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Abstract
The classic Stable Roommates problem (the non-bipartite generalization of the well-known
Stable Marriage problem) asks whether there is a stable matching for a given set of agents,
i.e. a partitioning of the agents into disjoint pairs such that no two agents induce a blocking pair.
Herein, each agent has a preference list denoting who it prefers to have as a partner, and two
agents are blocking if they prefer to be with each other rather than with their assigned partners.

Since stable matchings may not be unique, we study an NP-hard optimization variant of
Stable Roommates, called Egal Stable Roommates, which seeks to find a stable matching
with a minimum egalitarian cost γ, i.e. the sum of the dissatisfaction of the agents is minimum.
The dissatisfaction of an agent is the number of agents that this agent prefers over its partner
if it is matched; otherwise it is the length of its preference list. We also study almost stable
matchings, called Min-Block-Pair Stable Roommates, which seeks to find a matching with
a minimum number β of blocking pairs. Our main result is that Egal Stable Roommates
parameterized by γ is fixed-parameter tractable, while Min-Block-Pair Stable Roommates
parameterized by β is W[1]-hard, even if the length of each preference list is at most five.
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1 Introduction

This paper presents algorithms and hardness results for two variants of the Stable Room-
mates problem, a well-studied generalization of the classic Stable Marriage problem.
Before describing our results, we give a brief background that will help motivate our work.

Stable Marriage and Stable Roommates. An instance of the Stable Marriage problem
consists of two disjoint sets of n men and n women (collectively called agents), who are each
equipped with his or her own personal strict preference list that ranks every member of the
opposite sex. The goal is to find a bijection, or matching, between the men and the women
that does not contain any blocking pairs. A blocking pair is a pair of man and woman who
are not matched together but both prefer each other over their own matched partner. A
matching with no blocking pairs is called a stable matching, and perfect if it is a bijection
between all men and women.

Stable Marriage is a classic and fundamental problem in computer science and
applied mathematics, and as such, entire books were devoted to it [24, 32, 50, 37]. The
problem emerged from the economic field of matching theory, and it can be thought of
as a generalization of the Maximum Matching problem when restricted to complete
bipartite graphs. The most important result in this context is the celebrated Gale-Shapley
algorithm [22]: This algorithm computes in polynomial time a perfect stable matching in
any given instance, showing that regardless of their preference lists, there always exists a
perfect stable matching between any equal number of men and women.

The Stable Marriage problem has several interesting variants. First, the preference
lists of the agents may be incomplete, meaning that not every agent is an acceptable partner
to every agent of the opposite sex. In graph theoretic terms, this corresponds to the bipartite
incomplete case. The preference lists could also have ties, meaning that two or more agents
may be considered equally good as partners. Finally, the agents may not be partitioned into
two disjoint sets, but rather each agent may be allowed to be matched to any other agent.
This corresponds to the non-bipartite case in graph theoretic terms, and is referred to in the
literature as the Stable Roommates problem.

While Stable Marriage and Stable Roommates seem very similar, there is quite a
big difference between them in terms of their structure and complexity. For one, any instance
of Stable Marriage always contains a stable matching (albeit perhaps not perfect), even if
the preference lists are incomplete and with ties. Moreover, computing some stable matching
in any Stable Marriage instance with 2n agents can be done in O(n2) time [22]. However,
an instance of Stable Roommates may have no stable matchings at all, even in the case of
complete preference lists without ties (see the third example in Figure 1). Furthermore, when
ties are present, deciding whether an instance of Stable Roommates contains a stable
matching is NP-complete [47], even in the case of complete preference lists.

All variants of Stable Marriage and Stable Roommates mentioned here have several
applications in a wide range of application domains. These include partnership issues in the
real-world [22], resource allocation [5, 16, 27], centralized automated mechanisms that assign
children to schools [3, 4], assigning school graduates to universities [7, 8], assigning medical
students to hospitals [1, 2], and several others [6, 21, 29, 30, 33, 34, 35, 37, 38, 48, 49].

Optimization variants. As noted above, some Stable Roommates instances do not admit
any stable matching at all, and in fact, empirical study suggests that a constant fraction of
all sufficiently large instances will have no solution [46]. Moreover, even if a given Stable
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1 : 2 � 3 � 4
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4 : 1 � 3
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1 : 2 ∼ 3 � 4
2 : 1 � 3
3 : 1 ∼ 2 � 4
4 : 3 � 1
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1 : 2 � 3 � 4
2 : 3 � 1 � 4
3 : 1 � 2 � 4
4 : 1 � 2 � 3

Figure 1 An example of three Stable Roommates instances, where x � y means that x is
strictly preferred to y, and x ∼ y means that they are equally good and tied as a partner. The
instance on the left is incomplete without ties and has exactly two stable matchings {{1, 2}, {3, 4}}
and {{1, 4}, {2, 3}}, both of which are perfect. The instance in the middle is incomplete with ties
and has two stable matchings {{1, 3}} and {{1, 2}, {3, 4}}, the latter being perfect while the former
not. The right instance is complete without ties and has no stable matchings at all.

Roommates instance admits a solution, this solution may not be unique, and there might
be other stable matchings with which the agents are more satisfied overall. Given these two
facts, it makes sense to consider two types of optimization variants for Stable Roommates:
In one type, one would want to compute a stable matching that optimizes a certain social
criterion in order to maximize the overall satisfaction of the agents. In the other, one would
want to compute matchings which are as close as possible to being stable, where closeness can
be measured by various metrics. In this paper, we focus on one prominent example of each
of these two types – minimizing the egalitarian cost of a stable matching, and minimizing
the number of blocking pairs in a matching which is close to being stable.

Egalitarian optimal stable matchings. Over the years, several social optimality criteria
have been considered, yet arguably one of the most popular of these is the egalitarian cost
metric [41, 32, 31, 36, 39]. The egalitarian cost of a given matching is the sum of the ranks of
the partners of all agents, where the rank of the partner y of an agent x is the number of agents
that are strictly preferred over y by x. The corresponding Egal Stable Marriage and
Egal Stable Roommates problems ask whether there is a stable matching with egalitarian
cost at most γ, for some given bound γ ∈ N (Section 2 contains the formal definition).

When the input preferences do not have ties (but could be incomplete), Egal Stable
Marriage is solvable in O(n4) time [31]. For preferences with ties, Egal Stable Marriage
becomes NP-hard [36]. Thus, already in the bipartite case, it becomes apparent that allowing
ties in preference lists makes the task of computing an optimal egalitarian matching much
more challenging. Marx and Schlotter [39] showed that Egal Stable Marriage is fixed-
parameter tractable when parameterized by the parameter “sum of the lengths of all ties”.

For Egal Stable Roommates, Feder [20] showed that the problem is NP-hard even
if the preferences are complete and have no ties, and gave a 2-approximation algorithm
for this case. Halldórsson et al. [25] showed inapproximability results for Egal Stable
Roommates, and Teo and Sethuraman [51] proposed a specific LP formulation for Egal
Stable Roommates and other variants. Cseh et al. [17] studied Egal Stable Roommates
for preferences with bounded length ` and without ties. They showed that the problem is
polynomial-time solvable if ` = 2, and is NP-hard for ` ≥ 3.

Matchings with minimum number of blocking pairs. For the case where no stable matchings
exist, the agents may still be satisfied with a matching that is close to being stable. One
very natural way to measure how close a matching is to being stable is to count the number
of blocking pairs [45, 19]. Accordingly, the Min-Block-Pair Stable Roommates problem
asks to find a matching with a minimum number of blocking pairs.

Abraham et al. [6] showed that Min-Block-Pair Stable Roommates is NP-hard, and
cannot be approximated within a factor of n0.5−ε unless P = NP, even if the given preferences
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are complete. They also showed that the problem can be solved in nO(β) time, where n and
β denote the number of agents and the number of blocking pairs, respectively. This implies
that the problem is in the XP class (for parameter β) of parameterized complexity. Biró et al.
[9] showed that the problem is NP-hard and APX-hard even if each agent has a preference
list of length at most 3, and presented a (2`− 3)-approximation algorithm for bounded list
length `. Biró et al. [10] and Hamada et al. [26] showed that the related variant of Stable
Marriage, where the goal is to find a matching with minimum blocking pairs among all
maximum-cardinality matchings, cannot be approximated within n1−ε unless P = NP.

Our contributions. We analyze both Egal Stable Roommates and Min-Block-Pair
Stable Roommates from the perspective of parameterized complexity, under the natural
parameterization of each problem (i.e. the egalitarian cost and number of blocking pairs,
respectively). We show that while the former is fixed-parameter tractable, the latter is
W[1]-hard even when each preference list has length at most five and has no ties. This
shows a sharp contrast between the two problems: Computing an optimal egalitarian stable
matching is a much easier task than computing a matching with minimum blocking pairs.

When no ties are present, an instance of the Egal Stable Roommates problem has a
lot of structure, and so we can apply a simple branching strategy for finding a stable matching
with egalitarian cost of at most γ in 2O(γ)n2 time. Moreover, we derive a kernelization
algorithm, obtaining a polynomial problem kernel (Theorems 3 and 4). Note that the original
reduction of Feder [20] already shows that Egal Stable Roommates cannot be solved in
2o(γ)nO(1) time unless the Exponential Time Hypothesis [18] fails.

When ties are present, the problem becomes much more challenging because several agents
may be tied as a first ranked partner and it is not clear how to match them to obtain an
optimal egalitarian stable matching. Moreover, we have to handle unmatched agents. When
preferences are complete or without ties, all stable matchings match the same (sub)set of
agents and this subset can be found in polynomial time [24, Chapter 4.5.2]. Thus, unmatched
agents do not cause any real difficulties. However, in the case of ties and with incomplete
preferences, stable matchings may involve different sets of unmatched agents. Aiming at a
socially optimal egalitarian stable matching, we consider the cost of an unmatched agent to
be the length of its preference list [39]. (For the sake of completeness, we also consider two
other variants where the cost of an unmatched agent is either zero or a constant value, and
show that both these variants are unlikely to be fixed-parameter tractable.) Our first main
result is given in the following theorem:

I Theorem 1. Egal Stable Roommates can be solved in γO(γ) ·(n logn)3 time, even for
incomplete preferences with ties, where n is the number of agents and γ the egalitarian cost.

The general idea behind our algorithm is to apply random separation [13] to “separate”
irrelevant pairs from the pairs that belong to the solution matching, and from some other
pairs that would not block our solution. This is done in two phases, each involving some
technicalities, but in total the whole separation can be computed in γO(γ) · nO(1) time. After
the separation step, the problem reduces to Minimum-Weight Perfect Matching, and
we can apply known techniques. Recall that for the case where the preferences have no ties,
a simple depth-bounded search tree algorithm suffices (Theorem 4).

In Section 4, we show that Min-Block-Pair Stable Roommates is W[1]-hard with
respect to the parameter β (the number of the blocking pairs) even if each input preference
list has length at most five and does not have ties. This implies that assuming bounded
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length of the preferences does not help in designing an f(β) · nO(1)-time algorithm for Min-
Block-Pair Stable Roommates, unless FPT = W[1]. Our W[1]-hardness result also
implies as a corollary a lower-bound on the running time of any algorithm. By adapting our
reduction, we also answer in the negative an open question regarding the number of blocking
agents proposed by Manlove [37, Chapter 4.6.5] (Corollary 14).

I Theorem 2. Let n denote the number of agents and β denote the number of blocking pairs.
Even when each input preference list has length at most five and has no ties, Min-Block-
Pair Stable Roommates is W[1]-hard with respect to β and admits no f(β) · no(β)-time
algorithms unless the Exponential Time Hypothesis is false.

Besides the relevant work mentioned above there is a growing body of research regarding the
parameterized complexity of preference-based stable matching problems [39, 40, 43, 42, 23, 15].
Due to space constraints we deferred the proofs for results marked by ? to a full version [14].

2 Definitions and notation

Let V = {1, 2, . . . , n} be a set of even number n agents. Each agent i ∈ V has a subset of
agents Vi ⊆ V which it finds acceptable as a partner and has a preference list �i on Vi (i.e. a
transitive and complete binary relation on Vi). Here, x �i y means that i weakly prefers
x over y (i.e. x is better or as good as y). We use �i to denote the asymmetric part (i.e.
x �i y and ¬(y �i x)) and ∼i to denote the symmetric part of �i (i.e. x �i y and y �i x).
For two agents x and y, we call x most acceptable to y if x is a maximal element in the
preference list of y. Note that an agent can have more than one most acceptable agent. We
extend � to X � Y for pairs of disjoint subsets X,Y ⊆ V in the natural way.

A preference profile P for V is a collection (�i)i∈V of preference lists for each agent i ∈ V .
A profile P may have the following properties: It is complete if for each agent i ∈ V it holds
that Vi ∪ {i} = V ; otherwise it is incomplete. If there are three agents i ∈ V , x, y ∈ Vi such
that x ∼i y, then we say that x and y are tied by i and that the profile P has ties. To an
instance (V,P) we assign an acceptability graph, which has V as its vertex set and two agents
are connected by an edge if each finds the other acceptable. Without loss of generality, G
does not contain isolated vertices. The rank of an agent i in the preference list of some
agent j is the number of agents x that j strictly prefers over i: rankj(i) := |{x | x �j i}|.

For a preference profile with acceptability graph G and edge set E(G), a matching M ⊆
E(G) is a subset of disjoint pairs {x, y} of agents with x 6= y. If {x, y} ∈M , then we denote
the partner y of x byM(x); otherwise we call the pair {x, y} unmatched. We writeM(x) = ⊥
if agent x has no partner ; i.e. if agent x is not involved in any pair in M . If no agent x has
M(x) = ⊥ thenM is perfect. Given a matchingM of P , an unmatched pair {x, y} ∈ E(G)\M
is blocking M if both x and y prefer each other to being unmatched or to their assigned
partners, i.e. it holds that

(
M(x) = ⊥∨ y �x M(x)

)
∧
(
M(y) = ⊥∨ x �y M(y)

)
. We call a

matching M stable if no unmatched pair is blocking M . The Stable Roommates problem
has as input a preference profile P for a set V of (even number) n agents and asks whether P
admits a stable matching. When preferences are complete, each stable matching is perfect.

The two problems we consider in the paper are Egal Stable Roommates and Min-
Block-Pair Stable Roommates. The latter asks to determine whether a given preference
profile P for a set of agents V has a stable matching with at most β blocking pairs. The
former problem asks to find a stable matching with minimum egalitarian cost; the egalitarian
cost of a given matching M is as follows: γ(M) :=

∑
i∈V ranki(M(i)), where we augment

the definition rank with ranki(⊥) := |Vi|. For example, the second profile in Figure 1 has two
stable matchings M1 = {{1, 3}} and M2 = {{1, 2}, {3, 4}} with γ(M1) = 4 and γ(M2) = 2.
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Algorithm 1: A modified version of the phase-1 algorithm of Irving [28].
1 repeat
2 foreach agent u ∈ U whose preference list contains at least one unmarked agent do
3 w ← the first agent in the preference list of u such that {u,w} is not yet marked
4 foreach u′ with u �w u′ do mark {u′, w}
5 until no new pair was marked in the last iteration

The egalitarian cost, as originally introduced for the Stable Marriage problem, does
not include the cost of an unmatched agent because the preference lists are complete. For
complete preferences, a stable matching must assign a partner to each agent, meaning that
our notion of egalitarian cost equals the one used in the literature. For preferences without
ties, all stable matchings match the same subset of agents [24, Chapter 4.5.2]. Thus, the two
concepts differ only by a fixed value which can be pre-determined in polynomial time [24,
Chapter 4.5.2]. For incomplete preferences with ties, there seems to be no consensus on
whether to “penalize” stable matchings by the cost of unmatched agents [17]. Our concept
of egalitarian cost complies with Marx and Schlotter [39], but we tackle other concepts as
well (Section 3.3).

3 Minimizing the egalitarian cost

In this section we give our algorithmic and hardness results for Egal Stable Roommates.
Section 3.1 treats the case when no ties are present, where we can use a straightforward
branching strategy. In Section 3.2 we solve the case where ties are present. Herein, we need
a more sophisticated approach based on random separation. Finally, in Section 3.3, we study
variants of the egalitarian cost, differing in the cost assigned to unmatched agents.

3.1 Warm-up: Preferences without ties
By the stability concept, if the preferences have no ties and two agents x and y that are each
other’s most acceptable agents, then any stable matching must contain {x, y}, which has cost
zero. Hence, we can safely add such pairs to a solution matching. After we have matched all
pairs of agents with zero cost, all remaining, unmatched agents induce cost at least one when
they are matched. This leads to a simple depth-bounded branching algorithm. In terms of
kernelization, we can delete any two agents that induce zero cost and delete agents from
some preference list that are ranked higher than γ. This gives us a polynomial kernel.

First, we recall a part of the polynomial-time algorithm by Irving [28] which finds an
arbitrary stable matching for preferences without ties. The whole algorithm works in two
phases. We present here a modified version of the first phase to determine “relevant” agents
by sorting out fixed pairs – pairs of agents that occur in every stable matching [24, Chapter
4.4.2] – and marked pairs – pairs of agents that cannot occur in any stable matching. The
modified phase-1 algorithm is given in Algorithm 1. Herein, by marking a pair {u,w} we
mean marking the agents u and w in the preference lists of w and u, respectively.

Let P0 be the preference profile produced by Algorithm 1. We introduce some more
notions. For each agent x, let first(P0, x) and last(P0, x) denote the first and the last agent
in the preference list of x that are not marked, respectively. We call a pair {x, y} a fixed pair
if first(P0, x) = y and first(P0, y) = x. Let marked(P0) denote the set of all agents whose
preference lists consist of only marked agents, and let unmarked(P0) denote the set of all
agents whose preference lists have at least one unmarked agent. By [24, Chapters 4.4.2 and
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4.5.2], we can neglect all agents that are in the fixed pairs and ignore all “irrelevant” agents
from marked(P0). We can now shrink our instance to obtain a polynomial size problem
kernel.

I Theorem 3. Egal Stable Roommates for preferences without ties but with possibly
incomplete preferences admits a size-O(γ2) problem kernel with at most 3γ + 1 agents and at
most γ + 1 agents in each of the preference lists.

Proof sketch. Let I = (P, V, γ) be an instance of Egal Stable Roommates and let P0
be the profile that Algorithm 1 produces for P. We use F to denote the set of agents of
all fixed pairs, and we use O to denote the set of ordered pairs (x, y) of agents such that
x ranks y higher than γ. Briefly put, our kernelization algorithm will delete all agents in
F ∪marked(P0), and introduce O(γ) dummy agents to replace the deleted agents and some
more that are identified by O. Initially, F and O are set to empty sets.
1. If |marked(P0)| > γ or if there is an agent x in unmarked(P0) with rankx(first(P0, x)) > γ,

then return a trivial no-instance.
2. For each two agents x, y ∈ unmarked(P0) with first(P0, x) = y and first(P0, y) = x, add to

F the agents x and y. Let γ̂ = γ −
∑
x∈F rankx(first(P0, x))−

∑
x∈marked(P0) |Vx|.

3. If 2γ̂ < |unmarked(P0) \ F |, then return a trivial no-instance.
4. Add to the original agent set a set D of 2k dummy agents d1, d2, . . . , d2k, where k = 2dγ̂/2e,

such that for each i ∈ {1, 2, . . . , k}, the preference list of di consists of only dk+i, and the
preference list of dk+i consists of only di.

5. For each two x, y ∈ unmarked(P0) with rankx(y) > γ̂, add to O the ordered pair (x, y).
6. For each agent a ∈ unmarked(P0) \ F do the following.

(1) For each i ∈ {0, 1, 2, . . . , γ̂}, let x be the agent with ranka(x) = i. If x ∈ F∪marked(P0)
or if (x, a) ∈ O, then replace in a’s preference list agent x with a dummy agent d,
using a different dummy for each i, and append a to the preference list of d.

(2) Delete all agents y in the preference list of a with ranka(y) > γ̂.
7. Delete F ∪marked(P0) from P0.

The proof that the above algorithm produces a problem kernel with the desired size in the
desired running time is deferred to a full version [14]. J

Using a simple branching algorithm, we obtain the following.

I Theorem 4 (?). Let n denote the number of agents and γ denote the egalitarian cost.
Egal Stable Roommates without ties can be solved in O(2γ · n2) time.

3.2 Preferences with ties
When the preferences may contain ties, we can no longer assume that if two agents are
each other’s most acceptable agents, denoted as a good pair, then a minimum egalitarian
cost stable matching would match them together; note that good pairs do not induce any
egalitarian cost. This is because their match could force other pairs to be matched together
that have large cost. Nevertheless, a good pair will never block any other pair, i.e. no agent
in a good pair will form with an agent in some other pair a blocking pair. However, a stable
matching may still contain some other pairs which have non-zero cost. We call such pairs
costly pairs. Aiming to find a stable matching M with egalitarian cost at most γ, it turns out
that we can also identify in γO(γ) ·nO(1) time a subset S of pairs of agents, which contains all
costly pairs of M and contains no two pairs that may induce a blocking pair. It hence suffices
to find a minimum-cost maximal matching in the graph induced by S and the good pairs.

ICALP 2018
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The crucial idea is to use the random separation technique [13] to highlight the difference
between the matched costly pairs in M and the unmatched costly pairs. This enables us
to ignore the costly pairs which pairwisely block each other or are blocked by some pair
in M so as to obtain the desired subset S. Before describing the algorithm, we show that
we can focus on the case of perfect matchings, even for incomplete preferences. (Note that
the case with complete preferences is covered because stable matchings for such case are
always perfect.) We show this by introducing dummy agents to extend each non-perfect
stable matching to a perfect one, without altering the egalitarian cost.

I Lemma 5 (?). Egal Stable Roommates for n agents and egalitarian cost γ is O(γ ·n2)-
time reducible to Egal Stable Roommates for at most n+ γ agents and egalitarian cost γ
with an additional requirement that the stable matching should be perfect.

Lemma 5 allows, in a subprocedure of our main algorithm, to compute a min-cost perfect
matching in polynomial time instead of a min-cost maximal matching (which is NP-hard).

The algorithm. As mentioned, we use random separation [13]. We apply it already in
derandomized form using Bshouty’s construction of cover-free families [11], a notion related
to universal sets [44]. Let n̂, p, q ∈ N such that p + q ≤ n̂. A family F of subsets of some
n̂-element universe U is called (n̂, p, q)-cover-free family if for each subset S ⊆ U of cardinality
p+q and each subset S′ ⊆ S of cardinality p, there is a member A ∈ F with S∩A = S′.1 The
result by Bshouty [11, Theorem 4] implies that if p ∈ o(q), then there is an (n̂, p, q)-cover-free
family of cardinality qO(p) · log n̂ which can be computed in time linear of this cardinality.

In the remainder of this section, we prove Theorem 1. Let P be a preference profile for a
set V of agents, possibly incomplete and with ties. For brevity we denote by a solution (of
P) a stable matching M with egalitarian cost at most γ. By Lemma 5, we assume that each
solution is perfect. Our goal is to construct a graph with vertex set V which contains all
matched “edges”, representing the pairs, of some solution and some other edges for which no
two edges in this graph are blocking each other. Herein, we say that two edges e, e′ ∈

(
V
2
)
are

blocking each other if, assuming both edges (which are two disjoint pairs of agents) are in the
matching, they would induce a blocking pair, i.e. u′ �u v and u �u′ v′, where e := {u, v} and
e′ := {u′, v′}. Pricing the edges with their corresponding cost, by Lemma 5, it is then enough
to find a minimum-cost perfect matching. The graph is constructed in three phases (see
Algorithm 2). In the first phase, we start with the acceptability graph of our profile P and
remove all edges whose “costs” each exceed γ. In the second and the third phases, we remove
all edges that block each other while keeping a stable matching with minimum egalitarian
cost intact.

We introduce some more necessary concepts. Let G be the acceptability graph corre-
sponding to P with vertex set V , which also denotes the agent set, and with edge set E.
The cost of an edge {x, y} is the sum of the ranks of each endpoint in the preference list of
the other: rankx(y) + ranky(x). We call an edge e := {x, y} a zero edge if it has cost zero,
i.e. rankx(y) + ranky(x) = 0, otherwise it is a costly edge if the cost does not exceed γ. We
ignore all edges with cost exceeding γ. Note that no such edge belongs to or is blocking
any stable matching with egalitarian cost at most γ. To distinguish between zero edges and
costly edges, we construct two subsets Ezero and Eexp such that Ezero consists of all zero
edges, i.e. Ezero := {{x, y} ∈ E | rankx(y) + ranky(x) = 0}, and Eexp consists of all costly
edges, i.e. Eexp := {{x, y} ∈ E | 0 < rankx(y) + ranky(x) ≤ γ}.

1 The standard definition of cover-free families [11] is stated differently from but equivalent [12] to ours.
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Algorithm 2: Constructing a perfect stable matching of egalitarian cost at most γ.
Input: A set V of agents, a preference profile P over V , and a budget γ ∈ N.
Output: A stable matching of egalitarian cost at most γ if it exists.
/* Phase 1 */

1 (V,E)← The acceptability graph of P
2 Ezero ← {{x, y} ∈ E | rankx(y) + ranky(x) = 0} // The set of zero edges in E
3 Eexp ← {{x, y} ∈ E | 1 ≤ rankx(y) + ranky(x) ≤ γ} // The set of costly edges in E
4 E1 ← Ezero ∪ Eexp

/* Phase 2 */
5 F exp ← (|Eexp|, γ, γ3)-cover-free family over the universe Eexp

6 foreach E′ ∈ F exp do
7 Apply Rule 1 to E1 to obtain E2

/* Phase 3 */
8 C ← (|V |, γ2 + 2 · γ, 2 · γ)-cover-free family over the universe V
9 foreach V ′ ∈ C do

10 Apply Rules 2 and 3 to E2 to obtain E3
11 M ← Minimum-cost perfect matching in the graph (V,E3) or ⊥ if none exists
12 if M 6= ⊥ and M has cost at most γ then return M

Phase 1. We construct a graph G1 = (V,E1) from G with vertex set V and with edge
set E1 := Ezero ∪ Eexp. The following is easy to see.

I Lemma 6. If P has a stable matching M with egalitarian cost at most γ, then M ⊆ E1.

Observe also that a zero edge cannot block any other edge because the agents in a zero edge
already obtain their most acceptable agents. Thus, we have the following.

I Lemma 7. If two edges in E1 block each other, then they are both costly edges.

Phase 2. In this phase, comprising Lines 5–7 in Algorithm 2, we remove from G1 some of
the costly edges that block each other (by Lemma 7, no zero edges are blocking any other
edge). For technical reasons, we distinguish two types of costly edges: We say that a costly
edge e with e := {u, v} is critical for its endpoint u if the largest possible rank of v over
all linearizations of the preference list of u exceeds γ, i.e. |{x ∈ Vu \ {v} | x �u v}| > γ.
Otherwise, e is harmless for u. If an edge is critical for at least one endpoint, then we call it
critical and otherwise harmless. Observe that a critical edge could still belong to a solution.
If two edges e and e′ block each other due to the blocking pair {u, u′} with u ∈ e, u′ ∈ e′ such
that e′ is harmless for u′, then we say that e is harmlessly blocking e′ (at the endpoint u′).
Note that blocking is symmetric while harmlessly blocking is not.

Intuitively, we want to distinguish the solution edges from all edges blocked by the
solution. There is a “small” number of harmless edges blocked by the solution, so we can
easily distinguish between them. For the critical edges, we do not have such a bound; we
deal with the critical edges blocked by the solution in Phase 3 in some other way.

I Lemma 8 (?). Let M be a stable matching with egalitarian cost at most γ. In G1, at most
γ2 edges are harmlessly blocked by some edge in M .

Let M ′ := M ∩Eexp be the set of all costly edges in some solution M and let BM be the set
of all edges harmlessly blocked by some edge in M . By the definition of costly edges and
by Lemma 8, it follows that |M ′| ≤ γ and |BM | ≤ γ2. In order to identify and delete all
edges in BM we apply random separation. Compute a (|Eexp|, γ, γ2)-cover-free family F exp

over the universe Eexp. For each member of F exp, perform all the computations below (in
this phase and in Phase 3). By the properties of cover-free families, F exp contains a good
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member E′ that “separates” M ′ from BM , i.e. M ′ ⊆ E′ and BM ⊆ Eexp \ E′. Formally,
we call a member E′ ∈ F exp good if there is a solution M such that each costly edge in M
belongs to E′, and each edge that is harmlessly blocked by M belongs to Eexp \E′. We also
call E′ good for M . By the property of cover-free families, if there is a solution M , then F exp

contains a member E′ which is good for M . In the following we present two data reduction
rules that delete edges and show their correctness. By correctness we mean that, if some
member E′ ∈ F exp is good, then the corresponding solution is still present after the edge
deletion.

Recall that the goal was to compute a graph that contains all edges from a solution and
some other edges such that no two edges in the graph block each other. Observe that we
can ignore the edges in Eexp \ E′, because, if E′ is good, then it contains all costly edges
in the corresponding solution. This implies the correctness of the first part of the following
reduction rule. The correctness for the second part follows from the definition of being good.

I Rule 1. Remove all edges in Eexp \E′ from E1. If there are two edges e, e′ ∈ E′ that are
harmlessly blocking each other, then remove both e and e′ from E1.

Let G2 = (V,E2) be the graph obtained from G1 by exhaustively applying Rule 1. By the
goodness of E′ and by the correctness of Rule 1, we have the following.

I Lemma 9. If there is a stable matching M with egalitarian cost at most γ, then F exp

contains a member E′ such that the edge set E2 of G2 defined for E′ contains all edges of M .

By Lemma 7 and since all pairs of edges that are harmlessly blocking each other are
deleted by Rule 1, we have the following.

I Lemma 10. If two edges in G2 block each other due to a blocking pair {u, u′}, then one
of the edges is critical for u or u′.

Phase 3. In Line 10 of Algorithm 2 we remove from G2 the remaining (critical) edges that
do not belong to M but are blocked by some other edges. This includes the edges that are
blocked by M . While the number of edges blocked by M could still be unbounded, we show
that there are only O(γ2) agents due to which an edge could be blocked by M . The idea
here is to identify such agents, helping to find and delete edges blocked by M or blocking
some other edges. We introduce one more notion. Consider an arbitrary matching N (i.e.
a set of disjoint pairs of agents) of G2. Let e ∈ N and e′ ∈ E2 \ N be two edges. If they
induce a blocking pair {u, u′} with u ∈ e and u′ ∈ e′, then we say that u′ is a culprit of N .
We obtain the following upper bound on the number of culprits with respect to a solution.

I Lemma 11 (?). Let M be a stable matching. Then, each culprit of M is incident with
some edge in M . If M has egalitarian cost at most γ, then it admits at most γ culprits.

Consider a solution M and let CI(M) = {v ∈ V | v is a culprit of or incident with some
costly edge of M}. By Lemma 11 and since M has at most γ costly edges, it follows that
|CI(M)| ≤ 3γ. We aim to identify in CI(M) a subset R(M) of agents incident with a critical
edge in M , i.e. R(M) = {v ∈ CI(M) | {v, w} ∈M with {v, w} being critical for v}. Since M
has at most γ costly edges, it follows that |R(M)| ≤ 2γ. To “separate” R(M) from CI(M),
we compute a (|V |, 2γ, 3γ)-cover-free family C on the set V . We call a member V ′ ∈ C good
if there is a solution M ⊆ E2 such that R(M) ⊆ V ′ and (CI(M) \ R(M)) ⊆ V \ V ′. By a
similar reasoning as given for Phase 2 and by the properties of cover-free families, if there is
a solution M ⊆ E2, then C contains a good member V ′. For this member, the following two
reduction rules will not destroy the solution.
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I Rule 2 (?). For each agent y ∈ V \ V ′, delete all incident edges that are critical for y.

After having exhaustively applied Rule 2, we use the following reduction rule.

I Rule 3 (?). If E2 contains two edges e and e′ that induce a blocking pair {u, u′} with
u ∈ e and u′ ∈ e′ such that e is critical for u, then remove e′ from E2.

Let G3 = (V,E3) be the graph obtained after having exhaustively applied Rules 2 and 3
to G2. By the correctness of Rules 2 and 3 we have the following.

I Lemma 12. If there is a stable matching M ⊆ E2 with egalitarian cost at most γ, then
the constructed cover-free family C contains a good member V ′ ∈ C such that the edge set E3
of G3 resulting from the application of Rules 2 and 3 contains all edges of M .

Since for each member V ′ ∈ C, we delete all edges that pairwisely block each other, each
perfect matching in G3 induces a stable matching. We thus have the following.

I Lemma 13 (?). If G3 admits a perfect matching M with edge cost at most γ, then M

corresponds to a stable matching with egalitarian cost at most γ.

Thus, to complete Algorithm 2, in Line 11 we compute a minimum-cost perfect matching
for G3 and output yes, if it has egalitarian cost at most γ. Summarizing, by Lemma 5 if there
is a stable matching of egalitarian cost at most γ, then it is perfect and thus, by Lemmas 6,
9 and 12, there is a perfect matching in G3 of cost at most γ. Hence, if our input is a
yes-instance, then Algorithm 2 accepts by returning a desired solution. Ifi it accepts, then by
Lemma 13 the input is a yes-instance. The running time is proved in a full version [14].

3.3 Variants of the egalitarian cost for unmatched agents
As discussed in Sections 1 and 2, when the input preferences are incomplete, a stable matching
may leave some agents unmatched. In the absence of ties, all stable matchings leave the
same set of agents unmatched [24, Chapter 4.5.2]. Hence, whether an unmatched agent
should infer any cost is not relevant in terms of complexity. However, when preferences are
incomplete and with ties, stable matchings may involve different sets of matched agents. The
cost of unmatched agents changes the parameterized complexity dramatically. In particular,
as soon as the cost of an unmatched agent is bounded by a fixed constant, seeking for an
optimal egalitarian stable matching is parameterized intractable. See the full version [14].

4 Minimizing the number of blocking pairs

In this section, we strengthen the known result [6] by showing that Min-Block-Pair
Stable Roommates is W[1]-hard with respect to “the number β blocking pairs”, even
when each preference list has length at most five. The main building block of our reduction,
which is from the W[1]-hard Multi-Colored Independent Set problem (see our full
version [14] for the definition), is a selector gadget (Construction 1) that always induces at
least one blocking pair and allows for many different configurations. To keep the lengths of
the preference lists short we use “duplicating” agents (Construction 2).

First, we discuss a vertex-selection gadget which we later use to select a vertex of the
input graph into the independent set. The selected vertex is indicated by an agent which
is matched to someone outside of the vertex-selection gadget. The gadget always induces
at least one blocking pair. An illustration is shown in a full version [14]. In the following,
let n′ be a positive integer, and all additions and subtractions in the superscript are taken
modulo 2n′ + 1:
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I Construction 1. Consider the following four disjoint sets U,A,C,D of 2n′ + 1 agents
each, where A := {ai | 0 ≤ i ≤ 2n′}, U := {ui | 0 ≤ i ≤ 2n′}, C := {ci | 0 ≤ i ≤ 2n′}, and
D := {di | 0 ≤ i ≤ 2n′}. The preferences of the agents in A∪C∪D are: ∀i ∈ {0, 1, . . . , 2n′} :
agent ai : ai+1 � ai−1 � ui � ci � di, agent ci : di � ai, agent di : ai � ci.

The preferences of the agents in U are intentionally left unspecified and we define them later
when we use the gadget. Regardless of the preferences of the agents in U , we can verify that
if no ai obtains an agent ui as a partner, then it induces at least two blocking pairs.

Next, we construct verification gadgets that ensure that no two adjacent vertices are
chosen into the independent set solution. See the full version for an illustration [14]. Herein,
let δ be a positive integer, and all additions and subtractions in the superscript are taken
modulo 2δ + 2.

I Construction 2. Consider two disjoint sets X ] Y where X = {xi | 0 ≤ i ≤ 2δ + 1} is a
set of 2δ + 2 agents and Y = {yi | 1 ≤ i ≤ δ} is a set of δ agents. Let a, b be two agents
distinct from the agents in X ∪ Y . The preference lists of the agents from X are as follows.

Agent x0 : x1 � a � x2δ+1, Agent x2δ+1 : x0 � b � x2δ.
∀i ∈ {1, . . . , δ} : Agent x2i−1 : x2i � x2i−2, Agent x2i : x2i+1 � yi � x2i−1.

The preferences of the agents a, b and those in Y are intentionally left unspecified and will
be defined when we use the gadget later. Regardless of the concrete preferences of agents in
Y ∪ {a, b}, we claim that the above gadget has two possible matchings such that no blocking
pair involves any agent from X. The first one is straightforward from the definition of the
preference lists: {{x2i, x2i+1} | i ∈ {0, 1, . . . , δ}}. The second one matches x0 to a, x2δ+1

to b, while keeping the remaining agents matched in some stable way.

Proof sketch of Theorem 2. Let (G = (V1, V2, . . . , Vk, E)) be a Multi-Colored Inde-
pendent Set instance (see our full version [14] for the definition). Without loss of gen-
erality, assume that each vertex subset Vj has exactly 2n′ + 1 vertices with the form
Vj = {v0

j , v
1
j , . . . , v

2n′

j }. Construct a Min-Block-Pair Stable Roommates instance with
the following groups of agents: Uj , Aj , Bj , Cj , Dj , Fj ,Wj , j ∈ {1, 2, . . . , k}, where Uj corre-
sponds to the vertex subset Vj . Let δij be the degree of vertex vij . For each vertex vij ∈ Vj ,

construct 2δij + 2 agents ui,0j , ui,1j , . . . , u
i,2δi

j+1
j and let U ij = {ui,zj | 0 ≤ z ≤ 2δij + 1}. Define

Uj = ∪0≤i≤2n′U ij . For each (Q, q) ∈ {(A, a), (B, b), (C, c), (D, d), (F, f), (W,w)} and for each
i ∈ {1, 2, . . . , k}, the set Qj := {qij | 0 ≤ i ≤ 2n′} consists of 2n′ + 1 agents. The preference
lists of the agents in U ij obey the verification gadget constructed in Construction 2. Formally,
for each j ∈ {1, . . . , k} and each i ∈ {0, 1, . . . , 2n′} we introduce a verification gadget for vij
as in Construction 2 where we set δ = δij , xz = ui,zj , 0 ≤ z ≤ 2δij + 1, a = aij , and b = bij .
The agents from Y correspond to the neighbors of vij : For each neighbor vi′j′ of vij we pick
a not-yet-set agent yz in the verification gadget for vij and a not-yet-set agent yz′ in the
verification gadget for vi′j′ , and define yz = ui

′,2z′

j′ and yz′ = ui,2zj .
For each j ∈ {1, . . . , k}, the preference lists of Aj ∪ Cj ∪Dj ∪ {ui,0j | 0 ≤ i ≤ 2n′} obey

Construction 1. Formally, for each j ∈ {1, . . . , k} we introduce a vertex-selection gadget
as in Construction 1 and for each i ∈ {0, 1, . . . , 2n′} we set ai = aij , ci = cij , di = dij , and
ui = ui,0j . Analogously, for each j ∈ {1, . . . , k} we introduce a vertex-selection gadget for

Bj ∪ Fj ∪Wj ∪ {u
i,2δi

j+1
j | 0 ≤ i ≤ 2n′}: For each i ∈ {0, 1, . . . , 2n′} we set ai = bij , ci = f ij ,

di = wij , and ui = u
i,2δj

i
+1

j . To complete the construction, we set the upper bound on the
number of blocking pairs as β = 2k. The correctness proof is deferred to a full version [14]. J
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The reduction given in the proof of Theorem 2 shows that the lower-bound on β in [6, Lemma 4]
is tight. The reduction also answers an open question by Manlove [37, Chapter 4.6.5] about
the complexity of the following problem. Given a preference profile and an integer η, Min-
Block-Agents Stable Roommates asks whether there is a matching with at most η
blocking agents. Herein, an agent is a blocking agent if it is involved in a blocking pair.

I Corollary 14 (?). Let n be the number of agents and η be the number of blocking agents.
Even when each input preference list has length at most five and has no ties, Min-Block-
Agents Stable Roommates is NP-hard and W[1]-hard with respect to η. Min-Block-
Agents Stable Roommates for preferences without ties is solvable in O(2η2 · nη+2) time.
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