJ = Ω(H0), or, (2) HJ = o(H0). In the first case, J = 1 and
there are only two shelves, considerably simplifying the analysis. The other case HJ = o(H0)
is more interesting. Here, we let Hj = H0b

j , for a parameter b < 1 and b = Ω(1). The table
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widths increase geometrically as wj = w0a
j , for a parameter a > 1. The total measurements

used by the shelf structure is
∑J
j=0Hjwj = H0w0

∑J
j=0(ab)j = O(max(H0w0, HJwJ)),

provided, |1− ab| = Ω(1), or, |ln(ab)| = Ω(1). The entire stream S is provided as input to
each of the shelves j = 0, 1, . . . , J .
Frequency groups, thresholds, estimates and samples. Let B = Θ(C) and ε̄ = (B/C)1/2 =
Θ(1/p). Let F̂2 be an estimate for F2 = ‖x‖22 satisfying F2 ≤ F̂2 ≤ (1 + O(1/p))F2 with
probability 1−O(δ). Define frequency thresholds for ghss levels as follows: T0 = (F̂2/B)1/2,
Tl = (2α)−l/2 T0 and Ql = Tl(1 − ε̄), for l ∈ [L − 1]. Let QL, TL = 0+ (i.e., a ≥ TL iff
a > 0). For shelf j = 0, . . . , J , let Ej = ε̄2Hj . For shelf j, define the frequency threshold
Uj = (F̂2/Ej)1/2 and let UJ+1 =∞. For ghss level indices l = 0, . . . , L−1, let x̂il denote the
estimate for xi obtained using HHl, and (overloading notation), for shelf indices, j = 0, . . . , J ,
let x̂ij denote the estimate for xi obtained from the HH structure of shelf j. x̂iL denotes the
estimate returned from the `2/`1 sparse recovery structure at level L.
Discovering Items. We say that i is discovered at shelf j ∈ [J ], provided, (1− ε̄)Uj ≤ |x̂ij | ≤
(1 + ε̄)Uj+1 and j ∈ [J ] is the highest numbered shelf with this property. We say that i is
discovered at ghss level l ∈ {0, . . . , L}, if i is not discovered at any shelf indexed j ∈ [J ], and
l is the smallest level such that Tl(1− ε̄) < x̂il ≤ Tl−1(1+ ε̄). If i is discovered at shelf j, then,
i is included in the shelf sample S̄j . If i is discovered at level l ∈ [0, 1, . . . , L] and |x̂il| ≥ Tl,
then, i is included in the level sample Ḡl. If i is discovered at level l and Tl(1− ε̄) < |x̂il| < Tl
then, i is placed in Ḡl+1 iff the random toss of an unbiased coin Ki lands heads; and upon
tails, it is not placed in any sample group. The ghss level sampling scheme is similar to [17].
The averaged estimator and nocollision. For each item i included in a group sample Ḡl or
shelf sample S̄j , an estimate Xi for |xi| is obtained using the corresponding AvgEst structure
of that level or shelf, provided the event nocollision(i) succeeds. If i is sampled into Ḡl, then
nocollision(i) holds if there is a set Rl(i) ⊂ [2s] of table indices of the AvgEstl structure such
that for each r ∈ Rl(i), i does not collide under the hash function hlr with any of the items that
are the top-Cl absolute estimated frequencies using HHl. An analogous definition holds if i is
included in the jth shelf sample. Assuming nocollision(i) holds, the estimate Xi is defined
as the average of the estimates obtained from the tables whose indices are in the set Rl(i) ( resp.
Rj(i) if i was discovered in shelf j), that is, Xi = (1/|R(i)|)

∑
r∈R(i) Tr[hr(i)] ·ωr(i) · sgn(x̂i).

Further, we check whether (1− ε̄)Tl ≤ Xi ≤ (1 + ε̄)Tl−1 (resp. (1− ε̄)Uj ≤ Xi ≤ (1 + ε̄)Uj+1,
if i is in shelf j sample), otherwise, i is dropped from the sample.
Estimating Fp. The estimate for the pth frequency moment, F̂p, is the sum of the contri-
bution from the shelf samples S̄j , j ∈ [J ], and the contribution from the sample groups
Ḡl, l = 0, . . . , L. For an item i ∈ Ḡl, let ld(i) be the level at which an item i is dis-
covered. Let F̂ shelf

p =
∑J
j=1

∑{
Xp
i | i ∈ S̄j , (1− ε̄)Uj ≤ |Xj | ≤ (1 + ε̄)Uj+1

}
, and F̂ ghss

p =∑L
l=0 2L

∑{
Xp
i | i ∈ Ḡl, ld(i) < L, (1− ε̄)Tld ≤ Xi < (1 + ε̄)Tld−1

}
+ 2L

∑
ld(i)=L|x̂i|p. The

final estimate is F̂p = F̂ shelf
p + F̂ ghss

p .

3.2 Analysis
Notation. Let F res

2 (k) be the sum of the squares of all coordinates except the top-k absolute
coordinates. For a ghss level l ∈ [L], F res

2 (l, k) is the random k-residual second moment
of the frequency vector in the sampled substream Sl. Let (1) goodf2 ≡ F2 ≤ F̂2 ≤ (1 +
0.001/(2p))F2, (2) smallresl ≡ F res

2 (2Cl, l) ≤ 1.5F res
2
(
d(2α)lCe

)
/2l−1, l = 0, 1, . . . , L,

(3) smallres ≡ ∀l ∈ {0, 1, . . . , L} smallresl, (4) goodlastlevel ≡ (f̂iL = fi) and ∀i 6∈
SL, (f̂iL = 0). We condition the analysis on the “good event” G ≡ goodf2 ∧ smallres ∧
goodlastlevel, that we show holds with probability 1−min(O(δ), n−Ω(1)).
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I Lemma 6. G holds with probability 1−min(O(δ), n−Ω(1)).

The range of item frequencies is subdivided into frequency groups , so that each item
belongs to exactly one shelf frequency group or to exactly one ghss frequency group. The
frequency group corresponding to the shelf j is [Uj , Uj+1), for j = 1, . . . , J , where, UJ+1 =∞
and U0 = T0. The frequency group corresponding to level l of ghss is [Tl, Tl−1), where,
TL = 0 and T−1 = U1. Let Sj (resp. Gl) denote the set of items whose frequency belongs
to the frequency group corresponding to shelf j (resp. group l). A few other events are
used in the analysis. If i ∈ Gl, then, Pr [nocollision(i)] ≥ 1− exp {−Θ(logn)} as shown
in [17] (Lemma 30). If i ∈ Sj , Pr [nocollision(i)] ≥ 1− exp {−Θ(wj)}. We condition on
the following events.

(5) goodest(i) ≡ ∀l ∈ [0, . . . , L], i ∈ Sl ⇒ |x̂il − xi| ≤
(
F res

2 (2Cl, l) /Cl
)1/2

(6) accuest(i) ≡ ∀l ∈ [0, . . . , L], i ∈ Sl ⇒ |x̂il − xi| ≤
(
F res

2
(
(2α)lC

)
/(2(2α)lC)

)1/2
.

As shown in [17], (a) goodest(i) and accuest(i) each hold with probability 1−n−Ω(1), and,
(b) goodest(i) ∧ smallres imply the event accuest(i). For an item i that is discovered
at some shelf j, goodest(i) is the same as accuest(i) and is defined as |x̂ij − xi| ≤(
F res

2 (Uj) /Uj
)1/2 and holds with probability 1− exp {−Θ(wj)}.

Lemma 7 extends the approximate 2-wise independence property of the sampling scheme of
[17] to an approximate d-wise independence property.

I Lemma 7. Let I = {i1, . . . , id} ⊂ [n] and 1 ≤ h ≤ d. Let accuest({i1, . . . , ih}) ≡∧h
k=1 accuest(ik). Then, assuming d-wise independence of the hash functions,∑
lj=0,1,...,L,
∀j=1,2,...,h

2l1+l2+...+lhPr
{∧h

j=1 ij ∈ Ḡlj
∣∣∧d

j=h+1 ij ∈ Slj ,G,accuest({i1, . . . , ih})
}
∈∏h

j=1
(
1± 2level(ij)+1n−c

)
.

Lemma 8 bounds |Xi −E [Xi]| using the 2dth moment method.

I Lemma 8. Suppose d ≤ O(logn) and even and let s ≥ 300 log(n). Then we have that

Pr
{
|Xi − |xi|| >

(
dF res

2 (2C)
(s/9)C

)1/2
| nocollision,goodest

}
< 2−2d+1 .

I Lemma 9 ([22]).
∣∣E [Xp

i ]− |xi|p | G,goodest,nocollision
∣∣ ≤ |xi|pn−Ω(1).

For i ∈ [n], let xli be an indicator variable that is 1 iff i ∈ Sl. Let Xi denote |x̂i| when
ld(i) = L and otherwise, let its meaning be unchanged. Let zil be an indicator variable that
is 1 if i ∈ Ḡl and 0 otherwise. Define F̂p =

∑
i∈[n] Yi. where, Yi =

∑L
l′=0 2l′zil′Xp

i . Let
H = G ∩ nocollision ∩ goodest and G′ = lmargin(G0) ∪Ll=1 Gl.

I Lemma 10. Let B ≥ O(n1−2/pε−4/p log2/p(1/δ))). For integral 0 ≤ d1, d2 ≤ dlog(1/δ)e,

we have, E
[(∑

i∈G′(Yi −E [Yi | H])
)d1 (∑

i∈G′(Yi −E
[
Yi | H

]
)
)d2 ∣∣H] ≤ ( εFp20

)d1+d2
.

3.3 Analysis for the case δ ≥ n−O(1)

For the case δ = n−O(1), the shelf structure is not needed. Redefine the group G0 to
correspond to the frequency range [T0,∞]. The lemmas in this section assume that the
family {ωlr(i)}i∈[n] are O(log(1/δ) + log(n))-wise independent, and independent across l, r
and all hash functions are also O(log(1/δ) + log(n))-wise independent.
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I Lemma 11. Let 1 ≤ e, g ≤ dlog(1/δ)e, l ∈ mid(G0) and |xl| ≥
(F res

2 (C)
C

)1/2. Then,

E
[
(Yl −E [Yl | H])e

(
Yl −E

[
Yl | H

])
| H
]
is real and is at most

(
a|xl|2p−2F res

2 (C)
ρC

)(e+g)/2
for

some constant a. Further,
∣∣E [(Yl −E [Yl | H])e] | H

∣∣ ≤ |xl|pen−Ω(e) .

The calculation of the dth central moment for the contribution to F̂p from the items
in mid(G0) requires an upper bound on the following combinatorial sums. Q(S1, S2) =∑min(S1,S2)
q=1

∑
e1+...+eq=S1

e′js≥1

∑
g1+...+gq=S2

g′js≥1

(
S1

e1,...,eq

)(
S2

g1,...,gq

)
, and

R(S) =
∑bS/2c
q=1

∑
h1+...+hq=S,h′js≥2

(
S

h1,...,hq

)∑
{i1,...,iq}

∏
r∈[q]|xir |(p−1)hr

∏
r∈[q] h

hr/2
r .

I Lemma 12. Q(S1, S2) ≤ R(S1 + S2) ≤ (16e(S1 + S2)F2p−2)(S1+S2)/2.

I Lemma 13. Let C ≥ O(n1−2/p/ log(n))ε−2 log(1/δ)). Then, for 0 ≤ d1, d2 ≤ log(1/δ),

E
[(∑

i∈mid(G0)(Yi −E [Yi | H])
)d1(∑

i∈mid(G0)(Yi −E
[
Yi | H

]
)
)d2 | H

]
≤
(
εFp
10

)d1+d2
.

I Lemma 14. Let C ≥ Kn1−2/pε−2 log(1/δ)/ log(n) + Ln1−2/pε−4/p log2/p(1/δ), where,
K,L are constants. Then, for d = dlog(1/δ)e, E

[(∑
i∈S(Yi − E [Yi | H])

)d(∑
i∈S(Yi −

E
[
Yi | H

]
)
)d | H] ≤ ( εFp5

)2d
. It follows that Pr

[∣∣F̂p − Fp∣∣ ≥ (ε/2)Fp
]
≤ δ.

Since, H holds with probability 1 − 1/n−c, for any constant c by choosing s = Θ(logn)
appropriately, we have the following theorem.

I Theorem 15. For each 0 < ε < 1 and 7/8 ≥ δ ≥ n−c, for any constant c, there is a sketch-
ing algorithm that (ε, δ)-approximates Fp with sketching dimension O

(
n1−2/p(ε−2 log(1/δ) +

ε−4/p log2/p(1/δ) logn
))

and update time (per stream update) O((logn) log(1/δ))).

3.4 Analysis for the case δ = n−ω(1)

We now extend the analysis for failure probability δ smaller than n−Θ(1) and up to δ = 2−nΩ(1) .
For the ghss structure, nocollision and goodest may hold only with probability 1−n−Θ(1).
We first show that the number of items that fail to satisfy nocollision or goodest is
at most O(log(1/δ)/ logn) with probability 1 − O(δ). The following lemmas assume the
parameter sizes for B,C,Cl, HJ and Hj as described earlier.

I Lemma 16. With probability 1 − O(δ), the number of elements for which goodest or
nocollision fails is at most O(log(1/δ))/(logn).

Thus, it is possible that legitimate items are not discovered, or are dropped due to collisions,
or mistakenly classified and their contribution added to samples. Let Errorghss denote the
total contribution of such items to F̂ ghss

p and let Errorshelf denote the error arising in the
estimate of F̂ shelf

p due to analogous errors. As described earlier, we mainly emphasize the
more interesting and complicated case when HJ = o(H0) (otherwise, J = 1).

I Lemma 17. Errorghss ≤ O(ε2Fp/ logn) and Errorshelf ≤ O(max(ε2Fp/(logn), O(εpFp))),
each with probability 1− δ/nΩ(1).

We first prove a refinement of Lemma 11.

I Lemma 18. [Refinement of Lemma 11.] Let 1 ≤ e, g ≤ dlog(1/δ)e, l ∈ Sj and
log(1/δ) = ω(logn). Assume that accuest(l) holds and Hj ≥ Ω(p2EJ) and |xl| ≥

(F2/Ej)1/2. Then, E
[((

1 + Zl
|xl|

)p
− 1
)e ((

1 + Zl
|xl|

)p
− 1
)g
| H
]
is real and bounded above

by ch|xl|−h
(
F2
Hj

)h/2(min
(
h
wj
, 1
))h/2, where, h = e+ g and c is an absolute constant.
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Lemma 19 considers the 2dth central moment of the contribution to F̂ shelf
p from all but

the outermost shelf, and from the set of outermost shelf items denoted SJ , separately. Let
S′ = S1 ∪ . . . ∪ SJ−1.

I Lemma 19. Let 0 ≤ d1, d2 ≤ dlog(1/δ)e and integral and c1, c2 be constants. Then,
E
[(∑

i∈S′(Yi−E [Yi | H])
)d1(∑

i∈S′(Yi−E [Yi | H])
)d2 | H

]
≤ (c1εFp)d1+d2 . E

[(∑
i∈SJ (Yi−

E [Yi | H])
)d1(∑

i∈SJ (Yi −E [Yi | H])
)d2 | H

]
≤ (c2εFp)d1+d2 .

Combining Lemmas 10, 13 and 19 with Lemma 17, we obtain the following.

I Lemma 20. ∃ constant c s.t. for 1 ≤ d ≤ dlog(1/δ)e, E
[(∑

i∈[n](Yi − E [Yi | H])
)d(∑

i∈[n](Yi −E
[
Yi | H

]
)
)d | H] ≤ (cεFp)2d. Hence, Pr

[∣∣F̂p − Fp∣∣ ≤ εFp)] < δ .

I Theorem 21. For each 0 < ε < 1 and 7/8 ≥ δ ≥ 2−nΩ(1) , there is a sketching
algorithm that (ε, δ)-approximates Fp with sketching dimension O

(
n1−2/p(ε−2 log(1/δ) +

ε−4/p log2/p(1/δ) logn
))

and update time (per stream update) O((logn) log(1/δ)).
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