
Improved Time Bounds for All Pairs
Non-decreasing Paths in General Digraphs
Ran Duan1

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
duanran@mail.tsinghua.edu.cn

Yong Gu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
guyong12@mails.tsinghua.edu.cn

Le Zhang
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
le-zhang12@mails.tsinghua.edu.cn

Abstract
We present improved algorithms for solving the All Pairs Non-decreasing Paths (APNP) problem
on weighted digraphs. Currently, the best upper bound on APNP is Õ(n(9+ω)/4) = O(n2.844),
obtained by Vassilevska Williams [TALG 2010 and SODA’08], where ω < 2.373 is the usual
exponent of matrix multiplication. Our first algorithm improves the time bound to Õ(n2+ω/3) =
O(n2.791). The algorithm determines, for every pair of vertices s, t, the minimum last edge
weight on a non-decreasing path from s to t, where a non-decreasing path is a path on which the
edge weights form a non-decreasing sequence. The algorithm proposed uses the combinatorial
properties of non-decreasing paths. Also a slightly improved algorithm with running time O(n2.78)
is presented.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph algorithms, Matrix multiplication, Non-decreasing paths

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.44

Funding This work was partially supported by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant
61033001, 61361136003.

Acknowledgements The authors thank the anonymous reviewers for the constructive comments.

1 Introduction

Given a digraph with arbitrary real weights, a non-decreasing path is a path on which the
edge weights form a non-decreasing sequence. Two of the problems studied on non-decreasing
paths are the Single Source Non-decreasing Paths (SSNP) problem and the All Pairs Non-
decreasing Paths (APNP) problem. The problem of SSNP was first studied by Minty [13].
The motivation is a train scheduling problem, as reviewed in [22]. Every train stop is mapped
to a vertex. A train from stop v1 with departure time t1 to stop v2 with arrival time t2 is
mapped to a vertex v with two edges (v1, v), (v, v2), of which the weights are t1, t2 resp. Now
a trip from s to t is possible only when there exists a non-decreasing path from s to t in the

1 Supported by a China Youth 1000-Talent grant.

EA
T

C
S

© Ran Duan, Yong Gu, and Le Zhang;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:duanran@mail.tsinghua.edu.cn
mailto:guyong12@mails.tsinghua.edu.cn
mailto:le-zhang12@mails.tsinghua.edu.cn
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


44:2 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

constructed digraph. As said in [22], for SSNP a folklore modification of Dijkstra’s algorithm
[5], implemented using Fibonacci heaps [8], gives the running time of O(m+ n logn), where
m, n are the number of edges and vertices resp. In the word RAM model the first linear-time
algorithm was given by Vassilevska Williams [22]. With a slight modification, the algorithm
also runs in O(m log logn) time in the standard addition-comparison model.

A restriction of APNP in vertex-weighted digraphs is computationally equivalent to the
problem of Maximum Witness for Boolean Matrix Multiplication (MWBMM) [22]. (Note
that the complexity of computing MWBMM is at least Ω(nω) [17].) An algorithm of O(n2+µ)
time for the latter problem was given by Czumaj et al. [3], where µ satisfies the equation
ω(1, µ, 1) = 1 + 2µ and ω(1, µ, 1) is the exponent of the multiplication of an n×nµ matrix by
an nµ × n matrix. Currently, the best available bounds on ω(1, µ, 1) by Le Gall and Urrutia
[11] imply that µ < 0.5286. The first truly sub-cubic algorithm for edge-weighted APNP was
also presented in [22]. The algorithm originally runs in Õ(n(15+ω)/6) = O(n2.896) time2 based
on an O(n2+ω/3)-time (min,≤)-product (mink{B[k, j] | A[i, k] ≤ B[k, j]} for (min,≤)(A,B))
algorithm from [21], where ω is the exponent of square matrix multiplication. The best upper
bound on ω is currently ω < 2.373 [12, 23]. By using a faster O(n(3+ω)/2)-time algorithm
from [6] for (min,≤)-product, the result can be improved to Õ(n(9+ω)/4) as indicated in
the abstract. These two algorithms for (min,≤)-product are from [21] and [6] resp. The
faster algorithm of [6] utilizes a simple technique called row-balancing, which we introduce in
details in Section 2.

A closely related problem of APNP is the All Pairs Bottleneck Paths (APBP) problem,
where the bottleneck weight of a path is the smallest weight of an edge on the path.
Intuitively for a digraph with non-negative edge weights, APBP determines, for every pair
of vertices s, t, the maximum amount of flow that can be routed from s to t along any
single path. As indicated in [22], APNP is at least as hard as APBP. We briefly explain it
here. Consider an O(n3−δ)-time algorithm for APNP with 0 < δ ≤ 1. Now to compute the
(min,≤)-product of two n× n matrices A, B, a tripartitle digraph G′ = (V1 ∪ V2 ∪ V3, E

′)
can be constructed as follows. The edge from i ∈ V1 to k ∈ V2 is represented by A[i, k];
the edge from k ∈ V2 to j ∈ V3 is similarly represented by B[k, j]. Hence the (min,≤)-
product is solved in O(n3−δ) time. The (max,min)-product (maxk min{A[i, k], B[k, j]} for
(max,min)(A,B)) is a combination of two variants of (min,≤)-product. Therefore it can
also be computed in O(n3−δ) time. If (max,min)-product is computable in O(n3−δ) time,
then APBP is computable in O(n3−δ) time, as (R,min,max,∞,−∞) is a closed semiring
[21]. There are several results on the APBP problem. On vertex-weighted digraphs, Shapira
et al. [17] showed that APBP can be solved in O(n2+µ) time. They also demonstrated the
computational equivalence (up to constant factors) among vertex-weighted APBP and several
other problems. The forementioned problem of MWBMM is one of them. The first truly
sub-cubic algorithm for edge-weighted APBP was given by Vassilevska et al. [21], with the
running time of O(n2+ω/3). Later an improved algorithm was proposed in [6], which runs
in O(n(3+ω)/2) time. There are several variants of APBP. One is the All Pairs Bottleneck
Shortest Paths (APBSP) problem, which for every pair of vertices u, v, determines a path
with the maximum bottleneck weight among all the shortest paths from u to v. The shortest
paths here are measured w.r.t. the unweighted distances. On edge-capacitated digraphs,
Vassilevska et al. [21] gave an algorithm for APBSP with the running time Õ(n(15+ω)/6),
which was improved to Õ(n(3+ω)/2) in [6]. On vertex-capacitated digraphs, Shapira et al. [17]
presented an Õ(n(8+µ)/3)-time algorithm. Also the result was later improved by [6].

2 Here Õ(·), as usual, hides poly-logarithmic factors.



R. Duan, Y. Gu, and L. Zhang 44:3

Fast matrix multiplication algorithms have numerous applications in other graph problems
as well. We list here only a subset of them, which includes finding a maximum triangle in
vertex-weighted graphs [19, 20, 4], to obtain the All Pairs Shortest Paths [9, 10, 16, 18, 1, 25, 7],
finding minimum weight cycles in directed or undirected graphs with integral edge weights
[14, 24, 2, 15].

Our Results: We give faster algorithms for solving APNP on digraphs. The results are
listed in Theorem 1, which follows directly from Theorem 18 and Theorem 21.

I Theorem 1. Let G = (V,E,w) be a real edge-weighted digraph. There exists a deterministic
algorithm which solves the problem of APNP in Õ(n2+ω/3) = O(n2.791) time. There also
exists another slightly faster deterministic algorithm which runs in O(n2.78) time using
rectangular matrix multiplications.

A High-level Overview: The problem of APNP can be solved by running (essentially)
(n−1) steps of the (min,≤)-product of the adjacency matrix of the input digraph. We utilize
the fact that the adjacency matrix in the computation is always fixed, and therefore when
the rows of it all have a bounded number of (< ∞) entries, we find a simple (and faster)
alternative to the repeated applications of the (min,≤)-product. To make use of this simple
alternative, we partition the input digraph into many sparse subgraphs, and compute APNP
by considering the edges one subgraph by one subgraph. However, even in a sparse subgraph
the number of (<∞) entries in a row might be still as large as Ω(n). Thus we further classify
a row as type low or high, where a high row corresponds to a high out-degree vertex in the
subgraph. The simple alternative is used to replace the (min,≤)-product for the submatrix
consisting of low rows. Also it computes the portion of a non-decreasing path until the first
vertex of high out-degree. The remaining portion from this high out-degree vertex to the
destination can be constructed by the relevant queries on a slightly modified data structure
from [22]. However, to get an efficient algorithm we should first make sure of the queries
worthy of asking, which is actually a weaker problem of the existence of non-decreasing paths.

The paper is organized as follows. We introduce the preliminaries required in the next
section. Then in Section 3 we propose an algorithm for a simple case, which is also a
sub-routine of the improved algorithms presented in Section 4.

2 Preliminaries

Given a real edge-weighted digraph G = (V,E,w), where w : E → R is a weight function
defined on its edges, the All-Pairs Non-decreasing Paths (APNP) problem asks to determine,
for every pair of vertices u, v, the minimum last edge weight on a non-decreasing path from
u to v (∞ if such a path does not exist). Typically the output is in tabular form, i.e. a
matrix R with R[i, j] corresponding to the minimum last edge weight of a non-decreasing
path from ui to uj . Also conventionally the entries R[i, i]’s are set as −∞ [22]. The matrix
R is called the “APNP matrix” of G. Given a matrix A, the i-th row, the j-th column of A
are denoted as A[i, ·], A[·, j] resp. Also for two matrices A, B of the same size, the entry-wise
minimum of them is denoted as min(A,B). Given a path p in G, if vertex k1 appears earlier
on p than k2, then the portion of p from k1 to k2 is denoted as p[k1, k2]. Notations p(k1, k2],
p[k1, k2), p(k1, k2) represent p[k1, k2] excluding k1, k2, both k1 and k2 resp. The following
special matrix products are used in later algorithms.

ICALP 2018



44:4 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

I Definition 2 (Various Products). Given two n×n matrices A and B over a totally ordered
set, the dominance product A4B is defined as

(A4B)[i, j] = |{k | A[i, k] ≤ B[k, j]}|.

The (min,≤)-product A6B is defined as

(A6B)[i, j] =
{

mink{B[k, j] | A[i, k] ≤ B[k, j]} if ∃k,A[i, k] ≤ B[k, j],
∞ otherwise.

Next we review a simple technique called row-balancing [6]. Basically by row-balancing,
a matrix is decomposed into a sparse matrix and a dense one, where the finite entries of the
dense matrix are uniformly re-distributed across the rows.

I Definition 3 ([6] Row-Balancing). Let A be an n × p matrix with m finite elements.
Depending on context, the other elements will either all be ∞ or all be −∞. We assume the
former below. The row-balancing of A, or rb(A), is a pair (A′, A′′) of n× p matrices, each
with at most k = dm/ne elements in each row. The row-balancing is obtained by the following
procedure: First, sort all the finite elements in the i-th row of A in non-increasing or non-
decreasing order depending on context , and divide this list into several parts T 1

i , T
2
i , . . . , T

ai
i

such that all parts except the last one contain k elements and the last part (T ai
i ) contains at

most k elements. Let A′ be the submatrix of A containing the last parts:

A′[i, j] =
{
A[i, j] if A[i, j] ∈ T ai

i ,
∞ otherwise.

Since the remaining parts have exact k elements, there can be at most m/k ≤ n of them. We
assign each part to a distinct row in A′′, i.e., we choose an arbitrary mapping ρ : [n]× [p/k]→
[n] such that ρ(i, q) = i′ if T qi is assigned row i′; it is undefined if T qi doesn’t exist. Let A′′
be defined as:

A′′[i′, j] =
{
A[i, j] if ρ−1(i′) = (i, q) and (i, j) ∈ T qi ,
∞ otherwise.

Thus, every finite A[i, j] in A has a corresponding element in either A′ or A′′, which is also
in the j-th column. The column-balancing of A, or cb(A), is similarly defined as (A′T , A′′T ),
where (A′, A′′) = rb(AT ).

This simple technique is very useful for computing A4B, A6B, (max,min)(A,B), and
several new hybrid products defined in [6]. Below is a theorem from [6], which shows how to
compute A4B using cb(A).

I Theorem 4 ([6] Sparse Dominance Product). Let A and B be two n× n matrices where
the number of non-(∞) values in A is m1 and the number of non-(−∞) values in B is m2.
Then A4B can be computed in time O(m1m2/n+ nω).

There is a symmetric problem of computing non-decreasing paths with maximum first
edge weights. Note that the maximum first edge weight on a non-decreasing path from i to
i is defined as ∞, and for i 6= j, if no non-decreasing path exists, the maximum first edge
weight is defined as −∞. The time complexity of the single source version is given below.

I Theorem 5 ([22] Maximum First Edge Weight). Given a digraph G with n vertices, m edges,
and a vertex s, there exists an algorithm which in O(m logn) time outputs the maximum
first edge weight on a non-decreasing path from s to v for every v ∈ V .



R. Duan, Y. Gu, and L. Zhang 44:5

We need a slightly modified auxiliary data structure from [22] to efficiently compute
a non-decreasing path with the minimum last edge weight starting from a subset of the
out-edges of the source vertex. A paraphrased proof is given below.

I Theorem 6. Given a digraph G = (V,E,w) with n vertices, m edges, and a vertex s, there
exists an algorithm which in O(m logn) time constructs a balanced binary search tree T (t)
for every t ∈ V . With T (t), given a weight value w′, the algorithm can determine in O(logn)
time the minimum last edge weight of a non-decreasing path from s to t, starting from any
out-edge e of s with w(e) ≥ w′.

Proof. For every vertex v, add an attribute d[v] and a list L(v), where d[s] = −∞, d[v] =∞
if v 6= s, and L(v) = ∅ initially. Next start a search resembling DFS from s, where differently
the edges of s are explored in reverse sorted order, and the search only follows non-decreasing
paths. Also for every edge (u, v), once explored, we first run d[v]← min{d[v], w(u, v)} and
then remove (u, v) from G. Lastly, vertices can be repeatedly visited. Consider the time when
this recursive search backtracks to the initial search at s. The algorithm will explore the
next unexplored out-edge of s in the reverse sorted order. We can thus partition the search
into different phases, each of which corresponds to the search starting from an unexplored
out-edge of s until the algorithm backtracks to s. Consider the end of a specific phase
corresponding to an out-edge e of s. For every v of which d[v] becomes strictly smaller in this
phase, append (w(e), d[v]) to L(v). At the end of the whole search, for every v, scan L(v),
where for consecutive elements of equal w(e), only the last one is retained. Next transform
L(v) into a balanced binary search tree T (v) keyed by w(e).

Given a weight value w′, the value required is the d[v] attribute of the predecessor
found. J

We last review a standard technique called bridging set, which is repeatedly used in
the literature [6, 22, 25, 17]. The following lemma is one from [22]. The set of size n logn

L

constructed is an L-bridging set.

I Lemma 7 ([22, 25]). Given a collection of N subsets of {1, . . . , n}, each of size L, one
can find in deterministic O(NL) time a set of n logn

L elements of {1, . . . , n} hitting every one
of the subsets.

Model of Computation: We use the standard addition-comparison computational model.
The only operations performed on real numbers are comparisons in this paper.

3 Warm Up: A Simple Case

As a warm up for our main algorithms, we consider a simple algorithm, which is efficient
if the out-edges are uniformly distributed across the vertices. The main purpose is to give
an idea of how the combinatorial properties of non-decreasing paths are utilized, and the
difficulty of extending the algorithm to the general case.

Given a digraph G = (V,E,w), let L(E) be a sorted list of the edges in E. We evenly
divide L(E) into t parts such that each part has at most dn2/te edges. Each part corresponds
to a subgraph of G. Therefore there are t subgraphs. Denote them as Gr for 1 ≤ r ≤ t. The
edge weights in Gr−1 is no greater than those in Gr.

Consider the adjacency matrix Aj of Gj . By saying a simple case, we mean the number
of (< ∞) elements of any row in any Aj is bounded by d, which has n/t ≤ d ≤ n. This
assumption is only used in Theorem 15 later. We use the notation G≤r to represent the

ICALP 2018



44:6 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

subgraph induced by the (< ∞) entries of Aj for 1 ≤ j ≤ r. The notation G<r can be
inferred similarly. The proposed algorithm consists of t iterations. In the r-th iteration, the
APNP matrix of G<r is extended to the APNP matrix of G≤r. Consider the APNP matrix
R of G<r. Except a technical issue of edges of equal weights straddling across different Ar’s
(which is handled later in this section), one can verify that by running R← min(R,R6Ar)
for (n − 1) steps, the matrix R will be the APNP matrix of G≤r. Intuitively by n′ steps
of R ← min(R,R 6 Ar), the algorithm considers all the non-decreasing paths containing
at most n′ edges of Gr. The combinatorial properties of non-decreasing paths bring the
following observations in the extension from G<r to G≤r.

The APNP matrices of G<r, G≤r are denoted as R, R′ resp. If R[i, j] < ∞, then the
non-decreasing path in G from i to j with the minimum last edge weight is already computed,
for existing non-decreasing paths with minimum last edge weights cannot be improved by
introducing edges of no smaller weights.

I Observation 8 (An Entry Only Computed Once). If R[i, j] <∞, then R′[i, j] = R[i, j].

The above observation indicates that the exact value of an entry of the APNP matrix is
computed in at most one extension among all the extensions.

By allowing non-decreasing paths with more edges of Gr, minimum last edge weights of
non-decreasing paths never become larger. Therefore we have the following observation.

I Observation 9 (Non-increasing of Entries). In the process of the (n − 1) steps of R ←
min(R,R6Ar), the entry R[i, j] is non-increasing.

Generally, given a non-decreasing path p from s to t with the minimum last edge weight,
we can only claim subpaths starting from s (prefixes) can be replaced with non-decreasing
paths with minimum last edge weights. However, as shown below, except the technicality on
equal weights handled later, the claim also holds for certain other subpaths.

I Observation 10 (Two Parts of A Path). Consider a non-decreasing path p in G≤r with the
minimum last edge weight. W.l.o.g. the path p can be split into two portions p1, p2 lying
within G<r, Gr resp. Any prefix of p2 can be replaced with a non-decreasing path in Gr
with the minimum last edge weight.

We use the following definition to capture the entries of interest in R′.

I Definition 11. An entry R′[i, j] is new w.r.t. R if R′[i, j] <∞ but R[i, j] =∞. Otherwise,
it is old.

Use nr to denote the number of new entries of the APNP matrix of G≤r w.r.t. the APNP
matrix of G<r. The following observation is then obvious.

I Observation 12 (Bounded Number of New Entries).
∑

1≤r≤t nr ≤ n2.

We also need a different view of computing C = min(A,A6B), where A, B are n× n
matrices. The matrix C is the entry-wise minimum of A and the n matrices A[·, k] 6B[k, ·]
for 1 ≤ k ≤ n. An algorithm for computing C using this view is given in Table 1. Now we
present the intuition of the algorithm for the simple case.

The Intuition: The matrices R, R′ are defined as before. Among all the non-decreasing
paths from i to j in G≤r with the minimum last edge weight, consider one path p with
the least number of edges in Gr. As in Observation 10 (Two Parts of A Path), w.l.o.g. p
is a concatenation of subpaths p[i, k1], p[k1, j]. Subpaths p[i, k1], p[k1, j] are within G<r,
Gr resp. The entry R′[i, k1] is old, whereas the entries R′[i, k′]’s are new for k′ ∈ p(k1, j)



R. Duan, Y. Gu, and L. Zhang 44:7

Algorithm 1 An algorithm for computing C = min(A,A6B).

(S1) Initialize C as A. Construct a sorted list L(B[k, ·]) of the (<∞) elements of B[k, ·] in
non-increasing order, for every k.

(S2) For every A[·, k], and for every A[i, k] within:
(S21) Scan L(B[k, ·]) from head to tail until the first element of L(B[k, ·]) which is less

than A[i, k].
(S22) C[i, j] ← min{C[i, j], B[k, j]} for every B[k, j] scanned, excluding the first ele-

ment of L(B[k, ·]) which is less than A[i, k].

due to p having the least number of edges in Gr. Therefore during the (n − 1) steps of
R← min(R,R6Ar), the old entries effectively change R only in the first step. The changes
of R in the later (n− 2) steps are contributed only by the new entries. In the view of the
algorithm in Table 1, the entry (i, k′) of R is only compared with the k′-th row of Ar. As
the number of (<∞) elements of the k′-th row of Ar is assumed to be bounded, the cost
brought by all the new entries is bounded due to Observation 9 (Non-increasing of Entries)
and Observation 12 (Bounded Number of New Entries).

Besides the algorithm in Table 1, we also need an “ordinary” way to compute R6Ar as
shown below.

I Lemma 13 (The First Edge). Given the APNP matrix R of G<r, the product R6Ar can
be computed in Õ(nω + nr · nt ) time.

Proof. According to Observation 8 (An Entry Computed Only Once), only the new entries
of R6Ar w.r.t. R are of concern. To get these, we first determine the set S of (i, j)’s with
(R6Ar)[i, j] <∞ but R[i, j] =∞. Again to determine whether (R6Ar)[i, j] <∞, we only
need to compute R 4 Ar, where a slight difference is that here only the (< ∞) entries of
Ar are considered. As the (<∞) entries of R are no greater than those of Ar, the product
R4Ar is a matrix product of two Boolean matrices corresponding to the (<∞) entries of
R, Ar resp., which is computable in O(nω) time.

To determine the exact value of (R 6 Ar)[i, j] < ∞, we use an idea similar to one in
[6]. Let (A′r, A′′r ) = cb(Ar). Compute R 4 A′r and R 4 A′′r in O(nω) time. The value of
(R 6 Ar)[i, j] is R[i, ·] 6 Ar[·, j]. In cb(Ar), the column Ar[·, j] is divided into aj parts
T 1
j , . . . , T

aj

j . To determine the right q′ where (R6Ar)[i, j] ∈ T q
′

j , check (R4A′r)[i, j] > 0,
and if it does not hold, search for the largest q with (R4A′′r )[i, ρ(j, q)] > 0. Note that T qj ’s
with q < aj are assigned to columns ρ(j, q)’s in matrix A′′r . Once q′ is known, the exact value
of (R6Ar)[i, j] is returned by an exhaustive enumeration within T q

′

j . The total time for the
new entries of R6Ar is Õ(nω + nr · nt ), as each entry of R4A′′r is checked no more than
once, and T q

′

j ’s are of size O(n/t). J

A Technicality on Equal Weights: To let the edges of a non-decreasing path first come
from G<r, then from Gr, we need to handle the case in which the edges of equal weight
straddle across different Ar’s. We split out these special edges and merge them into single
matrices. Consider one such a matrix A′. The APNP matrix R′ of the corresponding
subgraph of A′ can be computed by a transitive closure algorithm in O(nω) time. Suppose
the APNP matrix before processing A′ is R. Next we run R ← min(R,R 6 R′), which is
similar to Lemma 13 (The First Edge), but now the finite entries of R′ are all equal to the
single value. Therefore the cost is O(nω). As there are only O(t) such A′’s, the total cost for
the technicality is only O(t · nω).

ICALP 2018



44:8 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

Algorithm 2 The algorithm for the simple case.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ t, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

Construct a sorted list L(Ar[k, ·]) of the (<∞) elements of Ar[k, ·] in non-increasing
order, for 1 ≤ k ≤ n.
(S21) Run R← min(R,R6Ar) as in Lemma 13 (The First Edge). Let S be the set

of the entries of R which get strictly smaller. Any entry first added to S, say
R[i, k], is associated with a pointer pointing to the head of L(Ar[k, ·]).

(S22) Run the following for (n− 2) steps or until S = ∅.
i. For every R[i, k] ∈ S:
A. Starting from the position of L(Ar[k, ·]) pointed to by the pointer asso-

ciated with R[i, k], move the pointer element by element until the first
element of L(Ar[k, ·]) which is less than R[i, k].

B. R[i, j] ← min{R[i, j], Ar[k, j]}, for every element Ar[k, j] of L(Ar[k, ·])
scanned, excluding the first element of L(Ar[k, ·]) which is less than
R[i, k].

ii. Re-initialize S as the set of the entries of R which get strictly smaller in this
step.

iii. Any entry first added to S, say R[i, k], is associated with a pointer pointing
to the head of L(Ar[k, ·]).

The formal algorithm for the simple case is given in Table 2. The analysis for it is given
in Theorem 15. Also by Observation 8 (An Entry Only Computed Once), the set S in Table
2 has the following property which is useful in the proof.

I Observation 14. The set S in Table 2 contains only the new entries of the APNP matrix
of G≤r w.r.t. the APNP matrix of G<r.

I Theorem 15. If the number of (<∞) elements in any row of Ar is bounded by d, then
the steps S21 and S22 in Table 2 can find the APNP matrix of G≤r in Õ(nω + nr · (d+ n

t ))
time in every iteration. So the total time is Õ(t · nω + n2 · (d+ n

t )).

Proof. To show the correctness, we only need to prove that the step S22 in Table 2 is
equivalent to (n− 2) steps of the algorithm in Table 1. This is almost obvious, as the entries
not getting strictly smaller during the previous step of R← min(R,R6Ar) do not contribute
anything in the current step of R← min(R,R6Ar). Also if S in the step S22 of Table 2 is
empty, we can stop earlier than (n− 2) steps, as later steps of R← min(R,R6Ar) give the
same R.

Note that the cost of the step S22 in Table 2 is charged to the scanning induced by the
entries in S. By Observation 9 (Non-increasing of Entries) and Observation 14, the time of
the step S22 of Table 2 in r-th iteration is Õ(nr · d). Also by Lemma 13 (The First Edge),
the step S21 of Table 2 takes Õ(nω + nr · nt ) time, thus prove the theorem. J

So if the out-edges are uniformly distributed across all vertices, i.e., the number of (<∞)
elements of any row in any Ar is always bounded by O(n/t) for any t, then we can get a
Õ(n(3+ω)/2) time APNP algorithm by setting t = n(3−ω)/2.

Generally a row of an Ar could have as many as Ω(n) (< ∞) elements. Rows with a
large number of (<∞) elements correspond to vertices of high out-degree. A new approach
for them is given in the next section.



R. Duan, Y. Gu, and L. Zhang 44:9

G<r

Gr

G≤r

k1

i

k2

j

p1
p2

(k1, k2): the first edge

h1 ∈ V H
r

Figure 1 An illustration of the extension of the APNP matrix from G<r to G≤r in the general
case.

4 Improved Algorithms for APNP

We move to the general case, in which the number of (<∞) elements in a row might not be
bounded by O(n/t). For ease of analysis, the edge set is divided into nt subsets, each with
at most dn2/nte = dn2−te edges. The vertices of Gr are classified as high out-degree with
out-degree > n1−t+s, or low out-degree otherwise, where s > 0 is a parameter to be chosen.
Denote the sets of high out-degree, low out-degree vertices of Gr as V Hr , V Lr resp. Note that
|V Hr | = O(n1−s).

The Intuition: As illustrated in Figure 1, among all the non-decreasing paths in G≤r
from i to j with the minimum last edge weight, consider one path p with the least number
of edges in Gr. By running the step S21 of Table 2, we construct the first edge (k1, k2).
Thanks to p having the least number of edges in Gr, entries (i, k′) of the APNP matrix
of G≤r for k′ ∈ p[k2, j) are new w.r.t. the APNP matrix of G<r. The hard case is when
there exists a vertex from V Hr on p[k2, j). Consider the first such vertex h1 from V Hr . The
important observation is that the edges on p[k2, h1] are the out-edges of low out-degree
vertices. Therefore, if we run the step S22 of Table 2, but differently only on the low
out-degree vertices, then the portion p[i, h1] is successfully constructed. The last portion
p[h1, j] can be constructed by Theorem 6, as p[h1, j] represents a non-decreasing path starting
with an edge of weight no smaller than the last edge weight of p[i, h1]. However, to get an
efficient algorithm, we could not afford to construct p[h1, j] if it did not exist. To determine
the existence of p[h1, j], we replace p[h1, j] with a non-decreasing path in Gr from h1 to j
with the maximum first edge weight. Then the existence of p[h1, j] is reduced to whether
p[i, h1] can be concatenated with this replacement of p[h1, j].

The algorithm for the general case is described in Table 3. For the matrix HN
1 in Table

3, we have the following properties which are crucial for the correctness and an efficient
algorithm.

I Observation 16. Consider one path p with the least number of edges in Gr among all the
non-decreasing paths in G≤r from i to j with the minimum last edge weight. Let p[k1, j] be
the portion of p in Gr. If p[k1, j] 6= ∅, and there exists a vertex from V Hr on p(k1, j), then
the last edge weight of p[i, h1] is stored in HN

1 [i, h1], where h1 is the first vertex in V Hr on
p(k1, j). For the matrix HN

1 , the number of (<∞) entries of HN
1 is no greater than nr.

For the matrix X, the number of X[i, j] = 1 with R[i, j] =∞ is no more than nr. Such
(i, j)’s of X are associated with non-decreasing paths never appearing in G<r. Hence these
(i, j)’s in the APNP matrix of G≤r are new w.r.t. R. By Theorem 6, the running time of the
step S24 therefore is as follows.

ICALP 2018



44:10 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

Algorithm 3 The algorithm for the general case.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ nt, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

(S21) Split out a sub-matrix ALr of Ar, which contains only the rows with the number
of (<∞) elements no greater than n1−t+s. Initialize a matrix R′ as R.
i. Run the steps S21, S22 in Table 2 with inputs R′, Ar and ALr . The step S22

of Table 2 only works on ALr instead of Ar.
(S22) With Theorem 5 (Maximum First Edge Weight), compute an n1−s × n matrix

H2 with H2[i, j] representing the maximum first edge weight on a non-decreasing
path in Gr from i ∈ V Hr to j.

(S23) Group the entries of R′ from V to V Hr that are new w.r.t. R as an n×n1−s matrix
HN

1 . Construct a Boolean matrix X with X[i, j] = 1 if (HN
1 4H2)[i, j] > 0.

(S24) Initialize a matrix R′′ as R. For every h1 ∈ V Hr , use Theorem 6 to build the
auxiliary data structure for h1 in Gr, i.e., a set of T (h1, j)’s for all j ∈ V .
For every X[i, j] = 1 with R[i, j] =∞:
i. For every h1 ∈ V Hr :
A. Query T (h1, j) with w′ = HN

1 [i, h1]. Get the minimum last edge weight
w′′ of a non-decreasing path from h1 to j in Gr, starting from any
out-edge e of h1 with w(e) ≥ w′.

B. R′′[i, j]← min(R′′[i, j], w′′).
(S25) R← min(R′, R′′).

I Observation 17. The step S24 of Table 3 has the running time of Õ(nr ·n1−s+n1−s ·n2−t).

I Theorem 18. Given a real edge-weighted digraph on n vertices, the APNP matrix can be
computed in Õ(n2+ω/3) = O(n2.791) time.

Proof. We show the APNP matrix R is correctly extended from G<r to G≤r. Among all the
non-decreasing paths in G≤r from i to j with the minimum last edge weight, consider one
path p with the least number of edges in Gr. We show p can be constructed by the algorithm.
As in Observation 10 (Two Parts of A Path), the path p consists of two subpaths p[i, k1],
p[k1, j], lying within G<r, Gr resp. An illustration is given in Figure 1. If p[k1, j] = ∅,
then R[i, j] is an old entry. Therefore p is already constructed. Consider the case in which
p[k1, j] 6= ∅. Let (k1, k2) be the first edge on p[k1, j]. If there is no vertex in V Hr on
p[k2, j), the circumstance is similar to the simple case of Section 3. The step S21 successfully
constructs p under this circumstance. The only case left is when there exists a vertex in V Hr
on p[k2, j). Consider the first such vertex h1. Due to Observation 16, the subpath p[i, h1] is
successfully constructed by the step S21. The last portion p[h1, j] is constructed by the step
S24, as X[i, j] = 1 and R[i, j] =∞ in this case.

Next we proceed to the analysis of the time complexity. The step S1 costs O(n2).
According to Theorem 15, the step S21 needs the running time of Õ(nω + nr · n1−t+s) to
compute R′. By Theorem 5 (Maximum First Edge Weight), the step S22 takes Õ(n1−s ·n2−t)
time, as |V Hr | = O(n1−s) and Gr has O(n2−t) edges. The step S23 involves the computation
of HN

1 4H2, for which Theorem 4 (Sparse Dominance Product) is used. Due to Observation
16, the cost for it is Õ(nω + nr · n1−s). Note that the number of (> −∞) entries of H2 is
no greater than n2−s. Also HN

1 , H2 are expanded to n × n matrices in Theorem 4. For
easy understanding, one can do rb(H2) rather than cb(HN

1 ) in the proof of Theorem 4,
which can be found in [6]. The step S24 takes Õ(nr · n1−s + n1−s · n2−t) time according to



R. Duan, Y. Gu, and L. Zhang 44:11

Observation 17. The step S25 costs O(n2). Summing up all these costs, we have the total
running time within Õ(·) as follows.∑

1≤r≤nt

(nω + nr · n1−t+s) + n3−s

+
∑

1≤r≤nt

(nω + nr · n1−s)

+
∑

1≤r≤nt

(nr · n1−s + n1−s · n2−t)

=nt+ω + n3−t+s + n3−s,

where by choosing t = 2s, and s = 1− ω
3 , we have the final result n2+ω/3. J

4.1 A Slight Improvement via Rectangular Matrix Multiplication
The algorithm in Table 3 builds auxiliary data structures of Theorem 6 for all vertices in
V Hr . We can lessen this cost a little bit at the price of considering more vertices like h1 in
Figure 1.

The Intuition: As illustrated in Figure 1, formerly we consider the first vertex h1 in V Hr on
p[k2, j). Now we look at more vertices from V Hr on p[k2, j). Consider the second such vertex
h2. Similarly the edges on p(h1, h2] are the out-edges of low out-degree vertices. Also thanks
to p having the least number of edges in Gr, entries (i, k′) of the APNP matrix of G≤r for
k′ ∈ p(h1, h2) are new w.r.t. the APNP matrix of G<r. Therefore, if we had constructed the
first edge of p[h1, h2], the cost for constructing later edges on p[h1, h2] could be charged to
the step S22 in Table 2. The idea for the improvement is to look at the first nq vertices from
V Hr on p[k2, j). Name them as h1, . . . , hnq . If p[k2, j) contains no more than nq vertices from
V Hr , the path p is then fully constructed. If p[k2, j) contains more than nq vertices from V Hr ,
we could sample only O(n1−s−q logn) vertices from V Hr , such that w.h.p. at least one vertex
in {h1, . . . , hnq} is hit. Say one such vertex is h. Note that p[i, h] is already constructed. We
then use the same auxiliary data structures as in Table 3 to construct p[h, j]. Also we use
the same algorithm as in Table 3 to first determine the existence of p[h, j]. The difference is
that the construction of p[h, j] only involves the computation on O(n1−s−q logn) vertices,
instead of O(n1−s) vertices as before. The improvement comes from this difference.

The algorithm is given in Table 4, which needs to compute HN
1 6AHr for matrices HN

1 ,
AHr defined within. The time complexity of the computation is given as follows, for which
the idea is similar to one in [6]. Note that Theorem 4 (Sparse Dominance Product) can be
extended to handling two matrices of sizes n × n1−s and n1−s × n. The time complexity
similar to the one in Theorem 4 is O(m1m2/n

1−s + nω(1,1−s,1)).

I Lemma 19. The computation for HN
1 6AHr takes Õ(nω(1,1−s,1)+q + nr · n1−t−q+s) time.

Proof. Let L(AHr ) be the sorted list of (< ∞) entries of AHr . We divide L(AHr ) into nq
parts, so each part contains at most dn2−t/nqe entries. We have nq matrices AHr,1, . . . , AHr,nq

corresponding to each part. The entries of HN
1 with values no greater than max{e | e ∈ AHr,nq}

are partitioned into (nq+1) matrices HN
1,0, H

N
1,1, . . . ,H

N
1,nq . The matrix HN

1,p with 1 ≤ p ≤ nq
consists of the entries HN

1 [i, j]’s satisfying min{e | e ∈ AHr,p} < HN
1 [i, j] ≤ max{e | e ∈ AHr,p}.

The matrix HN
1,0 consists of the entries HN

1 [i, j]’s satisfying HN
1 [i, j] ≤ min{e | e ∈ AHr,1}.

We compute HN
1 4AHr,p for 1 ≤ p ≤ nq. Note that the following holds.

HN
1 4AHr,p = (HN

1,0 + · · ·+HN
1,p) 4AHr,p,

ICALP 2018



44:12 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

Algorithm 4 A slightly faster algorithm via rectangular matrix multiplication.
(S1) An APNP matrix R is initialized as R[i, i] = −∞, and R[i, j] =∞ for i 6= j.
(S2) ∀r, 1 ≤ r ≤ nt, the APNP matrix R of G<r is extended to the APNP matrix of G≤r.

Split Ar into two sub-matrices AHr , ALr , representing out-edges of high, low out-degree
vertices resp.
(S21) Initialize a matrix R′ as R.

i. Run the steps S21, S22 in Table 2 with inputs R′, Ar and ALr . The step S22
of Table 2 only works on ALr instead of Ar.

(S22) Run the following for nq steps:
i. Group the entries of R′ from V to V Hr that are new w.r.t. R as an n× n1−s

matrix HN
1 .

ii. R′ ← min(R′, HN
1 6 AHr ). Determine the set S of the entries of R′ which

get strictly smaller in this step.
iii. Run the step S22 of Table 2 with inputs R′, S and ALr .

(S23) Sample uniformly at random O(n1−s−q · logn) vertices from V Hr . Run the steps
S22–S25 in Table 3, but only on the sampled vertices, rather than V Hr .

where (HN
1,0 + · · · + HN

1,p−1) 4 AHr,p is computable in O(nω(1,1−s,1)) time, as the entries in
(HN

1,0 + · · · + HN
1,p−1) are no greater than min{e | e ∈ AHr,p}. Use |HN

1,p| to represent the
number of (<∞) entries in HN

1,p. We use Theorem 4 (Sparse Dominance Product) to compute
HN

1,p 4 AHr,p in Õ(nω(1,1−s,1) + |HN
1,p| · n2−t−q/n1−s) time, as AHr,p only has n1−s rows. The

total time for computing HN
1 4AHr,p for 1 ≤ p ≤ nq is Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s),

as
∑

1≤p≤nq |HN
1,p| ≤ nr.

Let ((AH1,p)′, (AH1,p)′′) = cb(AH1,p). The computation of HN
1 4 (AHr,p)′, HN

1 4 (AHr,p)′′ for
1 ≤ p ≤ nq also takes Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s) time.

For an entry (HN
1 6 AHr )[i, j] to be determined, we find the smallest p with (HN

1 4
AHr,p)[i, j] > 0. Then (HN

1 6AHr )[i, j] ∈ AHr,p. The remaining steps are similar to Lemma 13
(The First Edge). The total time is Õ(nω(1,1−s,1) · nq + nr · n2−t−q/n1−s + nr · n2−t−q/n),
as AHr,p has n columns and only the new entries of HN

1 6 AHr are of interest, of which the
number is at most nr. J

The step S23 in Table 4 constructs an L-bridging set with L = nq. We use Lemma 7 to
compute it deterministically as follows. Consider p as in the intuition of Section 4.1. The N
subsets in Lemma 7 are p’s with exactly nq vertices from V Hr on p[k2, j)’s, where j ∈ V Hr .
To get the subset related to p, we need to extract the vertices in V Hr on p[k2, j). This is
solvable in O(nq) time if we know the predecessors in V Hr of the vertices on p(k2, j].

We notice that for a specific i, just before the Step 23 of Table 4, for the j’s of which
R′[i, j]’s are new w.r.t. R, the edges corresponding to these R′[i, j] form a forest, i.e., we
know the predecessors in V (rather than in V Hr ) of these j’s. Given such a forest, a DFS
will give us the required predecessors in V Hr of these j’s. The cost of DFS for different i’s is
O(nr), as there are no more than nr new R′[i, j]’s w.r.t. R. Thus the following holds.

I Observation 20. An L-bridging set with L = nq in the step S23 of Table 4 can be
constructed deterministically in Õ(n1−s · nq) time.

I Theorem 21. The APNP matrix of a real edge-weighted digraph with n vertices is com-
putable in deterministic O(n2.78) time.

Proof. The correctness proof is almost similar to the one in Theorem 18. There we consider
the first vertex h1 in V Hr , whereas here we consider the vertex h in V Hr hit by the bridging



R. Duan, Y. Gu, and L. Zhang 44:13

set. According to Observation 20, the total time for the construction of the bridging sets is
Õ(nt+1−s+q) = Õ(n2+t−2s) (as q ≤ 1− s), which is absorbed by the other terms.

Now we turn to the analysis of time complexity. The step S21 is the same as before,
taking Õ(nω+nr ·n1−t+s) time. The second step of S22 takes Õ(nω(1,1−s,1)+q+nr ·n1−t−q+s)
time, as shown in Lemma 19. The third step of S22 in one iteration of the step S2 is charged
to the step S21, resulting in Õ(nr · n1−t+s) time. The other steps are similar to Theorem 18,
for which the time is Õ(nω + nr · n1−s−q + n1−s−q · n2−t). Summing up all of them, we have
the total running time within Õ(·) as follows.

nt+ω + n3−t+s + n3−s−q + nt+ω(1,1−s,1)+2q,

where ω(1, 1− s, 1) ≤ 2 + (1− s)(ω − 2) if rectangular matrix multiplications are reduced
to square matrix multiplications. By setting s = 3−ω

ω+1 , t = 1
2 (3 + s− ω), and q = t− 2s, we

have the final result n
1
2 (3+ 3−ω

ω+1 +ω) = O(n2.78). J

References
1 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path

problem. Journal of Computer and System Sciences, 54(2):255–262, 1997.
2 Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic applications of Baur-

Strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM, 62(4):28, 2015.
3 Artur Czumaj, Mirosław Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest

common ancestors in directed acyclic graphs. Theoretical Computer Science, 380(1-2):37–
46, 2007.

4 Artur Czumaj and Andrzej Lingas. Finding a heaviest triangle is not harder than matrix
multiplication. In Proceedings of the 18th annual ACM-SIAM Symposium on Discrete
Algorithms, pages 986–994. SIAM, 2007.

5 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

6 Ran Duan and Seth Pettie. Fast algorithms for (max,min)-matrix multiplication and
bottleneck shortest paths. In Proceedings of the 20th annual ACM-SIAM Symposium on
Discrete Algorithms, pages 384–391. SIAM, 2009.

7 Pavlos Eirinakis, Matthew Williamson, and K. Subramani. On the Shoshan-Zwick algo-
rithm for the all-pairs shortest path problem. J. Graph Algorithms Appl., 21(2):177–181,
2017.

8 Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

9 Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer
length edges. Information and Computation, 134(2):103–139, 1997.

10 Zvi Galil and Oded Margalit. All pairs shortest paths for graphs with small integer length
edges. Journal of Computer and System Sciences, 54(2):243–254, 1997.

11 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In Proceedings of the 29th annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.

12 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pages 296–303.
ACM, 2014.

13 George J. Minty. A variant on the shortest-route problem. Operations Research, 6(6):882–
883, 1958.

ICALP 2018



44:14 Improved Time Bounds for All Pairs Non-decreasing Paths in General Digraphs

14 Liam Roditty and Virginia Vassilevska Williams. Minimum weight cycles and triangles:
Equivalences and algorithms. In Proceedings of the 52nd annual IEEE symposium on
Foundations of Computer Science, pages 180–189. IEEE, 2011.

15 Piotr Sankowski and Karol Węgrzycki. Improved distance queries and cycle counting by
Frobenius normal form. In Proceedings of the 34th Symposium on Theoretical Aspects of
Computer Science, 2017.

16 R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal
of Computer and System Sciences, 51(3):400–403, 1995.

17 Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex weighted
graphs. Algorithmica, 59(4):621–633, 2011.

18 Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer
weights. In Proceedings of the 40th annual IEEE symposium on Foundations of Computer
Science, pages 605–614. IEEE, 1999.

19 Virginia Vassilevska and Ryan Williams. Finding a maximum weight triangle in n3−δ

time, with applications. In Proceedings of the 38th annual ACM Symposium on Theory of
Computing, pages 225–231. ACM, 2006.

20 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the smallestH-subgraph
in real weighted graphs and related problems. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming, pages 262–273. Springer-Verlag,
2006.

21 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and
max-min matrix products in truly subcubic time. Theory of Computing, 5(9):173–189,
2009.

22 Virginia Vassilevska Williams. Nondecreasing paths in a weighted graph or: How to opti-
mally read a train schedule. ACM Trans. Algorithms, 6(4):70:1–70:24, 2010.

23 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith–Winograd.
In Proceedings of the 44th annual ACM Symposium on Theory of Computing, pages 887–898.
ACM, 2012.

24 Raphael Yuster. A shortest cycle for each vertex of a graph. Information Processing Letters,
111(21):1057–1061, 2011.

25 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplica-
tion. J. ACM, 49(3):289–317, 2002.


	Introduction
	Preliminaries
	Warm Up: A Simple Case
	Improved Algorithms for APNP
	A Slight Improvement via Rectangular Matrix Multiplication


