
A PTAS for a Class of Stochastic Dynamic
Programs
Hao Fu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijng, China
fu-h13@mails.tsinghua.edu.cn

Jian Li
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijng, China
Corresponding author lijian83@mail.tsinghua.edu.cn

Pan Xu
Department of Computer Science, University of Maryland, College Park, USA
panxu@cs.umd.edu

Abstract
We develop a framework for obtaining polynomial time approximation schemes (PTAS) for a
class of stochastic dynamic programs. Using our framework, we obtain the first PTAS for the
following stochastic combinatorial optimization problems:
1. Probemax [19]: We are given a set of n items, each item i ∈ [n] has a value Xi which is

an independent random variable with a known (discrete) distribution πi. We can probe a
subset P ⊆ [n] of items sequentially. Each time after probing an item i, we observe its value
realization, which follows the distribution πi. We can adaptively probe at most m items and
each item can be probed at most once. The reward is the maximum among the m realized
values. Our goal is to design an adaptive probing policy such that the expected value of the
reward is maximized. To the best of our knowledge, the best known approximation ratio
is 1 − 1/e, due to Asadpour et al. [2]. We also obtain PTAS for some generalizations and
variants of the problem.

2. Committed Pandora’s Box [24, 22]: We are given a set of n boxes. For each box i ∈ [n], the
cost ci is deterministic and the value Xi is an independent random variable with a known
(discrete) distribution πi. Opening a box i incurs a cost of ci. We can adaptively choose to
open the boxes (and observe their values) or stop. We want to maximize the expectation of
the realized value of the last opened box minus the total opening cost.

3. Stochastic Target [15]: Given a predetermined target T and n items, we can adaptively insert
the items into a knapsack and insert at most m items. Each item i has a value Xi which is an
independent random variable with a known (discrete) distribution. Our goal is to design an
adaptive policy such that the probability of the total values of all items inserted being larger
than or equal to T is maximized. We provide the first bi-criteria PTAS for the problem.

4. Stochastic Blackjack Knapsack [16]: We are given a knapsack of capacity C and probability
distributions of n independent random variables Xi. Each item i ∈ [n] has a size Xi and
a profit pi. We can adaptively insert the items into a knapsack, as long as the capacity
constraint is not violated. We want to maximize the expected total profit of all inserted
items. If the capacity constraint is violated, we lose all the profit. We provide the first
bi-criteria PTAS for the problem.

2012 ACM Subject Classification Theory of computation → Stochastic approximation

Keywords and phrases stochastic optimization, dynamic program, markov decision process,
block policy, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.56

EA
T

C
S

© Hao Fu, Jian Li, and Pan Xu;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 56; pp. 56:1–56:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fu-h13@mails.tsinghua.edu.cn
mailto:Corresponding author lijian83@mail.tsinghua.edu.cn
mailto:panxu@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 A PTAS for a Class of Stochastic Dynamic Programs

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
07742.

Funding This research is supported in part by the National Basic Research Program of China
Grant 2015CB358700, the National Natural Science Foundation of China Grant 61772297, 616320-
16, 61761146003, and a grant from Microsoft Research Asia.

Acknowledgements We would like to thank Anupam Gupta for several helpful discussions during
the various stages of the paper. Jian Li would like to thank the Simons Institute for the Theory
of Computing, where part of this research was carried out. Hao Fu would like to thank Sahil
Singla for useful discussions about Pandora’s Box problem. Pan Xu would like to thank Aravind
Srinivasan for his many useful comments.

1 Introduction

Consider an online stochastic optimization problem with a finite number of rounds. There
are a set of tasks (or items, boxes, jobs or actions). In each round, we can choose a task
and each task can be chosen at most once. We have an initial “state” of the system (called
the value of the system). At each time period, we can select a task. Finishing the task
generates some (possibly stochastic) feedback, including changing the value of the system
and providing some profit for the round. Our goal is to design a strategy to maximize our
total (expected) profit.

The above problem can be modeled as a class of stochastic dynamic programs which was
introduced by Bellman [3]. There are many problems in stochastic combinatorial optimization
which fit in this model, e.g., the stochastic knapsack problem [9], the Probemax problem
[19]. Formally, the problem is specified by a 5-tuple (V,A, f, g, h, T). Here, V is the set of
all possible values of the system. A is a finite set of items or tasks which can be selected
and each item can be chosen at most once. This model proceeds for at most T rounds. At
each round t ∈ [T], we use It ∈ V to denote the current value of the system and At ⊆ A
the set of remaining available items. If we select an item at ∈ At, the value of the system
changes to f(It, at). Here f may be stochastic and is assumed to be independent for each
item at ∈ A. Using the terminology from Markov decision processes, the state at time t is
st = (It,At) ∈ V × 2A. 1 Hence, if we select an item at ∈ At, the evolution of the state is
determined by the state transition function f :

st+1 = (It+1,At+1) = (f(It, at),At \ at) t = 1, . . . , T. (1)

Meanwhile the system yields a random profit g(It, at). The function h(IT+1) is the terminal
profit function at the end of the process.

We begin with the initial state s1 = (I1,A). We choose an item a1 ∈ A. Then the system
yields a profit g(I1, a1), and moves to the next state s2 = (I2,A2) where I2 follows the
distribution f(I1, a1) and A2 = A \ a1. This process is iterated yielding a random sequence

s1, a1, s2, a2, s3, . . . , aT , sT+1.

The profits are accumulated over T steps. 2 The goal is to find a policy that maximizes the

1 This is why we do not call It the state of the system.
2 If less than T steps, we can use some special items to fill which satisfy that f(I, a) = I and g(I, a) = 0

for any value I ∈ V.

https://arxiv.org/abs/1805.07742
https://arxiv.org/abs/1805.07742

H. Fu, J. Li, and P. Xu 56:3

expectation of the total profits E
[∑T

t=1 g(It, at) +h(IT+1)
]
. Formally, we want to determine:

DP∗(s1) = max
{a1,...,aT }⊆A

E
[T∑
t=1

g(It, at) + h(IT+1)
]

(DP)

subject to: It+1 = f(It, at), t = 1, . . . , T.

By Bellman’s equation [3], for every initial state s1 = (I1,A), the optimal value DP∗(s1) is
given by DP1(I1,A). Here DP1 is the function defined by DPT+1(IT+1) = h(IT+1) together
with the recursion:

DPt(It,At) = max
at∈At

E
[
DPt+1(f(It, at),At \ at) + g(It, at)

]
, t = 1, . . . , T. (2)

When the value and the item spaces are finite, and the expectations can be computed,
this recursion yields an algorithm to compute the optimal value. However, since the state
space S = V × 2A is exponentially large, this exact algorithm requires exponential time.
Since this model can capture several stochastic optimization problems which are known (or
believed) be #P-hard or even PSPACE-hard, we are interested in obtaining polynomial-time
approximation algorithms with provable performance guarantees.

1.1 Our Results
In order to obtain a polynomial time approximation scheme (PTAS) for the stochastic
dynamic program, we need the following assumptions.

I Assumption 1. In this paper, we make the following assumptions.
1. The value space V is discrete and ordered, and its size |V| is a constant. W.l.o.g., we

assume V = (0, 1, . . . , |V| − 1).
2. The function f satisfies that f(It, at) ≥ It, which means the value is nondecreasing.
3. The function h : V → R≥0 is a nonnegative function. The expected profit E[g(It, at)] is

nonnegative (although the function g(It, at) may be negative with nonzero probability).

Assumption (1) seems to be quite restrictive. However, for several concrete problems
where the value space is not of constant size (e.g., Probemax in Section 1.2), we can discretize
the value space and reduce its size to a constant, without losing much profit. Assumption (2)
and (3) are quite natural for many problems. Now, we state our main result.

I Theorem 1. For any fixed ε > 0, if Assumption 1 holds, we can find an adaptive
policy in polynomial time n2O(ε−3) with expected profit at least OPT − O(ε) · MAX where
MAX = maxI∈V DP1(I,A) and OPT denotes the expected profit of the optimal adaptive
policy.

Our Approach: For the stochastic dynamic program, an optimal adaptive policy σ can
be represented as a decision tree T (see Section 2 for more details). The decision tree
corresponding to the optimal policy may be exponentially large and arbitrarily complicated.
Hence, it is unlikely that one can even represent an optimal decision for the stochastic
dynamic program in polynomial space. In order to reduce the space, we focus a special class
of policies, called block adaptive policy. The idea of block adptive policy was first introduced
by Bhalgatet al. [6] and further generalized in [17] to the context of the stochastic knapsack.
To the best of our knowledge, the idea has not been extended to other applications. In this
paper, we make use of the notion of block policy as well, but we target at the development

ICALP 2018

56:4 A PTAS for a Class of Stochastic Dynamic Programs

of a general framework. For this sake we provide a general model of block policy (see Section
3). Since we need to work with the more abstract dynamic program, our construction of
block adaptive policy is somewhat different from that in [6, 17].

Roughly speaking, in a block adaptive policy, we take a batch of items simultaneously
instead of a single one each time. This can significantly reduce the size of the decision tree.
Moreover, we show that there exists a block-adaptive policy that approximates the optimal
adaptive policy and has only a constant number of blocks on the decision tree (the constant
depends on ε). Since the decision tree corresponding to a block adaptive policy has a constant
number of nodes, the number of all topologies of the block decision tree is a constant. Fixing
the topology of the decision tree corresponding to the block adaptive policy, we still need
to decide the subset of items to place in each block. Again, there is exponential number of
possible choices. For each block, we can define a signature for it, which allows us to represent
a block using polynomially many possible signatures. The signatures are so defined such
that two subsets with the same signature have approximately the same reward distribution.
Finally, we show that we can enumerate the signatures of all blocks in polynomial time using
dynamic programming and find a nearly optimal block-adaptive policy. The high level idea
is somewhat similar to that in [17], but the details are again quite different.

1.2 Applications
Our framework can be used to obtain the first PTAS for the following problems.

1.2.1 The Probemax Problem
In the Probemax problem, we are given a set of n items. Each item i ∈ [n] has a value
Xi which is an independent random variable following a known (discrete) distribution πi.
We can probe a subset P ⊆ [n] of items sequentially. Each time after probing an item i,
we observe its value realization, which is an independent sample from the distribution πi.
We can adaptively probe at most m items and each item can be probed at most once. The
reward is the maximum among the m realized values. Our goal is to design an adaptive
probing policy such that the expected value of the reward is maximized.

Despite being a very basic stochastic optimization problem, we still do not have a complete
understanding of the approximability of the Probemax problem. It is not even known whether
it is intractable to obtain the optimal policy. For the non-adaptive Probemax problem
(i.e., the probed set P is just a priori fixed set), it is easy to obtain a 1− 1/e approximation
by noticing that f(P) = E[maxi∈P Xi] is a submodular function (see e.g., Chen et al. [8]).
Chen et al. [8] obtained the first PTAS. When considering the adaptive policies, Munagala
[19] provided a 1

8 -approximation ratio algorithm by LP relaxation. His policy is essentially a
non-adaptive policy (it is related to the contention resolution schemes [23, 10]). They also
showed that the adaptivity gap (the gap between the optimal adaptive policy and optimal
non-adaptive policy) is at most 3. For the Probemax problem, the best-known approximation
ratio is 1 − 1

e . Indeed, this can be obtained using the algorithm for stochastic monotone
submodular maximization in Asadpour et al. [2]. This is also a non-adaptive policy, which
implies the adaptivity gap is at most e

e−1 . In this paper, we provide the first PTAS, among
all adaptive policies. Note that our policy is indeed adaptive.

I Theorem 2. There exists a PTAS for the Probemax problem. In other words, for any fixed
constant ε > 0, there is a polynomial-time approximation algorithm for the Probemax problem
that finds a policy with the expected profit at least (1−ε)OPT, where OPT denotes the expected
profit of the optimal adaptive policy.

H. Fu, J. Li, and P. Xu 56:5

Let the value It be the maximum among the realized values of the probed items at the time
period t. Using our framework, we have the following system dynamics for Probemax:

It+1 = f(It, i) = max{It, Xi}, g(It, i) = 0, and h(IT+1) = IT+1 (3)

t = 1, 2, . . . , T . Clearly, Assumption 1 (2) and (3) are satisfied. But Assumption 1 (1) is
not satisfied because the value space V is not of constant size. We can discretize the value
space and reduce its size to a constant. See full version for more details. If the reward
is the summation of top-k values (k = O(1)) among the m realized values, we obtain the
ProbeTop-k problem. Our techniques also allow us to derive the following result.

I Theorem 3. For the ProbeTop-k problem where k is a constant, there is a polynomial time
algorithm that finds an adaptive policy with the expected profit at least (1− ε)OPT, where
OPT denotes the expected profit of the optimal adaptive policy.

1.2.2 Committed ProbeTop-k Problem
We are given a set of n items. Each item i ∈ [n] has a value Xi which is an independent
random variable with a known (discrete) distribution πi. We can adaptively probe at most m
items and choose k values in the committed model, where k is a constant. In the committed
model, once we probe an item and observe its value realization, we must make an irrevocable
decision whether to choose it or not, i.e., we must either add it to the final chosen set C
immediately or discard it forever. 3 If we add the item to the final chosen set C, the realized
profit is collected. Otherwise, no profit is collected and we are going the probe the next item.
Our goal is to design an adaptive probing policy such that the expected value E[

∑
i∈C Xi] is

maximized, where C is the final chosen set.

I Theorem 4. There is a polynomial time algorithm that finds a committed policy with the
expected profit at least (1− ε)OPT for the committed ProbeTop-k problem, where OPT is the
expected total profit obtained by the optimal policy.

Let bθi represent the action that we probe item i with the threshold θ (i.e., we choose item i

if Xi realizes to a value s such that s ≥ θ). Let It be the the number of items that have been
chosen at the period time t. Using our framework, we have following transition dynamics for
the ProbeTop-k problem.

It+1 = f(It, bθi) =
{
It + 1 if Xi ≥ θ, It < k,

It otherwise; g(It, bθi) =
{
Xi if Xi ≥ θ, It < k,

0 otherwise; (4)

for t = 1, 2, . . . , T , and h(IT+1) = 0. Since k is a constant, Assumption 1 is immediately
satisfied. There is one extra requirement for the problem: in any realization path, we can
choose at most one action bθi from the set Bi = {bθi }θ.

1.2.3 Committed Pandora’s Box Problem
For Weitzman’s “Pandora’s box” problem [24], we are given n boxes. For each box i ∈ [n], the
probing cost ci is deterministic and the value Xi is an independent random variable with a
known (discrete) distribution πi. Opening a box i incurs a cost of ci. When we open the box i,
its value is realized, which is a sample from the distribution πi. The goal is to adaptively open

3 In [10, 11], it is called the online decision model.

ICALP 2018

56:6 A PTAS for a Class of Stochastic Dynamic Programs

a subset P ⊆ [n] to maximize the expected profit: E
[
maxi∈P {Xi} −

∑
i∈P ci

]
. Weitzman

provided an elegant optimal adaptive strategy, which can be computed in polynomial time.
Recently, Singla [22] generalized this model to other combinatorial optimization problems
such as matching, set cover and so on.

In this paper, we focus on the committed model, which is mentioned in Section 1.2.2.
Again, we can adaptively open the boxes and choose at most k values in the committed way,
where k is a constant. Our goal is to design an adaptive policy such that the expected value
E
[∑

i∈C Xi −
∑
i∈P ci

]
is maximized, where C ⊆ P is the final chosen set and P is the set

of opened boxes. Although the problem looks like a slight variant of Weitzman’s original
problem, it is quite unlikely that we can adapt Weitzman’s argument (or any argument at
all) to obtain an optimal policy in polynomial time. When k = O(1), we provide the first
PTAS for this problem. Note that a PTAS is not known previously even for k = 1.

I Theorem 5. When k = O(1), there is a polynomial time algorithm that finds a committed
policy with the expected value at least (1− ε)OPT for the committed Pandora’s Box problem.

Similar to the committed ProbeTop-k problem, let bθi represent the action that we open
the box i with threshold θ. Let It be the number of boxes that have been chosen at the
time period t. Using our framework, we have following system dynamics for the committed
Pandora’s Box problem:

It+1 = f(It, bθi) =
{

It + 1 if Xi ≥ θ, It < k,

It otherwise; g(It, bθi) =
{

Xi − ci if Xi ≥ θ, It < k,

−ci otherwise; (5)

for t = 1, 2, · · · , T , and h(IT+1) = 0. Notice that we never take an action bθi for a value
It < k if E[g(It, bθi)] = Pr[Xt ≥ θ] ·E[Xi |Xi ≥ θ]−ci < 0. Then Assumption 1 is immediately
satisfied.

1.2.4 Stochastic Target Problem
İlhan et al. [15] introduced the following stochastic target problem. 4 In this problem, we
are given a predetermined target T and a set of n items. Each item i ∈ [n] has a value Xi

which is an independent random variable with a known (discrete) distribution πi. Once we
decide to insert an item i into a knapsack, we observe a reward realization Xi which follows
the distribution πi. We can insert at most m items into the knapsack and our goal is to
design an adaptive policy such that Pr[

∑
i∈P Xi ≥ T] is maximized, where P ⊆ [n] is the set

of inserted items. For the stochastic target problem, İlhan et al. [15] provided some heuristic
based on dynamic programming for the special case where the random profit of each item
follows a known normal distribution. In this paper, we provide an additive PTAS for the
stochastic target problem when the target is relaxed to (1− ε)T.

I Theorem 6. There exists an additive PTAS for stochastic target problem if we relax the
target to (1− ε)T. In other words, for any given constant ε > 0, there is a polynomial-time
approximation algorithm that finds a policy such that the probability of the total rewards
exceeding (1− ε)T is at least OPT− ε, where OPT is the resulting probability of an optimal
adaptive policy.

4 [15] called the problem the adaptive stochastic knapsack instead. However, their problem is quite
different from the stochastic knapsack problem studied in the theoretical computer science literature.
So we use a different name.

H. Fu, J. Li, and P. Xu 56:7

Let the value It be the total profits of the items in the knapsack at time period t. Using our
framework, we have following system dynamics for the stochastic target problem:

It+1 = f(It, i) = It +Xi, g(It, i) = 0, and h(IT+1) =
{

1 if IT+1 ≥ T,
0 otherwise; (6)

for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But Assumption 1 (1)
is not satisfied for that the value space V is not of constant size. We can discretize the value
space and reduce its size to a constant.

1.2.5 Stochastic Blackjack Knapsack
Levin et al. [16] introduced the stochastic blackjack knapsack. In this problem, we are given
a capacity C and a set of n items, each item i ∈ [n] has a size Xi which is an independent
random variable with a known distribution πi and a profit pi. We can adaptively insert
the items into a knapsack, as long as the capacity constraint is not violated. Our goal is
to design an adaptive policy such that the expected total profits of all items inserted is
maximized. The key feature here different from classic stochastic knapsack is that we gain
zero if overflow, i.e., we will lose the profits of all items inserted already if the total size is
larger than the capacity. This extra restriction might induce us to take more conservative
policies. Levin et al. [16] presented a non-adaptive policy with expected value that is at least
(
√

2−1)2/2 ≈ 1/11.66 times the expected value of the optimal adaptive policy. Chen et al. [7]
assumed each size Xi follows a known exponential distribution and gave an optimal policy
for n = 2 based on dynamic programming. In this paper, we provide the first bi-criteria
PTAS for the problem.

I Theorem 7. For any fixed constant ε > 0, there is a polynomial-time approximation
algorithm for stochastic blackjack knapsack that finds a policy with the expected profit at least
(1− ε)OPT, when the capacity is relaxed to (1 + ε)C, where OPT is the expected profit of the
optimal adaptive policy.

Denote It = (It,1, It,2) and let It,1, It,2 be the total sizes and total profits of the items in the
knapsack at the time period t respectively. When we insert an item i into the knapsack and
observe its size realization, say si, we define the system dynamics function to be

It+1 = f(It, i) = (It,1 + si, It,2 + pi), h(IT+1) =
{
IT+1,2 if IT+1,1 ≤ C,

0 otherwise; (7)

and g(It, i) = 0 for t = 1, 2, · · · , T . Then Assumption 1 (2,3) is immediately satisfied. But
Assumption 1 (1) is not satisfied for that the value space V is not of constant size. We can
discretize the value space and reduce its size to a constant.

1.3 Related Work
Stochastic dynamic program has been widely studied in computer science and operation
research (see, for example, [4, 20]) and has many applications in different fields. It is
a natural model for decision making under uncertainty. In 1950s, Richard Bellman [3]
introduced the “principle of optimality” which leads to dynamic programming algorithms for
solving sequential stochastic optimization problems. However, Bellman’s principle does not
immediate lead to efficient algorithms for many problems due to “curse of dimensionality”
and the large state space.

ICALP 2018

56:8 A PTAS for a Class of Stochastic Dynamic Programs

There are some constructive frameworks that provide approximation schemes for certain
classes of stochastic dynamic programs. Shmoys et al. [21] dealt with stochastic linear
programs. Halman et al. [12, 13, 14] studied stochastic discrete DPs with scalar state and
action spaces and designed an FPTAS for their framework. As one of the applications, they
used it to solve the stochastic ordered adaptive knapsack problem. As a comparison, in our
model, the state space S = V × 2A is exponentially large and hence cannot be solved by
previous framework.

Stochastic knapsack problem (SKP) is one of the most well-studied stochastic combinat-
orial optimization problem. We are given a knapsack of capacity C. Each item i ∈ [n] has
a random value Xi with a known distribution πi and a profit pi. We can adaptively insert
the items to the knapsack, as long as the capacity constraint is not violated. The goal is
to maximize the expected total profit of all items inserted. For SKP, Dean et al. [9] first
provide a constant factor approximation algorithm. Later, Bhalgat et al. [6] improved that
ratio to 3

8 − ε and gave an algorithm with ratio of (1− ε) by using ε extra budget for any
given constant ε ≥ 0. In that paper, the authors first introduced the notion of block adaptive
policies, which is crucial for this paper. The best known single-criterion approximation factor
is 2 [5, 17, 18].

The Probemax problem and ProbeTop-k problem are special cases of the general stochastic
probing framework formulated by Gupta et al. [11]. They showed that the adaptivity gap
of any stochastic probing problem where the outer constraint is prefix-closed and the inner
constraint is an intersection of p matroids is at most O(p3 log(np)), where n is the number
of items. The Bernoulli version of stochastic probing was introduced in [10], where each
item i ∈ U has a fixed value wi and is “active” with an independent probability pi. Gupta
et al. [10] presented a framework which yields a 1

4(kin+kout) -approximation algorithm for the
case when Iin and Iout are respectively an intersection of kin and kout matroids. This ratio
was improved to 1

(kin+kout) by Adamczyk et al. [1] using the iterative randomized rounding
approach. Weitzman’s Pandora’s Box is a classical example in which the goal is to find
out a single random variable to maximize the utility minus the probing cost. Singla [22]
generalized this model to other combinatorial optimization problems such as matching, set
cover, facility location, and obtained approximation algorithms.

2 Policies and Decision Trees

An instance of stochastic dynamic program is given by J = (V,A, f, g, h, T). For each item
a ∈ A and values I, J ∈ V, we denote Φa(I, J) := Pr[f(I, a) = J] and Ga(I) := E[g(I, a)].
The process of applying a feasible adaptive policy σ can be represented as a decision tree
Tσ. Each node v on Tσ is labeled by a unique item av ∈ A. Before selecting the item av, we
denote the corresponding time index, the current value and the set of the remaining available
items by tv, Iv and A(v) respectively. Each node has several children, each corresponding to a
different value realization (one possible f(Iv, av)). Let e = (v, u) be the s-th edge emanating
from s ∈ V where s is the realized value. We call u the s-child of v. Thus e has probability
πe := πv,s = Φav (Iv, s) and weight we := s.

We use P(σ) to denote the expected profit that the policy σ can obtain. For each node v
on Tσ, we define Gv := Gav(Iv). In order to clearly illustrate the tree structure, we add a
dummy node at the end of each root-to-leaf path and set Gv = h(Iv) if v is a dummy node.
Then, we recursively define the expected profit of the subtree Tv rooted at v to be

P(v) = Gv +
∑

e=(v,u)

πe · P(u), (8)

H. Fu, J. Li, and P. Xu 56:9

if v is an internal node and P(v) = Gv = h(Iv) if v is a leaf (i.e., the dummy node). The
expected profit P(σ) of the policy σ is simply P(the root of Tσ). Then, according to Equation
(2), we have

P(v) ≤ DPtv (Iv,A(v)) ≤ DP1(Iv,A) ≤ max
I∈V

DP1(I,A) = MAX

for each node v. For a node v, we say the path from the root to it on Tσ as the realization path
of v, and denote it by R(v). We denote the probability of reaching v as Φ(v) = Φ(R(v)) =∏
e∈R(v) πe. Then, we have

P(σ) =
∑
v∈Tσ

Φ(v) · Gv. (9)

We use OPT to denote the expected profit of the optimal adaptive policy. For each node
v on the tree Tσ, by Assumption 1 (2) that f(Iv, av) ≥ Iv, we define µv := Pr[f(Iv, av) >
Iv] = 1− Φav (Iv, Iv). For a set of nodes P , we define µ(P) :=

∑
v∈P µv.

I Lemma 8. Given an policy σ, there is a policy σ′ with profit at least OPT−O(ε)·MAX which
satisfies that for any realization path R, µ(R) ≤ O(1/ε), where MAX = maxI∈V DP1(I,A).

W.l.o.g, we assume that all (optimal or near optimal) policies σ considered in this paper
satisfy that for any realization R, µ(R) ≤ O(1/ε).

3 Block Adaptive Policies

The decision tree corresponding to the optimal policy may be exponentially large and
arbitrarily complicated. Now we consider a restrict class of policies, called block-adaptive
policy. The concept was first introduced by Bhalgat et al. [6] in the context of stochastic
knapsack. Our construction is somewhat different from that in [6, 17]. Here, we need to
define an order for each block and introduce the notion of approximate block policy.

Formally, a block-adaptive policy σ̂ can be thought as a decision tree Tσ̂. Each node on
the tree is labeled by a block which is a set of items. For a block M , we choose an arbitrary
order ϕ for the items in the block. According to the order ϕ, we take the items one by one,
until we get a bigger value or all items in the block are taken but the value does not change
(recall from Assumption 1 that the value is nondecreasing). Then we visit the child block
which corresponds to the realized value. We use IM to denote the current value right before
taking the items in the block M . Then for each edge e = (M,N), it has probability

πϕe =
∑
a∈M

[(∏
ϕb<ϕa

Φb(IM , IM)
)
· Φa(IM , IN)

]

if IN > IM and πϕe =
∏
a∈M Φa(IM , IM) if IN = IM .

Similar to Equation (8), for each block M and an arbitrary order ϕ for M , we recursively
define the expected profit of the subtree TM rooted at M to be

P(M) = GϕM +
∑

e=(M,N)

πϕe · P(N) (10)

if M is an internal block and P(M) = h(IM) if M is a leaf (i.e., the dummy node). Here GϕM
is the expected profit we can get from the block which is equal to

GϕM =
∑
a∈M

[(∏
ϕb<ϕa

Φb(IM , IM)
)
· Ga(IM)

]
.

ICALP 2018

56:10 A PTAS for a Class of Stochastic Dynamic Programs

Since the profit GϕM and the probability πϕe are dependent on the order ϕ and thus difficult
to deal with, we define the approximate block profit and the approximate probability which
do not depend on the choice of the specific order ϕ:

G̃M =
∑
a∈M
Ga(IM) and π̃e =

∑
a∈M

 ∏
b∈M\a

Φb(IM , IM)

 · Φa(IM , IN)

 (11)

if IN > IM and π̃e =
∏
a∈M Φa(IM , IM) if IN = IM . Then we recursively define the

approximate profit

P̃(M) = G̃M +
∑

e=(M,N)

π̃e · P̃(N), (12)

if M is an internal block and P̃(M) = P(M) = h(IM) if M is a leaf. For each block M , we
define µ(M) :=

∑
a∈M [1− Φa(IM , IM)]. Lemma 9 below can be used to bound the gap

between the approximate profit and the original profit if the policy satisfies the following
property.Then it suffices to consider the approximate profit for a block adaptive policy σ̂ in
this paper.
(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.

I Lemma 9. For any block-adaptive policy σ̂ satisfying Property (P1), we have(
1 +O(ε2)

)
· P̃(σ̂) ≥ P(σ̂) ≥

(
1− ε2) · P̃(σ̂).

3.1 Constructing a Block Adaptive Policy
In this section, we show that there exists a block-adaptive policy that approximates the
optimal adaptive policy. In order to prove this, from an optimal (or nearly optimal) adaptive
policy σ, we construct a block adaptive policy σ̂ which satisfies certain nice properties and
can obtain almost as much profit as σ does. Thus it is sufficient to restrict our search to the
block-adaptive policies. The construction is similar to that in [17].

I Lemma 10. An optimal policy σ can be transformed into a block adaptive policy σ̂ with
approximate expected profit P̃(σ̂) at least OPT−O(ε) ·MAX. Moreover, the block-adaptive
policy σ̂ satisfies Property (P1) and (P2):
(P1) Each block M with more than one item satisfies that µ(M) ≤ ε2.
(P2) There are at most O(ε−3) blocks on any root-to-leaf path on the decision tree.

Proof (sketch). For a node v on the decision tree Tσ and a value s ∈ V , we use vs to denote
the s-child of v, which is the child of v corresponding to the realized value s (see Figure 1).
We say an edge ev,u is non-increasing if Iv = Iu and define the leftmost path of v to be the
realization path which starts at v, ends at a leaf, and consists of only the non-increasing
edges.

We say a node v is a starting node if v is the root or v corresponds to an increasing value
of its parent v′ (i.e., Iv > Iv′). For each staring node v, we greedily partition the leftmost
path of v into several segments such that for any two nodes u,w in the same segment M
and for any value s ∈ V, we have

|P(us)− P(ws)| ≤ ε2 ·MAX and µ(M) ≤ ε2. (13)

For each root-to-leaf path R, Equation (13) can yield at most O(ε−3) blocks. Now, we are
ready to describe the algorithm, which takes a policy σ as input and outputs a block adaptive

H. Fu, J. Li, and P. Xu 56:11

Figure 1 Decision tree and block policy.

Algorithm 1 A policy σ̂.
Input: A policy σ.
1: We start at the root of Tσ.
2: repeat
3: Suppose we are at node v on Tσ. Take the items in seg(v) one by one in the original

order (the order of items in policy σ) until some node u makes a transition to an
increasing value, say s.

4: Visit the node l(v)s, the s-child of l(v) (i.e., the last node of seg(v)).
5: If all items in seg(v) have been taken and the value does not change, visit l(v)Iv .
6: until A leaf on Tσ is reached.

policy σ̂. For each node v, we denote its segment seg(v) and use l(v) to denote the last node
in seg(v). In Algorithm 1, we can see that the set of items which the policy σ̂ attempts to
take always corresponds to some realization path in the original policy σ. Property (P1) and
(P2) hold immediately following from the partition argument. Then we can show that the
expected profit P(σ̂) that the new policy σ̂ can obtain is at least OPT−O(ε2) ·MAX. J

3.2 Enumerating Signatures
To search for the (nearly) optimal block-adaptive policy, we want to enumerate all possible
structures of the block decision tree. Fixing the topology of the decision tree, we need to
decide the subset of items to place in each block. To do this, we define the signature such that
two subsets with the same signature have approximately the same profit distribution. Then,
we can enumerate the signatures of all blocks in polynomial time and find a nearly optimal
block-adaptive policy. Formally, for an item a ∈ A and a value I ∈ V = (0, 1, . . . , |V| − 1),
we define the signature of a on I to be the following vector

SgI(a) =
(
Φ̄a(I, 0), Φ̄a(I, 1), . . . , Φ̄a(I, |V| − 1), Ḡa(I)

)
,

where Φ̄a(I, J) =
⌊
Φa(I, J) · nε4

⌋
· ε

4

n and Ḡa(I) =
⌊
Ga(I) · n

ε4MAX
⌋
· ε

4MAX
n for any J ∈ V. 5

For a block M of items, we define the signature of M on I to be SgI(M) =
∑
a∈M SgI(a).

I Lemma 11. Consider two decision trees T1, T2 corresponding to block-adaptive policies
with the same topology (i.e., T1 and T2 are isomorphic) and the two block adaptive policies

5 If MAX = maxI∈V DP1(I,A) is unknown, for some several concrete problems (e.g., Probemax), we can
get a constant approximation result for MAX, which is sufficient for our purpose. In general, we can
guess a constant approximation result for MAX using binary search.

ICALP 2018

56:12 A PTAS for a Class of Stochastic Dynamic Programs

satisfy Property (P1) and (P2). If for each block M1 on T1, the block M2 at the corresponding
position on T2 satisfies that SgI(M1) = SgI(M2) where I = IM1 = IM2 , then |P̃(T1)−P̃(T2)| ≤
O(ε) ·MAX.

Since |V | = O(1), the number of possible signatures for a block is O
(
(n/ε4)|V|

)
= nO(1),

which is a polynomial of n. By Lemma 10, for any block decision tree T , there are at most
(|V|)O(ε−3) = 2O(ε−3) blocks on the tree which is a constant.

3.3 Finding a Nearly Optimal Block-adaptive Policy
In this section, we find a nearly optimal block-adaptive policy and prove Theorem 1. To do
this, we enumerate over all topologies of the decision trees along with all possible signatures
for each block. This can be done by a standard dynamic programming.

Consider a given tree topology T . A configuration C is a set of signatures each corres-
ponding to a block. Let t1 and t2 be the number of paths and blocks on T respectively. We
define a vector CA = (u1, u2, . . . , ut1) where uj is the upper bound of the number of items
on the jth path. For each given i ∈ [n],C and CA, letM(i,C,CA) = 1 indicate that we can
reach the configuration C using a subset of items {a1, . . . , ai} such that the total number
of items on each path j is no more than uj and 0 otherwise. Set M(0,0,0) = 1 and we
computeM(i,C,CA) in an lexicographically increasing order of (i,C,CA) as follows:

M(i,C,CA) = max
{
M(i− 1,C,CA),M(i− 1,C′,CA′)

}
(14)

Now, we explain the above recursion as follows. In each step, we should decide how to place
the item ai on the tree T . Notice that there are at most t2 = (|V|)O(ε−3) = 2O(ε−3) blocks
and therefore at most 2t2 possible placements of item ai and each placement is called feasible
if there are no two blocks on which we place the item ai have an ancestor-descendant relation.
For a feasible placement of ai, we subtract Sg(ai) from each entry in C corresponding to the
block we place ai and subtract 1 from CA on each entry corresponding to a path including
ai, and in this way we get the resultant configuration C′ and CA′ respectively. Hence, the
max is over all possible such C′,CA′.

We have shown that the total number of all possible configurations on T is nt2 . The
total number of vectors CA is T t1 ≤ nt1 ≤ nt2 = nt2 where T is the number of rounds. For
each given (i,C,CA), the computation takes a constant time O(2t2). Thus we claim for a
given tree topology, finding the optimal configuration can be done within O(n2O(ε−3)) time .

The proof of Theorem 1. Suppose σ∗ is the optimal policy with expected profit P(σ∗) =
OPT. We use the above dynamic programming to find a nearly optimal block adaptive policy
σ. By Lemma 10, there exists a block adaptive policy σ̂ such that

P̃(σ̂) ≥ OPT−O(ε)MAX.

Since the configuration of σ̂ is enumerated at some step of the algorithm, our dynamic
programming is able to find a block adaptive policy σ with the same configuration (the same
tree topology and the same signatures for corresponding blocks). By Lemma 11, we have

P̃(σ) ≥ P̃(σ̂)−O(ε)MAX ≥ OPT−O(ε)MAX.

By Lemma 9, we have P(σ) ≥
(
1− ε2) · P̃(σ) ≥ OPT − O(ε)MAX. Hence, the proof of

Theorem 1 is completed. J

H. Fu, J. Li, and P. Xu 56:13

References

1 Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic probing
on matroids. Mathematics of Operations Research, 41(3):1022–1038, 2016.

2 Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular
functions. Management Science, 62(8):2374–2391, 2015.

3 Richard Bellman. Dynamic programming. In Princeton University Press, 1957.
4 Dimitri P. Bertsekas. Dynamic programming and optimal control. Athena scientific Belmont,

MA, 1995.
5 Anand Bhalgat. A (2 + ε)-approximation algorithm for the stochastic knapsack problem.

Unpublished Manuscript, 2011.
6 Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved approximation results for

stochastic knapsack problems. Proceedings of the twenty-second annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 1647–1665, 2011.

7 Kai Chen and Sheldon M. Ross. An adaptive stochastic knapsack problem. European
Journal of Operational Research, 239(3):625–635, 2014. doi:10.1016/j.ejor.2014.06.
027.

8 Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed
bandit with general reward functions. Advances in Neural Information Processing Systems,
2016.

9 Brian C Dean, Michel X Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 395–404. Society for Industrial and Applied Mathematics,
2005.

10 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applica-
tions. In International Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 205–216. Springer, 2013.

11 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity gaps
for stochastic probing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1731–1747. Society for Industrial and Applied Math-
ematics, 2016.

12 Nir Halman, Diego Klabjan, Chung Lun Li, James Orlin, and David Simchi-Levi. Fully
polynomial time approximation schemes for stochastic dynamic programs. In Nineteenth
Acm-Siam Symposium on Discrete Algorithms, pages 700–709, 2008.

13 Nir Halman, Diego Klabjan, Chung-Lun Li, James Orlin, and David Simchi-Levi. Fully
polynomial time approximation schemes for stochastic dynamic programs. SIAM Journal
on Discrete Mathematics, 28(4):1725–1796, 2014.

14 Nir Halman, Giacomo Nannicini, and James Orlin. A computationally efficient fptas for
convex stochastic dynamic programs. SIAM Journal on Optimization, 25(1):317–350, 2015.

15 Taylan İlhan, Seyed MR Iravani, and Mark S Daskin. The adaptive knapsack problem with
stochastic rewards. Operations Research, 59(1):242–248, 2011.

16 Asaf Levin and Aleksander Vainer. Adaptivity in the stochastic blackjack knapsack problem.
Theoretical Computer Science, 516:121–126, 2014.

17 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation.
Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 971–
980, 2013.

18 Will Ma. Improvements and generalizations of stochastic knapsack and markovian bandits
approximation algorithms. Mathematics of Operations Research, 2017. doi:10.1287/moor.
2017.0884.

ICALP 2018

http://dx.doi.org/10.1016/j.ejor.2014.06.027
http://dx.doi.org/10.1016/j.ejor.2014.06.027
http://dx.doi.org/10.1287/moor.2017.0884
http://dx.doi.org/10.1287/moor.2017.0884

56:14 A PTAS for a Class of Stochastic Dynamic Programs

19 Kamesh Munagala. Approximation algorithms for stochastic optimization. https://
simons.berkeley.edu/talks/kamesh-munagala-08-22-2016-1, Simons Institue for the
Theory of Computing, 2016.

20 Warren B Powell. Approximate Dynamic Programming: Solving the Curses of Dimension-
ality, volume 842. John Wiley & Sons, 2011.

21 David B Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear
programming and its application to stochastic integer programs. Journal of the ACM
(JACM), 53(6):978–1012, 2006.

22 Sahil Singla. The price of information in combinatorial optimization. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2523–2532.
SIAM, 2018.

23 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 783–792. ACM, 2011.

24 Martin L. Weitzman. Optimal search for the best alternative. Econometrica, 47(3):641–654,
1979.

https://simons.berkeley.edu/talks/kamesh-munagala-08-22-2016-1
https://simons.berkeley.edu/talks/kamesh-munagala-08-22-2016-1

	Introduction
	Our Results
	Applications
	The Probemax Problem
	Committed ProbeTop-k Problem
	Committed Pandora's Box Problem
	Stochastic Target Problem
	Stochastic Blackjack Knapsack

	Related Work

	Policies and Decision Trees
	Block Adaptive Policies
	Constructing a Block Adaptive Policy
	Enumerating Signatures
	Finding a Nearly Optimal Block-adaptive Policy

