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Abstract
We study the classic bin packing problem in a fully-dynamic setting, where new items can
arrive and old items may depart. We want algorithms with low asymptotic competitive ratio
while repacking items sparingly between updates. Formally, each item i has a movement cost
ci ≥ 0, and we want to use α ·OPT bins and incur a movement cost γ ·ci, either in the worst case,
or in an amortized sense, for α, γ as small as possible. We call γ the recourse of the algorithm.
This is motivated by cloud storage applications, where fully-dynamic bin packing models the
problem of data backup to minimize the number of disks used, as well as communication incurred
in moving file backups between disks. Since the set of files changes over time, we could recompute
a solution periodically from scratch, but this would give a high number of disk rewrites, incurring
a high energy cost and possible wear and tear of the disks. In this work, we present optimal
tradeoffs between number of bins used and number of items repacked, as well as natural extensions
of the latter measure.
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1 Introduction

Consider the problem of data backup on the cloud, where multiple users’ files are stored on
disks (for simplicity, of equal size). This is modeled by the bin packing problem, where the
items are files and the bins are disks, and we want to pack the items in a minimum number
of bins. However, for the backup application, files are created and deleted over time. The
storage provider wants to use a small number of disks, and also keep the communication
costs incurred by file transfers to a minimum. Specifically, we want bounded “recourse”, i.e.,
items should be moved sparingly while attempting to minimize the number of bins used in
the packing. These objectives are at odds with each other, and the natural question is to
give optimal tradeoffs between them.

Formally, an instance I of the bin packing problem consists of a list of n items of sizes
s1, s2, . . . , sn ∈ [0, 1]. A bin packing algorithm seeks to pack the items of I into a small
number of unit-sized bins; let OPT (I) be the minimum number of unit-sized bins needed to
pack all of I’s items. This NP-hard problem has been studied since the 1950s, with hundreds
of papers addressing its many variations; see e.g., [18, Chapter 2] and [7] for surveys. Much
of this work (e.g. [27, 39, 29, 30, 31, 37, 36, 33, 16, 2]) starting with [35] studies the online
setting, where items arrive sequentially and are packed into bins immediately and irrevocably.
While the offline problem is approximable to within an additive term of O(logOPT ) [17],
in the online setting there is a 1.540-multiplicative gap between the algorithm and OPT in
the worst case, even as OPT →∞ [2]. Given the wide applicability of the online problem,
researchers have studied the problem where a small amount of repacking is allowed upon
item additions and deletions. Our work focuses on the bounded recourse setting, and we
give optimal tradeoffs between the number of bins used and amount of repacking required in
the fully-dynamic setting for several settings.

A fully-dynamic bin packing algorithm A, given a sequence of item insertions and
deletions, maintains at every time t a feasible solution to the bin packing instance It given
by items inserted and not yet deleted until time t. Every item i has a size si and a movement
cost ci, which A pays every time A moves item i between bins. Different approaches have
been developed to measure the amount of repacking, in the context of data backup these
measures corresponds to the communication or energy cost. For example, the movement cost
ci may be proportional to the size of the file (which is the communication cost if the files are
all large), or may be a constant (if the files are small, and the overhead is entirely in setting
up the connections), or may depend on the file in more complicated ways.

Formally, the fully-dynamic bin packing problem is as follows.

I Definition 1.1. A fully-dynamic algorithm A has (i) an asymptotic competitive ratio α,
(ii) additive term β and (iii) recourse γ, if at each time t it packs the instance It in at most
α ·OPT (It) + β bins, while paying at most γ ·

∑t
i=1 ci movement cost until time t. If at each

time t algorithm A incurs at most γ · ct movement cost, for ct the cost of the item updated at
time t, we say A has worst-case recourse γ, otherwise we say it has amortized recourse γ.
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Any algorithm must pay 1
2
∑t
i=1 ci movement cost just to insert the items, so an algorithm

with γ recourse spends at most 2γ times more movement cost than the absolute minimum.
The goal is to design algorithms which simultaneously have low asymptotic competitive ratio
(a.c.r), additive term, and recourse. There is a natural tension between the a.c.r and recourse,
so we want to find the optimal a.c.r-to-recourse trade-offs.

1.1 Related Work
Based on the classical bin packing Problem [14], different online and dynamic variants have
been developed and investigated. Due to space constraints we focus on the scenarios which
share the most important properties with our model and only mention the best results for
them. In the Online Bin Packing Problem [35], the items are unknown to the algorithm at
the beginning and appear one after another. Balogh et al. [2] show a lower bound of 1.54037
for this problem and Seiden [33] presents an approximation algorithm with a competitive
ratio of 1.58889. In the Dynamic Bin Packing setting [28], additionally to arrivals as in the
Online Bin Packing Problem departures of items are also allowed. Here, a lower bound of
8/3 by Wong et al. [38] and an upper bound of 2.897 by Coffman et al. [28] exist.

We now turn our attention to the models which allow repacking of items. In the Relaxed
Online Bin Packing Problem, first studied by Gambosi et al. [12, 13], online arrivals and no
departures occur, but repacking of items is allowed. Repacking means that items can be
assigned to another bin in the course of the execution, while in a setting without repacking
decisions are irrevocable. Gambosi et al. gave a 4/3-a.c.r algorithm for the insertion-only
setting which moves each item O(1) times, which in terms of recourse translates into O(1)
amortized recourse for general movement costs. Following Sanders et al. [32], who studied
makespan minimization with recourse, Epstein et al. [9] re-introduced the dynamic bin
packing problem with the movement costs ci equaling the size si (the size cost setting,
where worst-case recourse is also called migration factor). Epstein et al. gave a solution with
a.c.r (1 + ε) and bounded (exponential in ε−1) recourse for the insertion-only setting. Jansen
and Klein [23] improved the recourse to poly(ε−1) for insertion-only algorithms. The best
known lower bound for an algorithm which uses only constant recourse in the unit cost model
(i.e. ci = 1 for all items) is originally given for our model, but it also applies to this setting
with 1.3871 by Balogh et al. [4]. From the positive perspective Balogh et al. [5] give an
approximation algorithm based on the Harmonic Fit Algorithm [29] for which they achieve a
competitive ratio of 3/2 and O(ε−1) movements per update. Since our algorithms are also
applicable to this setting we improve this result to also close the gap between the lower and
upper bound for this problem.

Our setting is the most powerful model among the presented ones, the Fully-Dynamic
Bin Packing [21], in which we allow arrivals and departures of items as well as repacking.
Ivković and Lloyd [21, 22] introduced the model of Fully-Dynamic Bin Packing and developed
an algorithm called Mostly Myopic Packing (MMP) which achieves a 5

4 -competitive ratio.
Their algorithm is based on an offline algorithm by Johnson [25, 26] and utilizes a technique
whereby the packing of an item is done with a total disregard for already packed items of a
smaller size. In contrast to our work, they use the concept of bundling smaller elements in
their analysis, i.e. a group of items smaller than ε may be moved as a single item for unit
costs. They can show that the number of single items or bundles of very small elements
that need to be repacked is bounded by a constant. Additionally, Ivković [19] also gives a
slightly simpler version of this algorithm, called Myopic Packing (MP). It uses similar ideas
but ignores one step of MMP that results in a much easier analysis and a competitive ratio
of 4

3 . Berndt et al. [6] consider exactly the same setting, also allowing the bundling of very
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small elements in the analysis. Their algorithm achieves a 1 + ε approximation ratio and a
bound of O (1/ε4 log (1/ε)) for the recourse in both the size costs and unit costs model.

In addition to the positive algorithmic results, researchers also explored lower bounds for
this setting. All results assume that no bundling is allowed in the unit cost model (otherwise
there can only be the trivial lower bound of one [6]), hence allowing only a constant number
of shifted items per time step. Ivković and Lloyd [20] show a lower bound of 4

3 . Their
construction uses the inability of an algorithm to react to insertions and deletions of items
with size slightly larger than 1

2 when the remaining items may be of arbitrarily small size.
Balogh et al. [3, 4] improve this bound to roughly 1.3871. They extend the technique of the
previous lower bound by constructing multiple lists of large items whose sizes are chosen
through the construction of a linear program. Their results are the inspiration for some of the
parameter choices in this work. For size costs, Berndt et al. [6] showed that any (1 + ε) a.c.r
algorithm must have worst-case recourse Ω(ε−1). While these give nearly-tight results for
“size costs” ci = si, the unit cost (ci = 1) and general cost cases were not so well understood
prior to this work.

1.2 Our Results
We give (almost) tight characterizations for the recourse-to-asymptotic competitive ratio
trade-off for fully-dynamic bin packing under (a) unit movement costs, (b) general movement
costs and (c) size movement costs. Our results are summarized in the following theorems.
(See Tables 1 and 2 for a tabular listing of our results contrasted with the best previous
results.) Note that an amortized recourse bound is a weaker (resp. stronger) upper (resp.
lower) bound. In the context of sensitivity analysis (see [32]), our bounds provide a tight
characterization of the average change between approximately-optimal solutions of slightly
modified instances.

Unit Costs. Consider the most natural movement costs, unit costs, where ci = 1 for all
items i. Here we give tight upper and lower bounds. Let α = 1 − 1

W−1(−2/e3)+1 ≈ 1.3871
(here W−1 is the lower real branch of the Lambert W -function [8]). Balogh et al. [4] showed
that α is a lower bound on the a.c.r with constant recourse. We present an alternative and
simpler proof of this lower bound, also giving tighter bounds: doing better than α requires
either polynomial additive term or recourse. Moreover, we give two matching algorithms
proving α is tight for this problem: The first one uses directly the insights from the lower
bound while the second one drives deeper into the structural insights of the current problem
instance and reaches a slightly better result.

I Theorem 1.2 (Unit Costs Tight Bounds). For any ε > 0, there exists fully-dynamic bin
packing algorithms with amortized competitive ratio (α+ ε) with worst case recourse O(ε−2)
under unit movement costs and additive term O(ε−1). Conversely, any algorithm with a.c.r
(α − ε) has additive term and amortized recourse whose product is Ω(ε4 · n) under unit
movement costs.

General Costs. Next, we consider the most general problem, with arbitrary movement
costs. Theorem 1.2 showed that in the unit cost model, we can get a better a.c.r than for
online bin packing without repacking, whose optimal a.c.r is at least 1.540 ([2]). Alas, the
fully-dynamic bin packing problem with the general costs is not easier than the arrival-only
online problem (with no repacking).
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Table 1 Fully-dynamic bin packing with limited recourse: Positive results
(Big-O notation dropped for notational simplicity)

Costs A.C.R Additive Recourse W.C. Notes Reference

Unit
1.5 + ε ε−1 ε−1 3 insertions only Balogh et al. [5]

α+ ε ε−1 ε−2 3 α ≈ 1.387 Theorem 2.11

General 1.589 1 1 7 Theorem 3.5

1.333 1 1 7 insertions only Gambosi et al. [13]

Size

1 + ε 1 ε−O(ε−2) 3 insertions only Epstein & Levin [10]
1 + ε ε−2 ε−4 3 insertions only Jansen & Klein [23]
1 + ε poly(ε−1) ε−3 log(ε−1) 3 insertions only Berndt et al. [6]
1 + ε poly(ε−1) ε−4 log(ε−1) 3 Berndt et al. [6]
1 + ε ε−1 ε−2 7 Fact 4.1

Table 2 Fully-dynamic bin packing with limited recourse: Negative results.

Costs A.C.R Additive Recourse W.C. Notes Reference

Unit

1.333 o(n) 1 3 Ivković & Lloyd [20]

α− ε o(n) 1 3 α ≈ 1.387 Balogh et al. [4]

α− ε o(ε2 · nδ) Ω(ε2 · n1−δ) 7 for all δ ∈ (0, 1/2] Theorem 2.1
General 1.540 o(n) ∞ 7 as hard as online Theorem 3.1

Size 1 + ε o(n) Ω(ε−1) 3 Berndt et al. [6]
1 + ε o(n) Ω(ε−1) 7 Theorem 4.2

I Theorem 1.3 (Fully Dynamic as Hard as Online). Any fully-dynamic bin packing algorithm
with bounded recourse under general movement costs has a.c.r at least as high as that of any
online bin packing algorithm. Given current bounds ([2]), this is at least 1.540.

Given this result, is it conceivable that the fully-dynamic model is harder than the
arrival-only online model, even allowing for recourse? We show this is likely not the case, as
we can almost match the a.c.r of the current-best algorithm for online bin packing.

I Theorem 1.4 (Fully Dynamic Nearly as Easy as Online). Any algorithm in the Super
Harmonic family of algorithms can be implemented in the fully-dynamic setting with constant
recourse under general movement costs. This implies an algorithm with a.c.r 1.589 using [33].

The current best online bin packing algorithm [1] is not from the Super Harmonic
family but is closely related to it. It has an a.c.r of 1.578, so our results for fully-dynamic
bin packing are within a hair’s width of the best bounds known for online bin packing.
It remains an open question as to whether our techniques can be extended to achieve the
improved a.c.r bounds while maintaining constant recourse. While we are not able to give a
black-box reduction from fully-dynamic algorithms to online algorithms, we conjecture that
such a black-box reduction exists and that these problems’ a.c.r are equal.

Size Costs. Finally, we give an extension of the already strong results known for the size
cost model (where ci = si for every item i). We show that the lower bound known in the
worst-case recourse model extends to the amortized model as well, for which it is easily
shown to be tight.

ICALP 2018
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I Theorem 1.5 (Size Costs Tight Bounds). For any ε > 0, there exists a (1+ε)-a.c.r algorithm
with O(ε−2) additive term and O(ε−1) amortized recourse under size costs. Conversely, for
infinitely many ε > 0, any (1 + ε)-a.c.r algorithm with o(n) additive term requires Ω(ε−1)
amortized recourse under size costs.

The hardness result above was previously only known for worst-case recourse [6]; this
previous lower bound consists of a hard instance which effectively disallowed any recourse,
while lower bounds against amortized recourse can of course not do so.

1.3 Techniques and Approaches
Unit Costs. For unit costs, our lower bound is based on a natural instance consisting of small
items, to which large items of various sizes (greater than 1

2 ) are repeatedly added/removed [4].
The near-optimal solutions oscillate between either having most bins containing both large
and small items, or most bins containing only small items. Since small items can be moved
rarely, this effectively makes them static, giving us hard instances. We can optimize for the
lower bound arising thus via a gap-revealing LP, similar to [4]. However, rather than bound
this LP precisely, we exhibit a near-optimal dual solution showing a lower bound of α− ε.

For the first upper bound, the same LP now changes from a gap-revealing LP to a
factor-revealing LP. The LP solution shows how the small items should be packed in order
to “prepare” for arrival of large items, to ensure (α + ε)-competitiveness. An important
building block of our algorithms is the ability to deal with (sub)instances made up solely of
small items. In particular, we give fully-dynamic bin packing algorithms with a.c.r (1 + ε)
and only O(ε−2) worst-case recourse if all items have size O(ε). The ideas we develop are
versatile, and are used, e.g., to handle the small items for general costs – we discuss them in
more detail below. We then extend these ideas to allow for (approximately) packing items
according to a “target curve”, which in our case is the solution to the above LP. At this point
the LP makes a re-appearance, allowing us to analyze a simple packing of large items “on
top” of the curve (which we can either maintain dynamically using the algorithm of Berndt
et al. [6] or recompute periodically in linear time); in particular, using this LP we are able
to prove this packing of large items on top of small items has an optimal a.c.r of α+O(ε).
This implies that lazily repacking the large items near-optimally and packing them on top
of the small items easily yields O(ε−2) amortized recourse. Relying on the fully-dynamic
poly(ε−1) migration factor AFPTAS algorithms of [6] with some additional ideas allows us
to leverage this LP to obtain worst-case recourse bounds.

In the second upper bound, we take a different, more recourse-efficient method to pack
the large items, which results in improved worst-case recourse. Specifically, we utilize an
algorithm called Myopic Packing (MP) by Ivković [19]. This algorithm has a competitive
ratio of 4/3 (it is below the lower bound for our model since it uses bundling, i.e., it allows
the repacking of a group of small items as one) and modifies only a constant number of bins
per time step. Applying this algorithm to only items of a size of at least ε/15 restricts the
amount of repacking to O(1/ε) per time step. We develop a new view of this algorithm to
derive structural properties of the solution which are needed for the combination of major
and minor items. Small items are handled similarly to the previous algorithm, however,
we provide a fixed solution to the LP from before in order to use it in the analysis of the
combined solution. Finally, the bins with small items are merged with the bins with large
items by utilizing a greedy-like approach, where small chunks of reserved space and a big
cumulative size of major items is prioritized in order to guarantee an efficient utilization
of the reserved space. The combination has two main challenges: Firstly, we ensure that
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this greedy process only has to modify O(1/ε) bins per time step. Secondly, we guarantee
a space-efficient combination resulting in an overall good solution quality. The analysis
carefully utilizes the structural insights about the solution for major items to estimate the
solution quality within the bins that did not get merged.

General Costs. To transform any online lower bound to a lower bound for general costs
even with recourse, we give the same sequence of items but with movement costs that drop
sharply. This prohibits worst-case recourse, but since we allow amortized recourse, the large
costs ci for early items can still be used to pay for movement of the later items (with smaller
ci values). Hence, if the online algorithm moves an element e to some bin j, we delete all
the elements after e and proceed with the lower bound based on assigning e 7→ j. Now a
careful analysis shows that for some sub-sequence of items the dynamic algorithm effectively
performs no changes, making it a recourse-less online algorithm – yielding the claimed bound.

For the upper bound, we show how to emulate any algorithm in the Super Harmonic
class of algorithms [33] even in the fully-dynamic case. We observe that the analysis for SH
essentially relies on maintaining a stable matching in an appropriate compatibility graph.
Now our algorithm for large items uses a subroutine similar to the Gale-Shapley algorithm.
Our simulation also requires a solution for packing similarly-sized items. The idea here is to
sort items by their cost (after rounding costs to powers of two), such that any insertion or
deletion of items of this size can be “fixed” by moving at most one item of each smaller cost,
yielding O(1) worst-case recourse.

The final ingredient of our algorithm is packing of small items into (1−ε)-full bins. Unlike
the online algorithm which can just use FirstFit, we have to extend the ideas of Berndt et
al. [6] for the size-cost case. Namely we group bins into buckets of Θ(1/ε) bins, such that all
but one bin in a bucket are 1−O(ε) full, guaranteeing these bins are 1−O(ε) full on average.
While for the size-cost case, bucketing bins and sorting the small items by size readily yields
an O(ε−1) recourse bound, this is more intricate for general case where size and cost are not
commensurate. Indeed, we also maintain the small items in sorted order according to their
size-to-movement-cost ratio (i.e., their Smith ratio), and only move items to/from a bin once
it has Ω(ε)’s worth of volume removed/inserted (keeping track of erased, or “ghost” items).
This gives an amortized O(ε−2) recourse cost for the small items.

Size Costs. The technical challenge for size costs is in proving the lower bound with
amortized recourse that matches the easy upper bound. Our proof uses item sizes which are
roughly the reciprocals of the Sylvester sequence [34]. While this sequence has been used
often in the context of bin packing algorithms, our sharper lower bound explicitly relies
on its divisibility properties (which have not been used in similar contexts, to the best of
our knowledge). We show that for these sizes, any algorithm A with a.c.r (1 + ε) must, on
an instance containing N items of each size, have Ω(N) many bins with one item of each
size. In contrast, on an instance containing N items of each size except the smallest size ε,
algorithm A must have some (smaller) O(N) many bins with more than one distinct size in
them. Repeatedly adding and removing the N items of size ε, the algorithm must suffer a
high amortized recourse.

We give a more in-depth description of our algorithms and lower bounds for unit, general
and size costs, highlighting some salient points of their proofs in §2,§3 and §4, respectively.
Due to space constraints we defer most proofs to the full versions of this paper ([15, 11]).
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`

dW/(1− `)e

Figure 1 A packing of instance I`. The `-sized items (in yellow) are packed “on top” of the small
items (in grey).

2 Unit Movement Costs

We consider the natural unit movement costs model. First, we show that an a.c.r better than
α = 1− 1

W−1(−2/e3)+1 ≈ 1.387 implies either polynomial additive term or recourse. Next, we
give tight (α+ ε)-a.c.r algorithms, with both additive term and recourse polynomial in ε−1.
Our key idea is to use an LP that acts both as a gap-revealing LP for a lower bound, and
also as a factor-revealing LP (as well as an inspiration) for our algorithm.

2.1 Impossibility results

Alternating between two instances, where both have 2n − 4 items of size 1/n and one
instance also has 4 items of size 1/2 + 1/2n, we get that any

( 3
2 − ε

)
-competitive online bin

packing algorithm must have Ω(n) recourse. However, this only rules out algorithms with a
zero additive term. Balogh et al. [4] showed that any O(1)-recourse algorithm (under unit
movement costs) with o(n) additive term must have a.c.r at least α ≈ 1.387. We strengthen
both this impossibility result by showing the need for a large additive term or recourse to
achieve any a.c.r below α. Specifically, arbitrarily small polynomial additive terms imply
near-linear recourse. Our proof is shorter and simpler than in [4]. As an added benefit, the
LP we use to bound the competitive ratio will inspire our algorithm in the next section.

I Theorem 2.1 (Unit Costs: Lower Bound). For any ε > 0 and 1
2 > δ > 0, for any algorithm

A with a.c.r (α− ε) with additive term o(ε · nδ), there exists an dynamic bin packing input
with n items on which A uses recourse at least Ω(ε2 · n1−δ) under unit movement cost.

The Instances: The set of instances is the a natural one, and was also considered by [4].
Let 1/2 > δ > 0, c = 1/δ− 1, and let W ≥ 1/ε be a large integer. Our hard instances consist of
small items of size 1/W c, and large items of size ` for all sizes ` ∈ Sε , {` = 1/2 + i · ε | i ∈
N>0, ` ≤ 1/α}. Specifically, input Is consists of bW c+1c small items, and for each ` ∈ Sε,
the input I` consists of bW c+1c small items followed by b W1−`c size-` items. The optimal
bin packings for Is and I` require precisely OPT (Is) = W and OPT (I`) = d W1−`e bins
respectively. Consider any fully-dynamic bin packing algorithm A with limited recourse and
bounded additive term. When faced with input Is, algorithm A needs to distribute the small
items in the available bins almost uniformly. And if this input is extended to I` for some
` ∈ Sε, algorithm A needs to move many small items to accommodate these large items
(or else use many new bins). Since A does not know the value of t beforehand, it cannot
“prepare” simultaneously for all large sizes ` ∈ Sε.
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As a warm-up we show that the linear program (LPε) below gives a lower bound on the
absolute competitive ratio αε of any algorithm A with no recourse. Indeed, instantiate the
variables as follows. On input Is, let Nx be the number of bins in which A keeps free space
in the range [x, x + ε) for each x ∈ {0} ∪ Sε. Hence the total volume packed is at most
N0+

∑
x∈Sε

(1−x)·Nx. This must be at least V ol(Is) ≥W−1/W c, implying constraint (Volε).
Moreover, as OPT (Is) = W , the αε-competitiveness of A implies constraint (smallε). Now
if instance Is is extended to I`, since A moves no items, these `-sized items are placed
either in bins counted by Nx for x ≥ ` or in new bins. Since A is αε-competitive and
OPT (I`) ≤ d W1−`e we get constraint (CRε). Hence the optimal value of (LPε) is a valid
lower bound on the competitive ratio αε.

minimize αε (LPε)
s.t. N0 +

∑
x∈Sε

(1− x) ·Nx ≥W − 1/W c (Volε)
N0 +

∑
x∈Sε

Nx ≤ αε ·W (smallε)

N0 +
∑
x∈Sε,x≤`−εNx +

⌈
W

1−`

⌉
≤ αε ·

⌈
W

1−`

⌉
∀` ∈ Sε (CRε)

Nx ≥ 0

The claimed lower bound on the a.c.r of recourse-less algorithms follows from Lemma 2.2.

I Lemma 2.2. The optimal value α?ε of (LPε) satisfies α?ε ∈ [α−O(ε), α+O(ε)].

To extend the above argument to the fully-dynamic case, we observe that any solution
to (LPε) defined by packing of Is as above must satisfy some constraint (CRε) for some
` ∈ Sε with equality, implying a competitive ratio of at least αε. Now, to beat this bound,
a fully-dynamic algorithm must move at least ε volume of small items from bins which
originally had less than x− ε free space. As small items have size 1/W c = 1/nδ, this implies
that Ω(εnδ) small items must be moved for every bin affected by such movement. This
argument yields Lemma 2.3, which together with Lemma 2.2 implies Theorem 2.1.

I Lemma 2.3. For all ε > 0 and 1
2 > δ > 0, if α?ε is the optimal value of (LPε), then any

fully-dynamic bin packing algorithm A with a.c.r α?ε − ε and additive term o(ε2 · nδ) has
recourse Ω(ε2 · n1−δ) under unit movement costs.

2.2 Matching Algorithmic Results
As mentioned earlier, LPε also guides our algorithm. For the rest of this section, items
smaller than ε are called small, and the rest are large. Items of size si > 1/2 are huge.

To begin, imagine a total of W volume of small items come first, followed by large items.
Inspired by the LP analysis above, we pack the small items such that an N`/W fraction of
bins have ` free space for all ` ∈ {0} ∪ Sε, where the N` values are near-optimal for (LPε).
We call the space profile used by the small items the “curve”; see Figure 1. In the LP analysis
above, we showed that this packing can be extended to a packing with a.c.r α + O(ε) if
W/(1− `) items of size ` are added. But what if large items of different sizes are inserted
and deleted? In §2.2.1 we show that this approach retains its (α+O(ε))-a.c.r in this case
too, and outline a linear-time algorithm to obtain such a packing.

The next challenge is that the small items may also be inserted and deleted. In §2.2.2 we
show how to dynamically pack the small items with bounded recourse, so that the number
of bins with any amount of free space f ∈ Sε induce a near-optimal solution to LPε.

Finally, in §2.2.3 we combine the two ideas together to obtain our fully-dynamic algorithm.
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Figure 2 A packing of instance I′. Large items are packed “on top” of the small items (in grey).
Parts of large items not in the instance Ik` are indicated in red.

2.2.1 LPε as a Factor-Revealing LP
In this section we show how we use the linear program LPε to analyze and guide the following
algorithm: pack the small items according to a near-optimal solution to LPε, and pack the
large items near-optimally “on top” of the small items.

To analyze this approach, we first show it yields a good packing if all large items are
huge and have some common size ` > 1/2. Consider an instance Is consisting solely of small
items with total volume W , packed using Nx bins with gaps in the range [x, x+ ε) for all
x ∈ {0} ∪ Sε, where {αε, N0, Nx : x ∈ Sε} form a feasible solution for (LPε). We say such a
packing is αε-feasible. By the LP’s definition, any αε-feasible packing of small items can be
extended to an αε-competitive packing for any extension I` of Is with ` ∈ Sε, by packing
the size ` items in the bins counted by Nx for x ≥ ` before using new bins. In fact, this
solution satisfies a similar property for any extension Ik` obtained from Is by adding any
number k of items all of size `. (Note that I` is the special case of Ik` with k = bW/(1− `)c.)

I Lemma 2.4 (Huge Items of Same Size). Any αε-feasible packing of small items of Is
induces an αε-competitive packing for all extensions Ik` of Is with ` > 1/2 and k ∈ N.

Now, to pack the large items of the instance I, we first create a similar new instance I ′
whose large items are all huge items. To do so, we first need the following observation.

IObservation 2.5. For any input I made up of solely large items and function f(·), a packing
of I using at most (1+ε) ·OPT (I)+f(ε−1) bins has all but at most 2ε ·OPT (I)+2f(ε−1)+3
of its bins containing either no large items or being more than half-filled by large items.

Now, consider a packing P of the large items of I using at most (1 + ε) ·OPT (I) + f(ε−1)
bins. By Observation 2.5, at most 2ε · OPT (I) + O(f(ε−1)) bins in P are at most half
full. We use these bins when packing I. For each of the remaining bins of P we “glue” all
large items occupying the same bin into a single item, yielding a new instance I ′ with only
huge items, with any packing of I ′ “on top” of the small items of I trivially inducing a
similar packing of I with the same number of bins. We pack the huge items of I ′ on top of
the curve greedily, repeatedly packing the smallest such item in the fullest bin which can
accommodate it. See §2.3.3 for a description of an implementation of this idea with limited
recourse. Now, if we imagine we remove and decrease the size of some of these huge items,
this results in a new (easier) instance of the form Ik` for some k and ` > 1/2, packed in
no more bins than I ′ (see Figure 2). By Lemma 2.4, our packing of I ′ (and of I) uses at
most αε ·OPT (Ik` ) ≤ αε ·OPT (I ′) ≤ (αε +O(ε)) ·OPT (I) +O(f(ε−1)) bins. Performing
the same while only near-optimally packing large items of size exceeding 1/4, and packing
the large items of size in the range (ε, 1/4] so that we only open a new bin if all bins are
at least 3/4 full (in which case we would obtain a 4/3 < α a.c.r) allows us to obtain even
better recourse bounds. These ideas underlie the following theorem (a more complete proof
of which appears in [15]).
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Clump #1 Clump #O(1
ε
) Clump #1

Bucket #1 Bucket #2

Figure 3 Buckets have O(ε−1) clumps, clumps have T bins.

I Theorem 2.6. An αε-feasible packing of the small items of an instance I can be extended
into a packing of I using at most (αε + O(ε)) · OPT (I) + O(ε−2) bins in linear time.
Moreover, given a fully-dynamic (1 + ε) ·OPT (I) + f(ε−1) packing of items of size greater
than 1/4 of It and an αε-feasible packing of its small items, one can maintain a packing
using (αε +O(ε)) ·OPT (It) +O(max{ε−2, f(ε−1))} bins with O(ε−1) worst-case recourse
per item move in the near-optimal dynamic packing of the items of size exceeding 1/4.

It remains to address the issue of maintaining an αε-feasible packing of small items
dynamically using limited recourse.

2.2.2 Dealing With Small Items: “Fitting a Curve”
We now consider the problem of packing ε-small items according to an approximately-optimal
solution of (LPε). We abstract the problem thus.

I Definition 2.7 (Bin curve-fitting). Given a list of bin sizes 0 ≤ b0 ≤ b1 ≤ . . . , bK ≤ 1 and
relative frequencies f0, f1, f2, . . . , fK , such that fx ≥ 0 and

∑K
x=0 fx = 1, an algorithm for

the bin curve-fitting problem must pack a set of m of items with sizes s1, . . . , sm ≤ 1 into a
minimal number of bins N such that for every x ∈ [0,K] the number of bins of size bx that
are used by this packing lie in {bN · fxc, dN · fxe}.

If we have K = 0 with b0 = 1 and f0 = 1, we get standard bin packing. We want
to solve the problem only for (most of the) small items, in the fully-dynamic setting. We
consider the special case with relative frequencies fx being multiples of 1/T , for T ∈ Z;
e.g., T = O(ε−1). Our approach is inspired by the algorithm of [23], and maintains bins in
increasing sorted order of item sizes. The number of bins is always an integer product of T .
Consecutive bins are aggregated into clumps of exactly T bins each, and clumps aggregated
into Θ(ε−1) buckets each. Formally, each clump has T bins, with fx · T ∈ N bins of size bx
for x = 0, . . . ,K. The bins in a clump are ordered according to their capacity bx, so each
clump looks like its target curve. Each bucket except the last consists of some s ∈ [1/ε, 3/ε]
consecutive clumps (the last bucket may have fewer than 1/ε clumps). See Figure 3. For
each bucket, all bins except those in the last clump are full to within an additive ε.

Inserting an item adds it to the correct bin according to its size. If the bin size becomes
larger than the target size for the bin, the largest item overflows into the next bin, and so on.
Clearly this maintains the invariant that we are within an additive ε of the target size. We
perform O(T/ε) moves in the same bucket; if we overflow from the last bin in the last clump
of the bucket, we add a new clump of T new bins to this bucket, etc. If a bucket contains
too many clumps, it splits into two buckets, at no movement cost. An analogous (reverse)
process happens for deletes. Loosely, the process maintains that on average the bins are full
to within O(ε) of the target fullness – one loss of ε because each bin may have ε space, and
another because an O(ε) fraction of bins have no guarantees whatsoever.

We now relate this process to the value of LPε. We first show that setting T = O(ε−1)
and restricting to frequencies which are multiples of ε does not hurt us. Indeed, for us, b0 = 1,
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and bx = (1− x) for x ∈ Sε. Since (LPε) depends on the total volume W of small items, and
fx may change if W changes, it is convenient to work with a normalized version normalized
by W , which is essentially (LPε) with W = 1. Now nx = Nx/W can be interpreted as just
being proportional to number of bins of size bx, and we can define fx = nx/

∑
x nx to the

fraction of bins of size bx in our solution. However, we also need each fx to be an integer
multiple of 1/T for some integer T = O(ε−1). We achieve this by slightly modifying the LP
solution, obtaining the following.

I Lemma 2.8 (Multiples of ε). For any optimal solution {nx} to (LPε) (with W = 1) with
objective value αε, we can construct in linear time a solution {ñx} ⊆ ε · N with objective
value αε +O(ε).

Using a near-optimal solution to (LPε) as in the above lemma, we obtain a bin curve-fitting
instance with T = O(ε−1). Noting that if we ignore the last bucket’s O(T/ε−1) = O(ε−2)
bins in our solution, we obtain an (α?ε +O(ε))-feasible packing (with additive term O(ε−2))
of the remaining items by our algorithm above, using O(ε−2) worst-case recourse. We obtain
the following.

I Lemma 2.9 (Small Items Follow the LP). Let ε ≤ 1/6. Using O(ε−2) worst-case recourse
we can maintain packing of small items such that the content of all but O(ε−2) designated
bins in this packing form an (α?ε +O(ε))-feasible packing.

2.2.3 Our Algorithm
From Lemma 2.8 and Lemma 2.9, we can maintain an (α?ε+O(ε))-feasible packing of the small
items (that is, a packing of inducing a solution to (LPε) with objective value (α?ε +O(ε))), all
while using O(ε−2) worst-case recourse. From Theorem 2.6, using a (1+ε)-a.c.r packing of the
large items one can extend such a packing of the small items into an (α?ε +O(ε))-approximate
packing for It, where α?ε ≤ α + O(ε), by Lemma 2.2. It remains to address the recourse
incurred by extending this packing to also pack the large items.

Amortized Recourse. Here we periodically recompute in linear time the extension guaran-
teed by Theorem 2.6. Dividing the time into epochs and lazily addressing updates to large
items (doing nothing on deletion and opening new bins on insertion) for ε ·N steps, where N
is the number of bins we use at the epoch’s start, guarantees a (α+O(ε))-a.c.r throughout
the epoch. Finally, as the number of large items at the end of an epoch of length ε ·N is at
most O(N/ε), repacking them incurs O(N/ε)/(ε ·N) = O(ε−2) amortized recourse.

Worst Case Recourse. To obtain worst-case recourse we rely on the fully-dynamic (1 + ε)-
a.c.r algorithm of Berndt al. [6] to maintain a (1+ε)-approximate packing of the sub-instance
made of items of size exceeding 1/4 using Õ(ε−3) size cost recourse, and so at most Õ(ε−3)
item moves (as these items all have size Θ(1)). By Theorem 2.6, our (α + O(ε))-feasible
solution for the small items of It can be extended dynamically to an (α + (O(ε)))-a.c.r
packing of all of It, using O(ε−1) worst-case recourse per item change in the dynamic packing
of the items of size exceeding 1/4 of It, yielding an Õ(ε−4) worst-case recourse bound overall.

From the above discussions we obtain this section’s main result – tight algorithms for
unit costs with polynomial additive term and recourse.

I Theorem 2.10 (Unit Costs: Upper Bound). There is a polytime fully-dynamic bin packing
algorithm which achieves α+O(ε) a.c.r, additive term O(ε−2) and O(ε−2) amortized recourse,
or additive term poly(ε−1) and Õ(ε−4) worst-case recourse, under unit movement costs.
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2.3 An Algorithm with Improved Worst-Case Recourse
In this section, we present a second algorithm for the Unit Costs model, which uses only
O(ε−2) worst-case recourse. The previous algorithm mainly used the lower bound as borders,
and then applied two different algorithms for small and large items, combining the two in
a greedy fashion. A near-optimal packing of the large items “on top” of the small items
yields the claimed competitive ratio. In this section, we show that a simple fully-dynamic
4/3-competitive algorithm of Ivković [19] which has recourse only O(ε−1) for the large items
(and only modifies a constant number of bins) combined in the same way yields the same
α+ ε a.c.r, but with better worst-case recourse.

For the remainder of the section, we refer to items of size at most δ = ε/15 as minor
items and items larger than this size as major items. In §2.3.1 we outline our packing of
the minor items, which differs slightly from that of §2.2.2 (in particular it only incurs an
O(ε−1), rather than O(ε−2), additive term). In §2.3.2 we outline Ivković’s algorithm and
some of its structural properties we rely on for our analysis. Finally, in §2.3.3 we prove that
the combination of these solutions in a greedy manner as discussed in §2.2.1 yields an a.c.r
of α+O(ε). The full proofs of this section are deferred to [11].

The result of this section is summarized in the following theorem:

I Theorem 2.11 (Unit Cost: Improved Upper Bound). For each ε ∈ (0, 1), there exists an
algorithm for the Fully-Dynamic bin packing Problem with a.c.r. (1 + ε) · α, additive term
O(ε−1) and O(ε−2) worst-case recourse, under unit movement costs.

2.3.1 Prospective Packing of Minor Items
For our improved recourse bound, our packing of small items here is essentially identical to
that of 2.2.2, so we only highlight the differences here. As before, we pack the small items
in bins which are sorted by item sizes, with bins partitioned into buckets of O(ε−1) clumps
of size O(ε−1), with a prescribed height for each bin in the clump, and one “buffer” clump
in each bucket which is potentially empty (with none of its bins exceeding its target filling
height). Now, unlike the solution of 2.2.2, the number of bins of each target height will be
the same in each clump, which will imply that the fraction of bins of type at most some
j (i.e., filling height at most some wj) is at most some O(ε) times the value assigned to it
by the LP solution. This is sufficient to obtain the required competitive ratio for instances
comprised solely of small items. The advantage of each clump having the same number of
bins of each type however has the added benefit that it implies that once a particular clump
is “full”, (has all its bin of height at least its target height minus ε/15), we can begin packing
major items “on top” of the obtained “curve”. In particular this implies an additive term of
O(ε−1), rather than O(ε−2). As before, the worst-case recourse is at most O(ε−2).

Choice of Parameters

What remains open in the description of the algorithm is the concrete assignment of bin
types and the choice of the parameters k and T . Our choice of filling heights is inspired by
the parameters from the lower bound by Balogh et al. [4] (or equivalently, of §2.1), but in
order to get the desired upper bound instead, each filling height is essentially replaced by
the next smaller filling height from the lower bound. Let α := 1− 1/(W−1(−2/e3)+1) ≈ 1.3871
be the value of the lower bound.

For each bin clump of size T , we need to take care of the correct fraction of bins of a
certain type j, which we implicitly determine by parameters zj (for notational convenience,
we also write z′j :=

∑j
i=1 zi). For a minor item workload of W , we aim to create roughly
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z′k ·W bins, where we choose z′k := (1 + ε/4)α, hence achieving the desired tight bound for
minor items. Note that the frequencies of each bin type as defined in 2.7 can be obtained by
fi = zi/z

′
k. The filling height corresponding to bin type k is defined as wk := yk := (z′k−1)/z′k.

Bins of this type have the largest remaining space, which is 1/z′k. Intuitively, the reason is
that we do not need to reserve space for major items of size at least 1/z′k as packing these
items in exclusive bins still results in an approximation ratio of z′k.

For the other bin types j < k, we now choose the parameters yj according to the geometric
series yj = 1

2 (2 · yk)
j−1
k−1 (see also [4] for the background on why this is a good choice). The

filling heights wj of the different bin types depend almost directly on these parameters: We
set wj := yj ∀j > 1 and w1 := 1 = y1 + 1

2 . This perceived inconsistency is due to the shift of
the other wj (w.r.t. the lower bound) as explained above.

The remaining values for zj are set such that z′j := yk/(yj(1−yk)) holds for all j. The
values for z′j are a result of optimizing the number of bins of type ≤ j against a class of bad
instances where many items of size 1 − yj + ε′ (for some tiny ε′ > 0) are inserted. These
items can not be packed into the same bins with such types, however fit into bins of type
> j. Note that the choice of these parameters results in 1/4 < 1− 1/z′k = yk < . . . < y1 = 1/2

and 3/4 < 2 · (z′k − 1) = z′1 < . . . < z′k = (1 + ε/4) · α.
Based on these parameters, a clump of T bins is organized as follows: We choose the size

of a bin clump to be T = d4z′k/εαe = d4/εe+ 1 and the total number of bins of type ≤ j to be
dz′j/z′k · T e. Hence, the number of bins of type 1 is dz1/z′k · T e, whereas for bin types j > 1, it
is determined by dz′j/z′k · T e − dz

′
j−1/z′k · T e. Note that the rounding implies that the number

of bins of some types may be zero.
Finally, we choose the number of bin types to be k = d3/εe+ 1.

Analysis

The main goal of the upcoming analysis is to bound the number of bins used for a given
payload W of minor items. In the following we state properties of the structure of the
algorithm’s solution.

In order to count the number of bins in our solution, we need the following technical
lemma, which essentially resembles the volume constraint Volε of LPε. Remember that
δ = ε/15 denotes the maximum size of a minor item.

I Lemma 2.12. A set of full bins which consists of at least zj ·W bins of type j for each
bin type j contains a workload of at least W of minor items; i.e.,

∑k
j=1 zjW · (wj − δ) ≥W .

I Lemma 2.13. For all 1 ≤ j ≤ k, the total number of bins of any type i ≤ j is at most
(z′j + 3

4εα)W .

This bound is mainly used for the analysis in §2.3.3, showing that a packing with the
parameters as defined above indeed fits the target curve as desired. However, it also directly
implies the approximation ratio for instances where only minor items are present (constraint
smallε in LPε).

I Corollary 2.14. For an instance with only minor items, the algorithm achieves an a.c.r.
of z′k + 3

4εα = (1 + ε)α.

I Lemma 2.15. The recourse (regarding minor items) during an insertion or deletion of a
minor item is bounded by O(ε−2).
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2.3.2 Dealing with Major Items
For major items, i.e. items with a size larger than δ = ε/15, we use an algorithm called
Myopic Packing (MP) by Ivković [19] which is a simplified version of the MMP algorithm by
Ivković and Lloyd [21]. The algorithm is essentially a fully-dynamic variant of Johnson’s
First Fit Grouping Algorithm [24, 25]. For the sake of completeness, and since [19] is not
freely available on the Internet and the algorithm is an essential component of our algorithm,
we give a detailed description of this algorithm below.

We divide the major items in four sub-groups, depending on their size: A B (big) item
has a size in

( 1
2 , 1
]
, an L (large) item in

( 1
3 ,

1
2
]
, an S (small) item in

( 1
4 ,

1
3
]
and an O

(other) item in
(
ε

15 ,
1
4
]
. Ignoring additional O items for now, the following bin types of

interest can occur: BL, BS, B, LLS, LL, LSS and SSS. The name of the bin type
represents the items of type B, L and S contained in that bin. The additional bin types
LS,L, SS, S can only occur at most two times in a packing in total, so they induce an
additive constant of at most 2 and thus can be ignored for the analysis. Each different type
τ ∈ T := {BL,BS,B,LLS,LL,LSS, SSS} is given a priority such that we have a total
ordering < on T which is BL > BS > B > LLS > LL > LSS > SSS. Out of the listed
bin types above, the MP algorithm utilizes all but bins of type LSS.

The general idea of the algorithm is to insert items in a First Fit manner with disregard
of items of a smaller type. This is realized by a recursive procedure which takes items out
of a dedicated auxiliary storage and inserts them into the regular packing. When an item
is inserted into a bin, items of lower types are removed from this bin and added to the
auxiliary storage. It is important that the algorithm maintains a structural property called
thoroughness, which reflects the structure of the packing as done by the First Fit Grouping
Algorithm by Johnson. This property is formally defined in Lemma 2.16.

In more detail, the algorithm does the following: For an insertion of an item a, it is simply
added to the auxiliary storage and a procedure to clear the storage is called. For a deletion
of a, all items in the same bin as a are removed from the regular packing and added to the
auxiliary storage. Then the procedure to clear the storage is called. At the end of an insert
or delete operation, only a constant number of items remains in the auxiliary storage and is
packed into at most 2 bins. The procedure to clear the auxiliary storage works as follows:
1. Every B item from the auxiliary storage is inserted into the regular packing. The

thoroughness property is maintained by successively searching for fitting L and then S
items in bins of a lower type to pair with the new B item. The remaining items from the
bins from which the L or S item was removed are moved to the auxiliary storage.

2. L and S items from the auxiliary storage are paired with B bins from the regular packing
whenever possible. Bins of the same or higher type are not changed in the process, i.e.
an L item can only be paired with a B item of a BS or B bin. Other items from the bin
in which these items are inserted are moved to the auxiliary storage.

3. As long as there are at least two L items in the auxiliary storage, they are inserted in a
new bin and potentially paired with an S item either from the auxiliary storage or from
an existing SSS bin to form an LLS bin. If no fitting S item exists, an LL bin is created.
If an S item is taken from a regular bin, the remaining items are moved to the auxiliary
storage.

4. As long as there are at least three S items in the auxiliary storage, new bins of type SSS
are formed with these items and inserted into the regular packing. At the end of this
step, the auxiliary storage contains at most one L item and two S items which can be
packed into at most two bins.

5. All remaining O items in the auxiliary storage are moved to the regular packing in a
first fit manner. This implies that bins that contain any other item type than O are
prioritized over bins that exclusively contain O items.
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Properties of the Algorithm

For our analysis of the packing, we mainly use the thoroughness property which is ensured
by the algorithm and proven in [19]:

I Lemma 2.16 ([19]). A bin of type τ ∈ T is thorough if there do not exist two bins B1
and B2 with lower types τ1, τ2 ∈ T , τ1, τ2 < τ such that items from B1 and B2 can be used
to form a bin of type τ . In the solution of the MP algorithm, bins of type BL, BS and LLS
are thorough.

We denote by Algτ and Optτ (e.g. AlgBL and OptBL) the number of bins of type
τ ∈ T in Alg and Opt, respectively. The same notation is adapted for multiple types of
bins (e.g. AlgBL,LLS = AlgBL + AlgLLS). Using this notation, we get:
Alg ≤ AlgBL + AlgBS + AlgB + AlgLLS + AlgLL + AlgSSS + 2, and
Opt ≥ OptBL + OptBS + OptB + OptLLS + OptLL + OptSSS + OptLSS .

Note that the only reason these are not equalities is that the number of bins of type
LS,L, SS or S is between 0 and 2.

We first argue that we may assume that no O items are part of the input: Consider the
case that there is a bin containing only O items in Alg. Then every bin in Alg except one
is filled with items of a cumulative size of at least 3/4. Together with Lemma 2.13 we then
directly get an approximation factor of (1 + ε)α even if we would not combine our solutions
for minor and major items at all. Regarding the case that there is no such O bin, since MP
packs items in a myopic manner, it would produce the same solution if the O items were not
part of the input. Hence we may compare the solution to an instance of the optimal solution,
which does not need to consider any O items in its instance.

In order to ease the analysis of the algorithm, we introduce assumptions to the optimal
solution and show that these do not increase the value of the optimal solution.

I Lemma 2.17. Let Alg be the packing of the MP algorithm of a set of major items. For
an optimal solution Opt of a packing of the same items, the following properties can be
assumed without increasing the number of used bins in Opt:
1. Opt does not pack a BS bin containing a B item that is part of a BL bin in Alg.
2. Opt does not pack a B bin containing a B item that is part of a BL bin in Alg.

We use the thoroughness of the MP algorithm (cf. Lemma 2.16) to show the following
four statements that compare the solutions of Alg and Opt with each other. They will
later be used in the analysis of the combination of our two approaches.

I Lemma 2.18. Let Alg be the packing of the MP algorithm and Opt an optimal solution:
1. AlgBL + AlgBS + AlgB = OptBL + OptBS + OptB
2. AlgBL + OptLSS ≥ 2 (AlgLLS,LL −OptLLS,LL)
3. AlgBS + AlgLL + 2OptLSS ≥ 3 (AlgSSS −OptSSS)
4. AlgBS + OptLLS + 2OptLSS ≥ 3 (AlgSSS −OptSSS)

We finally determine the recourse that occurs during the insertion or deletion of a major
item. Note that while considering this, we need to also account for possible O items.

I Lemma 2.19. The recourse of the MP algorithm (for major items) is bounded by O(ε−1).
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2.3.3 Combining Major and Minor Items

The two presented approaches for the packing of minor and major items treat these items
independently. These independent solutions now have to be combined into one to reach
a good approximation guarantee. Assume we obtain these solutions as two sets of bins,
where the bins (Bmin

1 , . . . , Bmin
m ) are the result of the algorithm for minor items and the

bins
(
Bmaj

1 , . . . , Bmaj
n

)
are the result of the algorithm for major items. Note that although

we temporarily ignored items of a size in (ε/15, 1/4] in the analysis for the major items, the
algorithm that combines the two solutions of course does not ignore the potential O items.

We first describe the structure of the packing we want to achieve and then show how to
maintain that structure over time. The goal is to create pairs of bins with one bin from each
solution while not modifying too many pairs in each time step. For ease of description, we
still refer to two bins Bmin

i and Bmaj
j as two different bins even though their contents may

be packed into the same bin. In such a case, we say that Bmin
i is paired with Bmaj

j .
We want to maintain a greedy-style combination of the two lists of bins, which can

be described by the following combination process: The list of bins with minor items is
(partially) sorted by their type (1, . . . , k), i.e. bins potentially filled with more minor items
appear earlier (the ordering here is different compared to the ordering in §2.3.1 when the
minor items are actually packed). The list of bins with major items is sorted by their filling
height in decreasing order (regardless of their type). The process iterates over the k bin
types in the solution of minor items starting with type 2 (since there is no reserved space
in bins of type 1) in increasing order. For each bin Bmin

i of type j, we iterate over the bins
with major items starting with the bins that have the largest filling height. We pair Bmin

i

with a bin with major items Bmaj` that has a filling height of at most 1−wj and for which `
is minimal, i.e., the first bin with major items whose items fit into the reserved space of the
respective (minor item) bin type.

Note that this process incorporates all bins of the minor solution that contain at least
one item, including the ones that are part of a buffer clump. We do not use bins that contain
no minor items at all (even if they are already present in the minor algorithm as part of a
buffer clump). Such a greedy-style packing can be maintained while only modifying O(k)
pairings per changed bin in either one of the two solutions. A major reason for this is that
for the bins with minor items, only their type is of interest. The pairings of bins need to be
changed if one of the following happens:

A change in the solution of major items: For each insertion or deletion of a major item,
the solution of major items is modified independently first. The above described greedy
process is then used to determine which bins with major items need to be matched with
which types of bins of minor items. The combination is then modified to fit the new solution
by switching out the major bins where needed, starting with those which are paired with
bins of minor items of type 2.
A change in the solution of minor items: As for the major items, the solution of
minor items is first modified independently upon insertion or deletion of a minor item. The
modification may add or remove at most one bin of minor items. In this case, the above
greedy approach is used to recalculate which bins with major items need to be matched with
which types of bins of minor items. The solution is modified accordingly, starting with the
matching with bins with minor items of type 2.
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type 1 type 2 type 3

B
A B

B
B

C

type 4

minor
bins

major
bins

Figure 4 The gray bins represent current bins of the two solutions, the arrows indicate the
current combination. The bin BA is now inserted into the solution for the major items. BA only
fits into minor bins of type 3 or higher. The black arrows indicate the switching process. Bin BA
displaces BB to a minor bin of type 4. Since there is no bin left for BC , it is not combined with any
minor bin after the changes.

Analysis

Due to the described greedy approach for changes and Lemma 2.15 and 2.19, we can bound
the total recourse.

I Lemma 2.20. The recourse is bounded by O(ε−2) for each insertion or deletion.

I Lemma 2.21. Let Bmin be a bin with minor items of type j. If Bmin is not combined with
a bin of major items, all non-combined bins with major items have a filling height of at least
1− wj.

It remains to show that our algorithm achieves the desired approximation quality.

I Lemma 2.22. Let Alg be the number of bins our algorithm uses for an arbitrary input
sequence and Opt the number of bins used by an optimal solution. Then this yields Alg ≤
(1 + ε) · α ·Opt.

Proof. We reuse the notation of Sections 2.3.1 and 2.3.2. For the bins with major items of
Alg, we introduce a collection of bins called L-S-quartet, consisting of three LL bins and one
SSS bin. The number of such collections is denoted by QAlg :=

⌊
min{AlgSSS , 1

3 AlgLL}
⌋
.

We split the number of LL and SSS bins in Alg in the number of bins that can be put
in such quartets, denoted by AlgQLL := 3QAlg and AlgQSSS := QAlg, and the respective
number of bins that cannot be put in such a collection, denoted by Alg−QLL and Alg−QSSS .
Note that it therefore holds AlgLL = AlgQLL + Alg−QLL and AlgSSS = AlgQSSS + Alg−QSSS .
Furthermore, due to the definition of QAlg, it holds Alg−QLL ≤ 2 or Alg−QSSS = 0.

Note that we assume that the solution of Alg for the major items does not contain bins
with only O items, otherwise the approximation ratio would follow directly as argued in the
previous section.

We estimate the optimal solution by adding up all the items which need to be packed. As
before, we denote by W the cumulative size of all minor items. We estimate the cumulative
size of major items by considering the different types of bins with major items τ ∈ T and
their minimal filling height F (τ) resulting from the minimum size of the respective items
(e.g., for bins of type BL, we have F (BL) = 1/2 + 1/3 = 5/6). By incorporating the fact that
all bins in quartets have an average filling height of 3/4 we get

Opt ≥W +
∑
τ∈T

F (τ) ·Alg−Qτ + 3
4AlgQLL + 3

4AlgQSSS as well as (1)

Opt ≥W +
∑
τ∈T

F (τ) ·Alg−Qτ + 3QAlg. (2)
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From Lemma 2.21 we get the following: Suppose j is the maximum index such that a bin
of type j is not combined with a bin of major items (pick j = 1 if such a bin does not exist).
Then all remaining bins with major items must have a size of at least 1− wj . Note that if
j = k, then Alg ≤ (z′k + 3

4εα)W + z′k ·Wmaj directly follows, where Wmaj is the workload
of major items, and hence the approximation ratio. We assume j < k in the following. We
introduce Alg≥(1−wj);−Q

BL,BS,B,LLS,LL,SSS as the number of bins (with major items) of the given
types used by our algorithm, limited to bins with a filling height of at least 1 − wj and
excluding all quartets. Hence we have

Alg ≤ (z′j + 3
4εα)W + Alg≥(1−wj );−Q

BL,BS,B,LLS,LL,SSS + AlgQLL,SSS

≤ (z′j + 3
4εα)Opt +

∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj );−Q
τ + (1− 3

4z
′
j)AlgQLL,SSS (3)

from (1) as well as

Alg ≤ (z′j + 3
4εα)W + Alg≥(1−wj);−Q

BL,BS,B,LLS,LL,SSS + 4QAlg

≤ (z′j + 3
4εα)Opt +

∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (4− 3z′j)QAlg. (4)

from (2). We use one of these estimations depending on QAlg.
Let ẑj := z′k − z′j . For the two cases with Alg−QLL ≤ 2 or Alg−QSSS = 0 we show the

following lemmas:

I Lemma 2.23. Let Alg−QLL ≤ 2. Then it holds that

Opt ≥ 1
ẑj
·

(∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (1− 3

4z
′
j)AlgQLL,SSS

)
.

I Lemma 2.24. Let Alg−QSSS = 0. Then it holds that

Opt ≥ 1
ẑj
·

(∑
τ∈T

(1− z′j · F (τ)) ·Alg≥(1−wj);−Q
τ + (4− 3z′j)QAlg

)
.

Hence, from (3) together with Lemma 2.23 or (4) together with Lemma 2.24, we conclude

Alg ≤ (z′j + 3
4εα)Opt + ẑj ·Opt ≤ (z′k + 3

4εα)Opt = (1 + ε)αOpt.

J

Finally, Theorem 2.11 now directly follows from our analysis: Lemma 2.22 gives the approx-
imation ratio of (1 + ε) · α and Lemma 2.20 bounds the worst-case recourse to O(ε−2).

3 General Movement Costs

We now consider the case of general movement costs, and show a close connection with the
(arrival-only) online problem. We first show that the fully-dynamic problem under general
movement costs cannot achieve a better a.c.r than the online problem. Next, we match the
a.c.r of any super-harmonic algorithm for the online problem in the fully-dynamic setting.
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3.1 Matching the Lower Bounds for Online Algorithms
Formally, an adversary process B for the online bin packing problem is an adaptive process
that, depending on the state of the system (i.e., the current set of configurations used to
pack the current set of items) either adds a new item to the system, or stops the request
sequence. We say that an adversary process shows a lower bound of c for online algorithms
for bin packing if for any online algorithm A, this process starting from the empty system
always eventually reaches a state where the a.c.r is at least c.

I Theorem 3.1. Let β ≥ 2. Any adversary process B showing a lower bound of c for the a.c.r
of any online bin packing algorithm can be converted into a fully-dynamic bin packing
instance with general movement costs such that any fully-dynamic bin packing algorithm
with amortized recourse at most β must have a.c.r at least c.

Such a claim is simple for worst-case recourse. Indeed, given a recourse bound β, set the
movement cost of the i-th item to be (β + ε)n−i for ε > 0. When the i-th item arrives we
cannot repack any previous item because their movement costs are larger by a factor of > β.
So this is a regular online algorithm. The argument fails, however, if we allow amortization.

To construct our lower bound instance, we start with an adversary process and create a
dynamic instance as follows. Each subsequent arriving item has exponentially decreasing (by
a factor β) movement cost. When the next item arrives, our algorithm could move certain
existing items. These items would have much higher movement cost than the arriving item,
and so, this process cannot happen too often. Whenever this happens, we reset the state of
the process to an earlier time and remove all jobs arriving in the intervening period. This
will ensure that the algorithm always behaves like an online algorithm which has not moved
any of the existing items. Since it cannot move jobs too often, the set of existing items which
have not been moved by the algorithm grow over time. This idea allows us to show: implies:

I Corollary 3.2. No fully-dynamic bin packing algorithm with bounded recourse under
general movement costs and o(n) additive term is better than 1.540-asymptotically competitive.

3.2 (Nearly) Matching the Upper Bounds for Online Algorithms
We outline some of the key ingredients in obtaining an algorithm with competitive ratio
nearly matching our upper bound of the previous section. The first is an algorithm to pack
similarly-sized items.

I Lemma 3.3 (Near-Uniform Sizes). There exists a fully-dynamic bin packing algorithm
with constant worst-case recourse which given items of sizes si ∈ [1/k, 1/(k − 1)) for some
integer k ≥ 1, packs them into bins of which all but one contain k− 1 items and are hence at
least 1− 1/k full. (If all items have size 1/k, the algorithm packs k items in all bins but one.)

Lemma 3.3 readily yields a 2-a.c.r algorithm with constant recourse (see [15]). We now
discuss how to obtain 1.69-a.c.r based on this lemma and the Harmonic algorithm [29].

The Harmonic Algorithm. The idea of packing items of nearly equal size together is
commonly used in online bin packing algorithms. For example, the Harmonic algorithm
[29] packs large items (of size ≥ ε) as in Lemma 3.3, while packing small items (of size ≤ ε)
into dedicated bins which are at least 1 − ε full on average, using e.g., FirstFit. This
algorithm uses (1.69 +O(ε)) ·OPT +O(ε−1) bins [29]. Unfortunately, due to item removals,
FirstFit won’t suffice to pack small items into nearly-full bins.
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To pack small items in a dynamic setting we extend our ideas for the unit cost case,
partitioning the bins into buckets of Θ(1/ε) many bins, such that all but one bin in a bucket
are 1−O(ε) full, and hence the bins are 1−O(ε) full on average. Since the size and cost are
not commensurate, we maintain the small items in sorted order according to their Smith
ratio (ci/si). However, insertion of a small item can create a large cascade of movements
throughout the bucket. We only move items to/from a bin once it has Ω(ε)’s worth of volume
removed/inserted (keeping track of erased, or “ghost” items). A potential function argument
allows us to show amortized O(ε−2) recourse cost for this approach, implying the following
lemma, and by [29], a (1.69 +O(ε))-a.c.r algorithm with O(ε−2) recourse.

I Lemma 3.4. For all ε ≤ 1
6 there exists an asymptotically (1 +O(ε))-competitive bin

packing algorithm with O(ε−2) amortized recourse if all items have size at most ε.

Seiden’s Super-Harmonic Algorithms. We now discuss our remaining ideas to match
the bounds of any Super-Harmonic algorithm [33] in the fully-dynamic setting. A Super-
harmonic (SH) algorithm partitions the unit interval [0, 1] into K + 1 intervals [0, ε], (t0 =
ε, t1](t1, t2], . . . , (tK−1, tK = 1]. Small items (of size ≤ ε) are packed into dedicated bins
which are 1− ε full. A large item has type i if its size is in the range (ti−1, ti]. The algorithm
also colors items blue or red. Each bin contains items of at most two distinct item types i and
j. If a bin contains only one item type, all its items are colored the same. If a bin contains
two item types i 6= j, all type i items are colored blue and type j ones are colored red (or
vice versa). The SH algorithm is defined by four sequences (αi)Ki=1, (βi)Ki=1, (γi)Ki=1, and a
bipartite compatibility graph G = (V,E). A bin with blue (resp., red) type i items contains at
most βi (resp., γi) items of type i, and is open if it contains less than this many type i items.
The compatibility graph G = (V,E) has vertex set V = {bi | i ∈ [K]} ∪ {rj | j ∈ [K]}, with
an edge (bi, rj) ∈ E indicating blue items of type i and red items of type j are compatible
and may share a bin. In addition, an SH algorithm must satisfy the following invariants.
(P1) The number of open bins is O(1).
(P2) If ni is the number of type-i items, the number of red type-i items is bαi · nic.
(P3) If (bi, rj) ∈ E (blue type i items and red type j items are compatible), there is no pair

of bins with one containing only blue type i items and one containing only red type j
items.

Appropriate choice of (ti)K+1
i=1 , (αi)Ki=1, (βi)Ki=1, (γi)Ki=1 and G allows one to bound the

a.c.r of any SH algorithm. (E.g., Seiden gives an SH algorithm with a.c.r 1.589 [33].)

Simulating SH algorithms. In a sense, SH algorithms ignore the exact size of large items,
so we can take all items of some type and color. This extends Lemma 3.3 to pack at most βi
or γi of them per bin to satisfy Properties 1 and 2. The challenge is in maintaining Property
3: consider a bin with βi blue type i items and γj type-j items, and suppose the type i items
are all removed. Suppose there exists an open bin with items of type i′ 6= i compatible with j.
If the movement costs of both type j and type i′ items are significantly higher than the cost
of the type i items, we cannot afford to place these groups together, violating Property 3.
To avoid such a problem, we use ideas from stable matchings. We think of groups of βi blue
type-i items and γj red type-j items as nodes in a bipartite graph, with an edge between
these nodes if G contains the edge (bi, rj). We maintain a stable matching under updates,
with priorities being the value of the costliest item in a group of same-type items packed
in the same bin. The stability of this matching implies Property 3; we maintain this stable
matching using (a variant of) the Gale-Shapley algorithm. Finally, relying on our solution
for packing small items as in §3.2, we can pack the small items in bins which are 1− ε full
on average. Combined with the SH bound of Seiden [33], we obtain the following:
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I Theorem 3.5. There exists a fully-dynamic bin packing algorithm with a.c.r 1.589 and
constant additive term using constant recourse under general movement costs.

4 Size Movement Costs (Migration Factor)

In this section, we settle the optimal recourse to a.c.r tradeoff for size movement cost (referred
to as migration factor in the literature); that is, ci = si for each item i. For worst-case
recourse in this model (studied in [9, 23, 6]), poly(ε−1) upper and lower bounds are known
for (1 + ε)-a.c.r. algorithms [6], though the optimal tradeoff remains elusive. We show that
for amortized recourse the optimal tradeoff is Θ(ε−1) recourse for (1 + ε)-a.c.r.

I Fact 4.1. For all ε ≤ 1/2, there exists an algorithm requiring (1+O(ε)) ·OPT (It)+O(ε−2)
bins at all times t while using only O(ε−1) amortized migration factor.

This upper bound is trivial – it suffices to repack according to an AFPTAS whenever
the volume changes by a multiplicative (1 + ε) factor. The challenge here is in showing this
algorithm’s a.c.r to recourse tradeoff is tight. We do so by constructing an instance where
addition or removal of small items of size ≈ ε causes every near-optimal solution to be far
from every near-optimal solution after addition/removal.

I Theorem 4.2. For infinitely many ε > 0, any fully-dynamic bin packing algorithm with
a.c.r (1 + ε) and additive term o(n) must have amortized migration factor of Ω(ε−1).

Our matching lower bound relies on the well-known Sylvester sequence [34], given by
the recurrence relation k1 = 2 and ki+1 =

(∏
j≤i kj

)
+ 1, the first few terms of which

are 2, 3, 7, 43, 1807, . . . While this sequence has been used previously in the context of bin
packing, our proof relies on more fine-grained divisibility properties. In particular, letting c
be a positive integer specified later and ε := 1/

∏c
`=1 k`, we use the following properties:

(P1) 1
k1

+ 1
k2

+ . . .+ 1
kc

= 1− 1∏c

`=1
k`

= 1− ε.

(P2) If i 6= j, then ki and kj are relatively prime.
(P3) For all i ∈ [c], the value 1/ki =

∏
`∈[c]\{i} k`/

∏c
`=1 k` is an integer product of ε.

(P4) If i 6= j ∈ [c], then 1/ki =
∏
`∈[c]\{i} k`/

∏c
`=1 k` is an integer product of kj · ε.

We define a vector of item sizes ~s ∈ [0, 1]c+1 in our instances as follows: for i ∈ [c] we
let si = 1

ki
· (1− ε

2 ), and sc+1 = ε · ( 3
2 −

ε
2 ). The adversarial input sequence will alternate

between two instances, I and I ′. For some large N a product of
∏c
`=1 k`, Instance I consists

of N items of sizes si for all i ∈ [c+ 1]. Instance I ′ consists of N items of all sizes but sc+1.
Properties 1-4 imply on the one hand that I can be packed into completely full bins

containing one item of each size, while any bin which does not contain exactly one item of
each size has at least Ω(ε) free space. Similarly, an optimal packing of I ′ packs items of the
same size in one set of bins, using up exactly 1− ε

2 space, while any bin which contains items
of at least two sizes has at least ε free space. These observations imply the following.

I Lemma 4.3. Any algorithm A with (1 + ε/7)-a.c.r and o(n) additive term packs instance
I such that at least 2N/3 bins contain exactly one item of each size si, and packs instance
I ′ such that at least N/2 bins contain items of exactly one size.

Theorem 4.2 follows from Lemma 4.3 in a rather straightforward fashion. The full details
of this proof and the lemmas leading up to it can be found in [15].
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