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Abstract
We study k-means clustering in a semi-supervised setting. Given an oracle that returns whether
two given points belong to the same cluster in a fixed optimal clustering, we investigate the
following question: how many oracle queries are sufficient to efficiently recover a clustering that,
with probability at least (1− δ), simultaneously has a cost of at most (1 + ε) times the optimal
cost and an accuracy of at least (1− ε)?

We show how to achieve such a clustering on n points with O((k2 logn) ·m(Q, ε4, δ/(k logn)))
oracle queries, when the k clusters can be learned with an ε′ error and a failure probability δ′
using m(Q, ε′, δ′) labeled samples in the supervised setting, where Q is the set of candidate
cluster centers. We show that m(Q, ε′, δ′) is small both for k-means instances in Euclidean
space and for those in finite metric spaces. We further show that, for the Euclidean k-means
instances, we can avoid the dependency on n in the query complexity at the expense of an
increased dependency on k: specifically, we give a slightly more involved algorithm that uses
O(k4/(ε2δ) + (k9/ε4) log(1/δ) + k ·m(Rr, ε4/k, δ)) oracle queries.

We also show that the number of queries needed for (1−ε)-accuracy in Euclidean k-means must
linearly depend on the dimension of the underlying Euclidean space, and for finite metric space
k-means, we show that it must at least be logarithmic in the number of candidate centers. This
shows that our query complexities capture the right dependencies on the respective parameters.
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1 Introduction

Clustering is a fundamental problem that arises in many learning tasks. Given a set P of data
points, the goal is to output a k-partition C1∪̇ . . . ∪̇Ck of P according to some optimization
criteria. In unsupervised clustering, the data points are unlabeled. The classic k-means
problem and other well-studied clustering problems such as k-median fall into this category.

In a general k-means clustering problem, the input comprises a finite set of n points
P that is to be clustered, a set of candidate centers Q, and a distance metric d giving
the distances between each pair of points in P ∪ Q. The goal is to find k cluster centers
c1, . . . , ck ∈ Q that minimizes the cost, which is the sum of squared distances between
each point in P and its closest cluster center. In this case, the clustering C is defined by
setting Ci = {x ∈ P : ci is the closest center to x} for all i = 1, . . . , k and breaking ties
arbitrarily. Two widely studied special cases are the k-means problem in Euclidean space
(where P ⊂ Rr, Q = Rr, and d is the Euclidean distance function) and the k-means problem
in finite metric spaces (where (P ∪Q,d) forms a finite metric space).

Despite its popularity and success in many settings, there are two known drawbacks of
the unsupervised k-means problem:
1. Finding the centers that satisfy the clustering goal is computationally hard. For example,

even the special case of 2-means problem in Euclidean space is NP-hard [8].
2. There could be multiple possible sets of centers that minimize the cost. However, in

practical instances, not all such sets are equally meaningful, and we would like our
algorithm to find one that corresponds to the concerns of the application.

Since k-means is NP-hard, it is natural to seek approximation algorithms. For the general
k-means problem in Euclidean space, notable approximation results include the local search
by Kanungo et al. [13] with an approximation guarantee of (9 + ε) and the recent LP-based
6.357-approximation algorithm by Ahmadian et al. [1]. On the negative side, Lee et al. [14]
ruled out arbitrarily good approximation algorithms for the k-means problem on general
instances. For several special cases, however, there exist PTASes. For example, in the case
where k is constant, Har-Peled and Mazumdar [11] and Feldman et al. [9] showed how to get
a PTAS using weak coresets, and in the case where the dimension d is constant, Cohen-Addad
et al. [7] and Friggstad et al. [10] gave PTASes based on a basic local search algorithm.
In addition, Awasthi et al. [4] presented a PTAS for k-means, assuming that the input is
“clusterable” (satisfies a certain stability criterion).

Even if we leave aside the computational issues with unsupervised k-means, we still have
the problem that there can be multiple different clusterings that minimize the cost. To see
this, consider the 2-means problem on the set of vertices of an equilateral triangle. In this
case, we have three different clusterings that give the same minimum cost, but only one of the
clusterings might be meaningful. One way to avoid this issue is to have strong assumptions
on the input. For example, Balcan et al. [5] considered the problem in a restricted setting
where any c-approximation to the problem also classifies at least a (1 − ε) fraction of the
points correctly.

Ashtiani et al. [3] recently proposed a different approach for addressing the aforementioned
drawbacks. They introduced a semi-supervised active clustering framework where the
algorithm is allowed to make queries of the form same-cluster(x, y) to a domain expert, and
the expert replies whether the points x and y belong to the same cluster in some fixed optimal
clustering. Under the additional assumptions that the clusters are contained inside k balls in
Rr that are sufficiently far away from each other, they presented an algorithm that makes
O(k2 log k+ k(logn+ log(1/δ))) same-cluster queries, runs in O(kn logn+ k2 log(1/δ)) time,
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and recovers the clusters with probability at least (1− δ). Their algorithm finds approximate
cluster centers, orders all points by their distances to the cluster centers, and performs binary
searches to determine the radii of the balls. Although it recovers the exact clusters, this
approach works only when the clusters are contained inside well-separated balls. When the
clusters are determined by a general Voronoi partitioning, and thus distances to the cluster
boundaries can differ in different directions, this approach fails.

A natural question arising from the work of Ashtiani et al. [3] is whether such strong
assumptions on the input structure are necessary. Ailon et al. [2] addressed this concern and
considered the problem without any assumptions on the structure of the underlying true
clusters. Their main result was a polynomial-time (1 + ε)-approximation scheme for k-means
in the same semi-supervised framework as in Ashtiani et al. [3]. However, in contrast to
Ashtiani et al. [3], their work gives no assurance on the accuracy of the recovered clustering
compared to the true clustering. To achieve their goal, the authors utilized importance
sampling to uniformly sample points from small clusters that significantly contribute to the
cost. Their algorithm makes O(k9/ε4) same-cluster queries, runs in O(nr(k9/ε4)) time, and
succeeds with a constant probability.

In this work, we investigate the k-means problem in the same semi-supervised setting as
Ailon et al. [2], but in addition to approximating the cost, we seek a solution that is also
accurate with respect to the true clustering. We assume that the underlying true clustering
minimizes the cost, and that there are no points on cluster boundaries (i.e., the margin
between each pair of clusters can be arbitrarily small but not zero). This last assumption is
what differentiates our setup from that of Ailon et al. [2]. It is reasonable to assume that no
point lies on the boundary of two clusters, as otherwise, to achieve constant accuracy, we
would have to query at least a constant fraction of the boundary points. Without querying
each boundary point, we have no way of determining to which cluster it belongs.

Observe that if we label all the points correctly with respect to the true clustering, the
resulting clustering automatically achieves the optimal cost. However, such perfect accuracy
is difficult to achieve as there may be points that are arbitrarily close to each other but
belong to different clusters. Using only a reasonable number of samples, the best we can
hope for is to recover an approximately accurate solution. PAC (Probably Approximately
Correct) learning helps us achieve this goal and provides a trade-off between the desired
accuracy and the required number of samples.

Suppose that we have a solution where only a small fraction of the input points is
incorrectly classified. In this case, one would hope that the cost is also close to the optimal
cost. Unfortunately, the extra cost incurred by the incorrectly classified points can be very
high depending on their positions, true labels, and the labels assigned to them. Our main
concern in this paper is controlling this additional cost.

We show that if we start with a constant-factor approximation for the cost, we can
refine the clustering using a PAC learning algorithm. This yields a simple polynomial-time
algorithm that, given a k-means instance and (ε, δ) ∈ (0, 1)2 as parameters, with probability
at least (1 − δ) outputs a clustering that has a cost of at most (1 + ε) times the optimal
cost and that classifies at least a (1− ε) fraction of the points correctly with respect to the
underlying true clustering. To do so, the algorithm makes O((k2 logn) ·m(Q, ε4, δ/(k logn)))
same-cluster queries. Here, m(Q, ε′, δ′) is the sufficient number of labeled samples for a
PAC learning algorithm to learn k clusters in a k-means instance with an ε′ error and a
failure probability δ′ in the supervised setting (recall that Q is the set of candidate centers).
We further show that our algorithm can be easily adapted to k-median and other similar
problems that use the `’th power of distances in place of squared distances for some fixed
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` > 0. We formally present this result as Theorem 6 in Section 3. In Theorem 1 below, we
give an informal statement for the case of k-means.

I Theorem 1 (An informal version of Theorem 6). There exists a semi-supervised learning
algorithm that, given a k-means instance, oracle access to same-cluster queries that are
consistent with some fixed optimal clustering, and parameters (ε, δ) ∈ (0, 1)2, outputs a
clustering that, with probability at least (1− δ), correctly labels (up to a permutation of the
labels) at least a (1− ε) fraction of the points and, simultaneously, has a cost of at most (1+ ε)
times the optimal cost. In doing so, the algorithm makes O((k2 logn) ·m(Q, ε4, δ/(k logn)))
same-cluster queries.

Our algorithm is general and applicable to any family of k-means, k-median, or similar
distance based clustering instances that can be efficiently learned with PAC learning. As
discussed later in this work, these include Euclidean and general finite metric space clustering
instances. In contrast, both Ashtiani et al. [3] and Ailon et al. [2], considered only the
Euclidean k-means problem. To the best of our knowledge, ours is the first such result
applicable to finite metric space k-means and both Euclidean and finite metric space k-median
problems.

Ideally, we want m(Q, ε, δ) to be small. Additionally, the analysis of our algorithm relies
on two natural properties of learning algorithms. Firstly, we require PAC learning to always
correctly label all the sampled points. Secondly, we also require it to not ‘invent’ new
labels and only output labels that it has seen on the samples. We show that such learning
algorithms with small m(Q, ε, δ) exist both for k-means instances in Euclidean space and for
those in finite metric spaces with no points on the boundaries of the optimal clusters. For
r-dimensional Euclidean k-means, m(Q = Rr, ε, δ) has a linear dependency on r. For the
case of finite metric spaces, m(Q, ε, δ) has a logarithmic dependency on |Q|, which is the size
of the set of candidate centers. In fact, these learning algorithms are applicable not only to
k-means instances but also to instances of other similar center-based clustering problems
(where clusters are defined by assigning points to their closest cluster centers). We discuss
our learning algorithms in detail in the full version of this paper.

Our semi-supervised learning algorithm is inspired by the work of Feldman et al. [9] on
weak coresets. Their construction of the weak coresets first obtains an intermediate clustering
using a constant-factor approximation algorithm and refines each intermediate cluster by
taking random samples. In order to get a good guarantee for the cost, their algorithm
partitions each cluster into an inner ball that contains the majority of the points, and an
outer region that contains the remaining points. We proceed similarly to this construction;
however, we further partition the outer region into O(logn) concentric rings and use PAC
learning to label the points in the inner ball and in each of the outer rings separately. For
Euclidean k-means instances, the number of same-cluster queries needed by the algorithm has
a logarithmic dependency on the number n of points, which is similar (up to a poly(log logn)
factor) to that of the algorithm by Ashtiani et al. [3]. The advantage of our algorithm is
that it works for a much broader range of k-means instances whereas the applicability of the
algorithm of Ashtiani et al. [3] is restricted to those instances whose clusters are contained
in well-separated balls in Euclidean space.

This algorithm is effective in many natural scenarios where the number of clusters k is
larger than logn. However, as the size of the k-means instance (i.e., the number of points)
becomes large, the logn factor becomes undesirable. In Euclidean k-means, the number of
samples needed by the learning algorithm for an ε error and a failure probability δ does
not depend on n. The logn dependency in the final query complexity is exclusively due
to repeating the PAC learning step on Ω(k logn) different partitions of P . To overcome
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this problem, we present a second algorithm, which is applicable only to Euclidean k-means
instances, inspired by the work of Ailon et al. [2]. This time, we start with a (1 + ε)-
approximation for the cost and refine it using PAC learning. Unlike our first algorithm, we
only run the PAC learning once on the whole input, and thus we completely eliminate the
dependency on n. The disadvantages of this algorithm compared to our first algorithm are
the slightly more involved nature of the algorithm and the increased dependency on k in its
query complexity. Theorem 2 below formally states this result. We present our algorithm
in Section 4 and discuss the key ideas that lead to its construction. The complete proof of
Theorem 2 is given in the full version.

I Theorem 2. There exists a polynomial-time algorithm that, given a k-means instance in
r-dimensional Euclidean space, oracle access to same-cluster queries that are consistent with
some fixed optimal clustering, and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with
probability at least (1− δ), correctly labels (up to a permutation of the labels) at least a (1− ε)
fraction of the points and, simultaneously, has a cost of at most (1 + ε) times the optimal
cost. The algorithm makes O(k4/(ε2δ) + (k9/ε4) log(1/δ) + k ·m(Rr, ε4/k, δ)) same-cluster
queries.

For the Euclidean setting, the query complexities of both our algorithms have a linear
dependency on the dimension of the Euclidean space. The algorithm of Ashtiani et al. [3]
does not have such a dependency due to their strong assumption on the cluster structure,
whereas the one by Ailon et al. [2] does not have that as it only approximates the cost. We
show that, in our scenario, such a dependency is necessary to achieve the accuracy guarantees
of our algorithms. For the finite metric space k-means, the query complexity of our general
algorithm has an O(poly(log |P |, log |Q|)) dependency. The dependency on |P | comes from
the repeated application of the learning algorithm on Ω(k log |P |) different partitions, and
whether we can avoid this is an open problem. However, we show that an Ω(log |Q|) query
complexity is necessary for the accuracy. We formalize these results in Theorem 3 below (the
proof is in the full version).

I Theorem 3. Let K be a family of k-means instances. Let A be an algorithm that, given a
k-means instance in K, oracle access to same-cluster queries for some fixed optimal clustering,
and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with probability at least (1 − δ),
correctly labels (up to a permutation of the cluster labels) at least a (1− ε) fraction of the
points. Then, the following statements hold:
1. If K is the family of k-means instances in r-dimensional Euclidean space that have no

points on the boundaries of optimal clusters, A must make Ω(r) same-cluster queries.
2. If K is the family of finite metric space k-means instances that have no points on the

boundaries of optimal clusters, A must make Ω(log |Q|) same-cluster queries.

The outline of this extended abstract is as follows. In Section 2 we introduce the notation,
formulate the problem and present the learning theorems that we use in the subsequent
sections. In Section 3 we present our first algorithm, which is simple and applicable to
general k-means instances that admit efficient learning algorithms, but has a dependency
of logn in its query complexity. Finally, in Section 4 we discuss how to remove the logn
dependency in the query complexity for the special case of Euclidean k-means instances and
present our second algorithm.

In the full version, we present formal proofs of all the stated results, where we also
introduce the basic concepts and tools of PAC learning and explain how to design learning
algorithms for Euclidean and finite metric space k-means instances.
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2 Preliminaries

In this section, we introduce the basic notation and two common families of k-means instances,
and formally define the k-means problem that we address in this work. We also introduce
the notion of learnability for families of k-means instances and state two learning theorems
that will be used in the later sections.

2.1 k-Means Problem in a Semi-supervised Setting

Let P and Q be two sets of points where |P | = n, and let d : (P ∪Q)× (P ∪Q)→ R+ be a
distance metric. We denote a k-means instance by the triple (P,Q, d). Two common families
of k-means instances we consider in this work are:

1. k-means instances in Euclidean space, where P ⊂ Rr, Q = Rr, and d(x1, x2) = ‖x1− x2‖
is the Euclidean distance between x1 and x2, and

2. k-means instances in finite metric spaces, where (P ∪Q,d) forms a finite metric space.

Let [k] := {1, . . . , k}. We identify a k-clustering C of (P,Q, d) by a labeling function
fC : P → [k], and a set of k centers, c1, . . . , ck ∈ Q, associated with each label, 1, . . . , k.
For each label i ∈ [k] of a clustering C, let Ci := {p ∈ P : fC(p) = i} be the set of points
whose label is i. For convenience, we may use the labeling function fC or the set of clusters
{C1, . . . , Ck} interchangeably to denote a clustering C.

For a subset C ⊆ P and a point q ∈ Q, define cost(C, q) :=
∑
p∈C d2(p, q). For each i,

define center ci := argminq∈Q cost(Ci, q), i.e., each center is a point in Q that minimizes
the sum of squared distances between itself and each of the points assigned to it. For a
k-clustering C, we define its k-means cost as cost(C) :=

∑
i∈[k] cost(Ci, ci). Let C∗ be the set

of all k-clusterings of (P,Q, d). Then, the optimal k-means cost of (P,Q, d) is defined as
OPT := minC∈C∗ cost(C). We say that a k-clustering C α-approximates the k-means cost if
cost(C) ≤ αOPT .

Let O be a fixed k-clustering of (P,Q, d) that achieves the optimal k-means cost, and let
C be any k-clustering of P . Let fO and fC be the labeling functions that correspond to O
and C respectively. We assume that we have oracle access to the labeling function fO of the
optimal target clustering up to a permutation of the labels. We can simulate a single query
to such an oracle with O(k) queries to a same-cluster oracle (see the full version for details).
A same-cluster oracle is an oracle that answers same-cluster(p1, p2) queries with ‘yes’ or ‘no’
based on whether p1 and p2 belong to the same cluster in the fixed optimal clustering O.

The error of a clustering C with respect to the clustering O for a k-means instance (P,Q, d)
is now defined as error(C,O) := minσ |{p ∈ P : fO(p) 6= σ(fC(p))}|, where the minimization
is over all permutations σ : [k]→ [k]. In other words, error(C,O) is the minimum number
of points incorrectly labeled by the clustering C with respect to the optimal clustering O,
considering all possible permutations of the cluster labels. The reason for defining error in
this manner is because we use a simulated version of fO (which is only accurate up to a
permutation of the cluster labels) instead of the true fO to learn cluster labels. We say that
a k-clustering C is (1− α)-accurate with respect to O if error(C,O) ≤ αn.

Given (P,Q, d), parameters k and (ε, δ) ∈ (0, 1)2, and oracle access to fO, our goal
is to output a k-clustering Ô of (P,Q, d) that, with probability at least (1 − δ), satisfies
error(Ô,O) ≤ εn and cost(Ô) ≤ (1 + ε)OPT .
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2.2 PAC Learning for k-Means

Let K be a family of k-means instances, and let m(Q, ε, δ) be a positive integer-valued
function. We say such a family K is learnable with sample complexity m if there exists a
learning algorithm AL such that the following holds: Let ε ∈ (0, 1) be an error parameter and
let δ ∈ (0, 1) be a probability parameter. Let (P,Q, d) be a k-means instance that belongs to
K. Let O be a fixed optimal k-means clustering and let fO be the associated labeling function.
Let T be a fixed subset of P , and let S be a multiset of at least m(Q, ε, δ) independently
and uniformly distributed samples from T . The algorithm AL, given input (P,Q, d) and
(s, fO(s)) for all s ∈ S, outputs a function h : P → [k]. Moreover, with probability at least
(1− δ) over the choice of S, the output h agrees with fO on at least a (1− ε) fraction of the
points in T (i.e., |{p ∈ T : h(p) = fO(p)}| ≥ (1− ε)|T |). This simpler notion of learnability
is sufficient for the purpose of this work although it deviates from that of the general PAC
learnability, which concerns with samples drawn from arbitrary distributions.

We say that such a learning algorithm AL has the zero sample error property if the
output h of AL assigns the correct label to all the sampled points (i.e., h(s) = fO(s) for
all s ∈ S). Furthermore, we say that such a learning algorithm AL is non-inventive if it
does not ‘invent’ labels that it has not seen. This means that the output h of AL does not
assign labels that were not present in the input (sample, label) pairs (i.e., if h(x) = c for
some x ∈ P , then for some sample point s ∈ S, fO(s) = c).

In Section 3, we present a simple algorithm for (1 + ε)-approximate and (1− ε)-accurate
k-means clustering for a family K of k-means instances, assuming that K is learnable with a
zero sample error, non-inventive learning algorithm. In the analysis, zero sample error and
non-inventive properties play a key role in the crucial step of bounding the cost of incorrectly
labeled points in terms of that of correctly labeled nearby points.

We now present two learning theorems for the Euclidean setting and the finite metric space
setting (see the full version for the proofs). Assuming no point lies on cluster boundaries,
the theorems state that the labeling function fO of the optimal clustering is learnable with
a zero sample error, non-inventive learning algorithm in both settings. We say that a k-
means instance (P,Q, d) has no boundary points if in any optimal clustering O with clusters
O1, . . . , Ok and respective centers o1, . . . , ok, the closest center to any given point p ∈ P is
unique (i.e., if p ∈ Oi, d(p, oi) < d(p, oj) for all j 6= i).

I Theorem 4 (Learning k-Means in Euclidean Space). Let d(p1, p2) = ‖p1−p2‖ be the Euclidean
distance function. Let K = {(P,Rr, d) : P ⊂ R, |P | <∞, (P,Rr, d) has no boundary points}
be the family of k-means instances that are in r-dimensional Euclidean space and that
have no boundary points. The family K is learnable with sample-complexity1 m(Rr, ε, δ) =
Õ((k2r log(k2r)(log(k3r/ε)) + log(1/δ))/ε).

I Theorem 5 (Learning k-Means in Finite Metric Spaces). Let K = {(P,Q, d) : (P ∪ Q,d)
is a finite metric space, and (P,Q, d) has no boundary points} be the family of finite metric
space k-means instances that have no boundary points. The family K is learnable with
sample-complexity2 m(Q, ε, δ) = Õ((k2(log k)(log |Q|)(log k + log 1/ε) + log(1/δ))/ε).

1 Õ hides poly(log log k, log log r) factors.
2 Õ hides poly(log log k, log log |Q|) factors.
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3 A Simple Algorithm for (1 + ε) Cost and (1 − ε) Accuracy

Let K be a family of k-means instances that is learnable with sample complexity m using
a zero sample error, non-inventive learning algorithm AL. Let Aα be a constant-factor
approximation algorithm (in terms of cost) for k-means, and let A1 be a polynomial-time
algorithm for the 1-means problem (i.e., given (P,Q, d) ∈ K, A1 finds argminq∈Q cost(P, q)
in polynomial time). We present a simple semi-supervised learning algorithm that, given
a k-means instance (P,Q, d) of class K and oracle access to the labeling function fO of a
fixed optimal clustering O of (P,Q, d), outputs a clustering Ô that, with probability at least
(1− δ), satisfies cost(Ô) ≤ (1 + ε)OPT and error(Ô,O) ≤ ε|P |. Our algorithm uses Aα, A1,
and AL as subroutines and makes O((k log |P |) ·m(Q, ε4, δ/(k log |P |))) oracle queries. We
show that our algorithm can be easily modified for (1 + ε)-approximate and (1− ε)-accurate
k-median and other similar distance-based clustering problems. Towards the end of this
section, we discuss several applications of this result, namely, for Euclidean and finite metric
space k-means and k-median problems.

Let us start by applying the learning algorithm AL to learn all the cluster labels. If we
get perfect accuracy, the cost will be optimal. A natural question to ask in this case is: what
happens to the cost if the learning output has ε error? In general, even a single misclassified
point can incur an arbitrarily large additional cost. To better understand this, consider the
following: Let Oi, Oj ⊆ P be two distinct optimal clusters in the target clustering, and let
oi, oj be their respective cluster centers. Let p ∈ Oi be a point that is incorrectly classified
and assigned label j 6= i by AL. Also assume that the number of misclassified points is
small enough so that the centers of the clusters output by the learning algorithm are close to
those of the optimal clustering. Thus, in the optimal clustering, p incurs a cost of d2(p, oi),
whereas according to the learning outcome, p incurs a cost that is close to d2(p, oj). In the
worst case, d(p, oj) can be arbitrarily larger than d(p, oi).

Now suppose that, within distance ρ from p, there exists some point q ∈ Oj . In this case,
we can bound the cost incurred due to the erroneous label of p using the true cost of p in
the target clustering. To be more specific, using the triangle inequality, we get the following
bound for any metric space: d(p, oj) ≤ d(p, q) + d(q, oj) ≤ ρ+ d(q, oj). Furthermore, due to
the optimality, d(q, oj) ≤ d(q, oi) ≤ d(q, p) + d(p, oi) ≤ ρ + d(p, oi). Hence, it follows that
d(p, oj) ≤ 2ρ + d(p, oi). To utilize this observation in an algorithmic setting, we need to
make sure that, for every point that is misclassified into cluster j, there exists a correctly
classified nearby point q that belongs to the optimal cluster Oj . Luckily, this is ensured
by the combination of zero sample error and non-inventive properties of AL. If a point is
misclassified into cluster j, the non-inventive property says that AL must have seen a sample
point q from cluster j. The zero sample error property ensures that q is labeled correctly by
AL. To make sure that such correctly labeled points are sufficiently close to their incorrectly
labeled counterparts, we run AL separately on certain suitably bounded partitions of P .

The formal description of our algorithm is given in Algorithm 1. The outline is as follows:
First, we run Aα on (P,Q, d) and obtain an intermediate clustering C = {C1, . . . , Ck}. For
each Ci, we run A1 to find a suitable center ci. Next, we partition each intermediate cluster
Ci into an inner ball and O(log |P |) outer rings centered around ci. We run the learning
algorithm AL separately on each of these partitions. We choose the inner and outer radii of
the rings so that, in each partition, the points that are incorrectly classified by the learning
algorithm only incur a small additional cost compared to that of the correctly classified
points. The final output is a clustering Ô that is consistent with the learning outputs on each
of the partitions. For each cluster Ôi, we associate the output of running A1 on (Ôi, Q,d) as
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Algorithm 1: A simple algorithm for (1 + ε)-approximate (1− ε)-accurate k-means.
Input : k-Means instance (P,Q, d), oracle access to fO, constant-factor approximation

algorithm Aα for k-means, 1-means algorithm A1, learning algorithm AL with sample
complexity m, accuracy parameter 0 < ε < 1, and failure probability 0 < δ < 1.

Output : The clustering Ô = {Ô1, . . . , Ôk} defined by the labeling fÔ : P → [k] computed
below. The respective cluster centers are ôi = argminq∈Q cost(Ôi, q), which can be
found by running A1 on (Ôi, Q, d).

1 Let n = |P |, and let γ = ε2/(288α).
2 Run Aα and obtain an α-approximate k-means clustering C = {C1, . . . , Ck}. For each i ∈ [k], run
A1 on (Ci, Q, d) and find centers ci = argminq∈Q cost(Ci, q).

3 for Ci ∈ C do
4 Let ri =

√
cost(Ci, ci)/(γ|Ci|).

5 Let Ci,0 be all points in Ci that are at most ri away from ci.
6 Let Ci,j be the points in Ci that are between 2j−1ri and 2jri away from ci for

j = 1, . . . , (logn)/2.
7 Let m′ = m(Q, γ2, δ/(k logn)).
8 for each non-empty Ci,j do
9 Sample m′ points x1, . . . , xm′ ∈ Ci,j independently and uniformly at random.

10 Query the oracle on x1, . . . , xm′ and let Si,j = {(xi, fO(xi)) : i = 1, . . . ,m′}.
11 Run AL on input (P,Q,d) and Si,j , and obtain a labeling hi,j : Ci,j → [k].

12 Output the clustering Ô defined by the following labeling function:
13 for each i, j, x ∈ Ci,j do
14 Set fÔ(x) = hi,j(x).

its center. Note that, due to the accuracy requirements, the cluster center to which a point
is assigned in the output may not be the cluster center closest to that point in the output. It
remains an interesting problem to find an accurate clustering in which every point is always
assigned to its nearest cluster center.

With probability at least (1− δ), Algorithm 1 outputs a (1 + ε)-approximately optimal,
(1− ε)-accurate k-means clustering (the complete analysis is in the full version). In Algorithm
1, instead of an exact algorithm A1 for the 1-means problem, we can also use a PTAS.
Using a PTAS to approximate 1-means up to a (1 + ε) factor will only cost an additional
(1 + ε) factor in our cost analysis. As a result, we get the same approximation and accuracy
guarantees if we replace ε with ε/3.

Algorithm 1 makes O((k logn) ·m(Q, ε4, δ/(k logn))) queries to the oracle fO in total.
Recall that simulating an oracle query to fO takes O(k) same-cluster queries. Therefore, the
total number of same-cluster queries is O((k2 logn) ·m(Q, ε4, δ/(k logn))).

Our definition of a learning algorithm in Section 2.2 has nothing to do with whether the
input is a k-means instance or a k-median instance, which is similar to k-means except that
the cost of a cluster C with respect to a center q is defined as cost(C, q) :=

∑
p∈C d(p, q). In

fact, it applies to any similar clustering scenario where the cost is defined in terms of the `’th
power (` > 0) of distances instead of squared distances. The analysis of Algorithm 1 can be
adapted to any fixed ` once we have a suitable triangle inequality. (For example, in k-means
(i.e., when ` = 2), we use (a + b)2 ≤ (1 + ε)a2 + (1 + 1/ε)b2. When ` ≤ 1, we can simply
use the trivial triangle inequality (a + b)` ≤ a` + b`.) Thus, for such clustering problems,
Algorithm 1, with a slight modification on choice of radii in Step 4 and a little adjustment to
the parameter γ, will give the same guarantees. Hence, we have the following theorem which
is the formal version of Theorem 1. The proof follows from the analysis of Algorithm 1.

I Theorem 6. Let K be a family of k-means (k-median) instances. Suppose that K is
learnable with sample complexity m(Q, ε, δ) using a zero sample error, non-inventive learning
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algorithm AL. Let Aα be a constant-factor approximation algorithm, and let A1 be a PTAS
for the 1-means (1-median) problem. There exists a polynomial-time algorithm that, given an
instance (P,Q, d) ∈ K, oracle access to same-cluster queries for some fixed optimal clustering
O, and parameters (ε, δ) ∈ (0, 1)2, outputs a clustering that, with probability at least (1− δ),
is (1− ε)-accurate with respect to O, and simultaneously has a cost of at most (1 + ε)OPT .
The algorithm uses AL, Aα, and A1 as subroutines. The number of same-cluster queries
made by the algorithm is
1. O((k2 log |P |) ·m(Q, ε4, δ/(k log |P |))) for the k-means setting and
2. O((k2 log |P |) ·m(Q, ε2, δ/(k log |P |))) for the k-median setting.

For k-means and k-median instances in Euclidean space and those in finite metric
spaces, there exist several constant-factor approximation algorithms (for example, Ahmadian
et al. [1] and Kanungo et al. [13]). Solving the 1-means problem in Euclidean space is
straightforward: The solution to argminq∈Rr cost(P, q) is simply q = (

∑
p∈P p)/|P |. For the

k-median problem in Euclidean space, the problem of 1-median does not have an exact
algorithm but several PTASes exist (for example, Cohen et al. [6]). In a finite metric space,
to solve argminq∈Q cost(P, q), we can simply try all possible q ∈ Q in polynomial time, and
this holds for the k-median setting as well. Thus, for Euclidean and finite metric space
k-means and k-median instances that have no boundary points, Theorem 6, together with
Theorem 4 and Theorem 5, gives efficient algorithms for (1 + ε)-approximate, (1− ε)-accurate
semi-supervised clustering.

4 Removing the Dependency on Problem Size in the Query
Complexity for Euclidean k-Means

For the family of Euclidean k-means instances, the query complexity of Algorithm 1 suffers
from a Õ(logn) dependency (where n is the number of points in the input k-means instance,
and Õ hides poly(log logn) factors) due to the repeated use of the learning algorithm AL.
Specifically, we run AL with a failure probability of δ/(k logn), O(logn) times per cluster.
Note that the sample complexity of AL itself, in the case of Euclidean k-means instances,
does not have this dependency.

In this section, we show that we can avoid this dependency on n using a slightly more
involved algorithm at the cost of increasing the query complexity by an extra poly(k) factor.
Nevertheless, this algorithm has superior performance when the size of the input instance
(i.e., the number of points) is very large (when logn = Ω(k10) for example).

Recall that, for a set C ⊂ Rr, cost(C, y) is minimized when y is the centroid of C, denoted
by µ(C) = (

∑
x∈C x)/|C|. Define the fractional size of an optimal cluster Oi as the fraction

of points that belong to Oi, i.e., the ratio |Oi|/n. Suppose we only want to get a good
approximation for the cost, and that we know that all the clusters in the target solution
have sufficiently large fractional sizes. In this case, naive uniform sampling will likely pick a
large number of samples from each of the clusters. This observation, together with Lemma 7,
allows us to approximate the centroid and the cost of each cluster to any given accuracy.

I Lemma 7 (Lemma 1 and Lemma 2 of Inaba et al. [12]). Let (ε, δ) ∈ (0, 1)2, let m ≥ 1/(εδ)
be a positive integer, and let S = {p1, . . . , pm} be a multiset of m i.i.d. samples from
the uniform distribution over some finite set C ⊂ Rr. With probability at least (1 − δ),
d2(µ(S), µ(C)) ≤ ε · cost(C, µ(C))/|C| and cost(C, µ(S)) ≤ (1 + ε) cost(C, µ(C)).

However, the above approach fails when some clusters in the optimal target solution
contribute significantly to the cost, but have small fractional sizes (that is because uniform
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sampling is not guaranteed to pick sufficient numbers of samples from the small clusters).
Ailon et al. [2] circumvented this issue with an algorithm that iteratively approximates the
centers of the clusters using a distance-based probability distribution (D2-sampling). We
will refer to their algorithm as A∗.

Note that when it comes to accuracy, we can totally disregard clusters with small fractional
sizes; we only have to correctly label a sufficiently large fraction of the points in large clusters.
With this intuition, we present the outline of our algorithm.

Let (P,Rr, d) be a k-means instance in Euclidean space that has no boundary points.
For simplicity, we refer to the instance (P,Rr, d) by just P where possible, as for Euclidean
k-means, the other two parameters are fixed. We start with a naive uniform sampling
step that gives a good approximation for the centers of large clusters. Starting with these
centers, we run a slightly modified version of algorithm A∗ to approximate the centers of
the remaining small clusters. Thus, at this point, we have a clustering with a good cost and
we know which clusters are large. We now run the learning algorithm AL on input P and
obtain a labeling of the points. For each point, we assign its final label based on (1) the label
assigned to it by the learning algorithm AL, and (2) its proximity to large cluster centers. In
particular, if the output of AL decides that a point p should be in some large cluster i, and
if p is sufficiently close to the approximate center for cluster i, we label it according to the
learning output; otherwise, we label it according to its nearest approximate center. We show
that this approach retains a cost that is close to the cost of the clustering output by A∗. The
accuracy guarantee comes from the facts that a large fraction of the points are sufficiently
close to the centers of large clusters, and that AL labels most of them correctly with a good
probability.

We now review the key properties of algorithm A∗ (the algorithm of Ailon et al. [2]). Let
0 < ε < 1. We say a k-means instance P is (k, ε)-irreducible if no (k − 1)-means clustering
gives an (1 + ε)-approximation for the k-means problem, i.e., if OPT k denotes the optimal
k-means cost of P , then P is (k, ε)-irreducible if OPT k−1 > (1 + ε)OPT k. Suppose that P is
(k, ε)-irreducible. Let O = {O1, . . . , Ok} be the target optimal clustering, and let o1, . . . , ok be
the respective centers. Let Ci = {c1, . . . , ci} denote a set of i centers and let Z(i) denote the
following statement: There exists a set of i distinct indices j1, . . . , ji such that, for all r ∈ [i],
cost(Ojr

, cr) ≤ (1 + ε/16) cost(Ojr
, ojr

). To put it differently, Z(i) says that Ci is a set of
good candidate centers for i-many distinct clusters in the target optimal solution. Assuming
P is (k, ε)-irreducible, the algorithm A∗ yields a method to incrementally construct sets
C1, . . . , Ck (i.e., Ci+1 = Ci∪{ci+1}) such that, conditioned on Z(i) being true, Z(i+1) is true
with probability at least (1− 1/k). Now suppose that P is (k, ε/(4k))-irreducible. Then A∗
gives a (1 + ε/(4 · 16k))-approximation for k-means with probability at least (1−1/k)k ≥ 1/4.
Otherwise, A∗ gives a (1+ ε/(4 · 16k))-approximation for the i-means problem for some i < k,
where i is the largest integer such that P is (i, ε/4k)-irreducible. In the latter case, it will
give a (1 + ε/(4 · 16k))(1 + ε/(4k))k−i-approximation with probability at least 1/4. In either
case, the output of A∗ is a (1 + ε)-approximation.

In our algorithm, we first find the centers of large clusters using uniform sampling, and
then run A∗ to find the remaining centers. This allows us to know which clusters are large,
which is a crucial information needed for the final labeling. Suppose that in the target
optimal solution we have k0 ≤ k clusters whose fractional sizes are at least ε/k. Note that k0
is at least 1 due to the Pigeonhole Principle, since at least one cluster should have a fractional
size of at least 1/k > ε/k. By Lemma 7, using uniform sampling, we can approximate the
centroid of each of these large clusters with a good accuracy. Hence, we can have a set Ck0

of k0 centers such that Z(k0) is true with probability (1 − δ). Afterwards, we use A∗ to

ICALP 2018



57:12 Semi-Supervised Algorithms for Approximately Optimal and Accurate Clustering

Algorithm 2: Algorithm whose query complexity is independent of n
Input :Point set P ⊂ Rr, the oracle access to fO, parameter k, accuracy parameter ε, failure

probability δ, and algorithms Acost and AL.
Output :The clustering Ô = {Ô1, . . . , Ôk} defined by the labeling fÔ : P → [k] computed

below. For each i ∈ [k], the respective cluster center ôi is the centroid of Ôi.
1 Draw Q1(k, ε, δ) samples from P independently and uniformly at random, and query fO to get

their true cluster labels in O. Denote the set of sampled points by S, and for all i ∈ [k], denote
the set of sampled points that belong to class i by Si.

2 Let k′ be the number of distinct cluster labels with more than (ε/(2k))Q1(k, ε, δ) samples. Let
Ck′ := {µ(Si) : |Si| > (ε/(2k))Q1(k, ε, δ)}. Without loss of generality, assume that the class
labels for centers in Ck′ are 1, . . . , k′.

3 Run the algorithm Acost, starting from Ck′ as the partial set of centers. This takes Q2(k, ε, δ)
more queries. Let Ck = {c1, . . . , ck} be the output, and let OPT ∗ be the cost of the clustering
obtained by assigning each point to its nearest ci.

4 Use the PAC learning algorithm AL on Q3(k, r, ε4/k, δ) uniform i.i.d. samples from P to learn a
classifier for the k classes that is (1− ε4/k)-accurate with probability at least (1− δ). Let
H1, . . . , Hk be the sets of points that are labeled 1, . . . , k respectively by the classifier.

5 Output the clustering Ô defined by the following labeling function: for each i ∈ [k′] and p ∈ Hi
such that d2(p, ci) ≤ kOPT ∗/(nε3), set fÔ(p) = i. For any other point p, set fÔ(p) = i if the
nearest cluster center to p in Ck is ci.

incrementally construct Ck0+1, . . . , Ck. Conditioned on Z(k0) being true, the output Ck will
be a (1 + ε)-approximation with probability (1 − 1/k)k−k0 ≥ (1 − 1/k)k ≥ 1/4 for k ≥ 2.
However, by independently running this incremental construction O(log(1/δ)) times and
choosing the set of centers with the minimum total cost, we can boost this probability to
(1− δ). This observation gives the following generalization of Theorem 10 of Ailon et al. [2].

I Theorem 8. Consider a Euclidean k-means instance (P,Rr,d). Let O1, . . . , Ok be a fixed
optimal clustering with respective centers o1, . . . , ok. Let k0 ≤ k and let Ck0 = {c1, . . . , ck0} be
a set of points such that, with probability at least p0, cost(Oi, ci) ≤ (1 + ε/(64k)) cost(Oi, oi)
for all i ∈ [k0]. There exists an algorithm Acost that, given P , Ck0 , and parameters
(ε, δ) ∈ (0, 1)2 as input, outputs a set of centers Ck = Ck0 ∪ {ck0+1, . . . , ck} such that∑

i∈[k] cost(Oi, ci) ≤ (1 + ε)
∑
i∈[k] cost(Oi, oi) with probability at least p0(1− δ). Moreover,

Acost uses O((k9/ε4) log(1/δ)) same-cluster queries and runs in time O(nr(k9/ε4) log(1/δ)).

Theorem 8 implies a method to get a good approximation for the cost that also reveals
which clusters are large. Specifically, we first perform uniform sampling over the whole set P
and approximate the centers of the large clusters. If we get a sufficient number of samples,
the approximate centers will satisfy the precondition of Theorem 8 with a good probability.
Thus, using algorithm Acost from Theorem 8, we get the desired approximation for the cost.
What remains now is to use PAC learning and to appropriately label the points according to
the learning outcome.

We present the pseudo-code of our algorithm in Algorithm 2, where we use the algorithm
Acost from Theorem 8 and the learning algorithm AL guaranteed by Theorem 4. In Algo-
rithm 2, Q1(k, ε, δ) = 256k3/(ε2δ) is the number of samples needed to ensure that we pick a
sufficient number of samples from each of the clusters with fractional sizes of at least ε/k,
Q2(k, ε, δ) is the sample complexity of the algorithm Acost, and Q3(k, r, ε, δ) = m(Rr, ε, δ) is
the sample complexity of the learning algorithm AL for an error ε and a failure probability δ.
As with Algorithm 1, the center that a point is assigned to in the final output may not be
the closest center to that point.

With probability at least (1− δ), the output of Algorithm 2 is (1 + ε)-approximate and
(1− ε)-accurate (refer to the full version for the complete analysis). As for the claim on the
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query complexity, recall that we only need O(k) same-cluster queries per single fO query,
and Algorithm 2 makes a total number of Q1(k, ε, δ) +Q2(k, ε, δ) +Q3(k, r, ε4/k, δ) queries
to fO. This observation together with the analysis of Algorithm 2 proves Theorem 2. We
remark that the query complexity Q3(k, r, ε4/k, δ) for learning Euclidean k-means instances
is independent of P .
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