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Abstract
We consider a generalization of k-median and k-center, called the ordered k-median problem. In
this problem, we are given a metric space (D, {cij}) with n = |D| points, and a non-increasing
weight vector w ∈ Rn+, and the goal is to open k centers and assign each point j ∈ D to a
center so as to minimize w1 · (largest assignment cost) + w2 · (second-largest assignment cost) +
. . . + wn · (n-th largest assignment cost). We give an (18 + ε)-approximation algorithm for this
problem. Our algorithms utilize Lagrangian relaxation and the primal-dual schema, combined
with an enumeration procedure of Aouad and Segev. For the special case of {0, 1}-weights, which
models the problem of minimizing the ` largest assignment costs that is interesting in and of by
itself, we provide a novel reduction to the (standard) k-median problem, showing that LP-relative
guarantees for k-median translate to guarantees for the ordered k-median problem; this yields a
nice and clean (8.5 + ε)-approximation algorithm for {0, 1} weights.
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1 Introduction

Clustering is an ubiquitous problem that finds applications in various fields including data
mining, machine learning, image processing, and bioinformatics. Many clustering problems
involve finding a set F of at most k “centers” from an underlying set D of data points
located in some metric space {cij}i,j∈D, and an assignment of data points to centers, so as
to minimize some objective function of the assignment costs, i.e., the distances between data
points and their assigned centers. These problems can typically also be stated as facility-
location problems, wherein we seek a cost-effective way of opening facilities (≡ centers) and
assigning clients (≡ data points) to open facilities. Given their widespread applicability,
clustering and facility-location problems have been extensively studied in the Computer
Science and Operations Research literature; see, e.g., [16, 22], as also the literature on the
classical k-median (minimize sum of the assignment costs) [6, 13, 15, 4]), and k-center
(minimize maximum assignment cost [10, 11]) problems.
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29:2 Approximation Algorithms for Ordered k-Median

We consider a common generalization of k-median and k-center, called the ordered k-
median problem [17, 9]. As before, we are given a metric space (D, {cij}i,j∈D), and an integer
k ≥ 0. We will often refer to points in D as clients. We are also given non-increasing,
nonnegative weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, where n = |D|. For a vector v ∈ RD, we use
v ↓ to denote the vector v with coordinates sorted in non-increasing order. That is, we have
v ↓i = vσ(i), where σ is a permutation of D such that vσ(1) ≥ vσ(2) ≥ . . . vσ(n). The goal in the
ordered k-median problem is to choose a set F of k points from D as centers (or “facilities”),
and assign each client j ∈ D to a center i(j) ∈ F , so as to minimize

cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

n∑
j=1

wj~c
↓
j .

Observe that when all the wis are 1, we obtain the k-median problem; on the other hand,
setting w1 = 1, w2 = . . . = wn = 0, yields the k-center problem. Indeed the special case with
{0, 1} weights is already interesting: that is, for some ` ∈ [n], we have w1 = . . . = w` = 1 and
all the remaining wis are 0; this captures the problem of minimizing the ` largest assignment
costs, which Tamir [23] calls the `-centrum problem.

The ordered k-median problem can be motivated from various perspectives. The problem
was proposed in network location theory as a convenient way of unifying the k-median and
k-center objectives, as also some other objective functions considered in location theory (see,
e.g., [17]). Such a versatile model is also useful in the context of clustering applications,
wherein the clustering objective (e.g., k-median or k-center) is often a means to an end,
namely, producing a “good” clustering. The ordered k-median problem yields a suite of
clustering objectives, including those that interpolate between the k-median and k-center
objectives, and thereby offers a useful means of obtaining a variety of clustering solutions
(which motivates the question of developing efficient algorithms for (approximately) solving
this problem). Another motivation for studying ordered k-median comes from a fairness
perspective: if the weights decrease geometrically (at a sufficiently large rate), then an
optimal ordered-k-median solution yields a min-max fair assignment-cost vector: that is,
a solution that minimizes the maximum assignment cost, subject to which, it minimizes
the second largest assignment cost, and so on. Finally, the `-centrum problem can also be
interpreted as the following robust-optimization version of k-median. Suppose there is some
uncertainty in the client-set that needs to be clustered: in every scenario, some (at most)
` clients need to be clustered, and we need to determine the k centers and the assignment
of clients to centers before knowing the scenario realization. Robust optimization seeks to
minimize the maximum scenario cost, which leads to precisely the `-centrum problem.

While the special cases of k-median and k-center have been considered extensively
from the viewpoint of developing approximation algorithms, much less is known about the
approximability of the ordered k-median problem, especially in general metrics. Aouad
and Segev [2] obtained a logarithmic-approximation ratio for general metrics, and Alamdari
and Shmoys [1] obtain a bicriteria approximation for the special case, where w is a convex
combination of (1, 0, . . . , 0) and

( 1
n ,

1
n , . . . ,

1
n

)
, which is called the centridian problem [12].

Our results. We obtain constant-factor approximation algorithms for the ordered k-median
problem. Together with the concurrent work of [3], these constitute the first constant-factor
approximation guarantees for ordered k-median. Our main result is an (deterministic) (18+ε)-
approximation algorithm for the ordered k-median problem (Theorem 7). Our algorithm
utilizes the primal-dual schema and Lagrangian relaxation, and, hence, is combinatorial.

En route, in Section 2, we first develop constant-factor approximation algorithms for
the case of {0, 1}-weights. This introduces many of the ideas needed to handle the general
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setting. We design two algorithms for this setting. Both algorithms are derived using a novel
LP-relaxation that we propose for the problem, which leverages a key insight to circumvent
the issue that the natural LP-relaxation has a large (non-constant) integrality gap.

Our first algorithm is a clean, combinatorial (12+ε)-approximation algorithm that is based
on the Jain-Vazirani primal-dual schema coupled with Lagrangian relaxation (Theorem 4).
Both the algorithm and its analysis are versatile, and we show in Section 3 that the underlying
ideas extend easily and, in combination with an enumeration procedure of [2], yield an
(18 + ε)-approximation for the general setting. Our second algorithm for {0, 1}-weights is
based on LP-rounding, and yields an improved approximation factor via a novel black-box
reduction to LP-relative algorithms for (standard) k-median. We show that an LP-relative α-
approximation for k-median yields (essentially) a 2(α+1)-approximation; taking α = 3.25 [7],
we obtain an (8.5 + ε)-approximation for ordered k-median with {0, 1}-weights (Theorem 5);
we believe that this reduction is of independent interest.

Relationship with the work of [3]. Recently, we learnt that Byrka et al. [3] have also
obtained a (randomized) O(1)-approximation guarantee (equal to 38 + ε) for the ordered
k-median problem. Our work was done independently and concurrently; a manuscript with
the same approximation guarantees was posted on the arXiv in November 2017 [5]. In
particular, our results for {0, 1} weights were obtained without knowledge of the work of [3].
But it was after we learnt of the results in [3] that we realized that our results can be
extended to the general weighted setting.

While we use similar LP relaxations, our techniques are different. Whereas [3] crucially
exploit properties of the Charikar-Li [7] LP-rounding algorithm, we leverage the (primal-dual
+ Lagrangian relaxation) methodology for k-median due to Jain and Vazirani [13]. Our
algorithms are thus combinatorial. Our approximation factors improve upon those obtained
in [3], both for {0, 1} weights and general weights; we believe that our algorithms and analyses
are also simpler. Finally, our reduction to LP-relative algorithms for k-median shows that we
do not need to rely on a specific k-median LP-rounding algorithm in order to tackle ordered
k-median with {0, 1} weights, and suggests that the same might be true for general weights.

Our techniques. It is instructive to first discuss the {0, 1}-weighted case. One of the main
challenges is in coming up with a good LP-relaxation for this `-centrum problem. The natural
LP-relaxation augments the natural LP for k-median by imposing constraints encoding that
the total assignment cost of any set of ` clients is at most B, where B is a new variable
that we seek to minimize. It is well known that, even for (standard) k-median, one cannot
hope to round an LP solution while approximately preserving the assignment cost of each
client [6].2 More significantly, whereas we can round and approximately preserve the sum
of all assignment costs (as shown by k-median rounding), it turns out that we cannot
preserve the sum of the ` largest assignment costs: the natural LP has a large (non-constant)
integrality gap. This integrality gap is robust and cannot be alleviated by guessing the
maximum assignment cost and incorporating this in the LP and the lower bound.3 In essence,
the cause for this disparity (between k-median and `-centrum) is that the k-median objective
crucially also includes the contribution from clients with small assignment costs.

2 This is possible if we open O(k) centers, using, e.g., the filtering-based algorithm of [21] for facility
location.

3 This is in contrast with k-center, where such preprocessing does mitigate the bad integrality gap of the
natural LP and reduces it to a constant.

ICALP 2018



29:4 Approximation Algorithms for Ordered k-Median

The key insight that allows us to circumvent this difficulty is the following. Suppose we
aim to find a solution of objective value O(B). Then, it suffices to find a solution where the
total assignment cost of clients having assignment cost at least B/` is O(B): the remaining
clients can contribute at most additional B towards the `-centrum objective, since we consider
at most ` clients in the `-centrum objective value. Moreover, if there is a solution of `-centrum
objective value at most B, then the total assignment cost of clients with assignment cost
at least B/` is at most B. Thus, given a “guess” B of the optimal value, our new LP (PB)
seeks to minimize the total assignment cost of clients having assignment cost larger than B/`.

The LP (PB) corresponds to the LP-relaxation for k-median with non-metric distances
given by {fB(cij)}i,j∈D, where fB(d) = d if d ≥ B/`, and is 0 otherwise. Despite this
complication, we devise two ways of leveraging (PB) to obtain a solution of `-centrum cost
O(OPTB + B) (which yields an O(1)-approximation for the correct choice of B), both of
which involve simple procedures with a clean analysis; here, OPTB denotes the optimal
value of (PB). Our first algorithm is based on the Jain-Vazirani (JV) template [13]. This
is our main result for {0, 1} weights (see Section 2.1), and this algorithm extends easily to
the setting with general weights. We Lagrangify the cardinality constraint and move to the
facility-location (FL) version where we may choose any number of centers but incur a fixed
cost of (say) λ for each center we choose. We adapt the JV primal-dual algorithm and its
analysis to obtain a so-called Lagrangian-multiplier-preserving guarantee for this FL version.
By fine-tuning λ, we can then find two solutions, one with less than k centers and the other
with more than k centers, whose convex combination has low cost; rounding this bipoint
solution yields the final solution. This yields our 12-approximation algorithm.

The second algorithm utilizes LP-rounding. We show that after a clustering step, where
we merge clients that are distance at most B

` -apart, the problem of rounding a solution to
(PB) reduces to that of rounding a fractional k-median solution on the cluster centers. Thus,
any LP-relative α-approximation algorithm for k-median can be used to obtain a solution of
cost at most 2(α+ 1)B.

For general weights, the key again is to consider k-median with suitable (non-metric)
proxy distances analogous to the fB(cij)s. We utilize a clever enumeration idea due to [2] to
obtain these proxy distances. Whereas with {0, 1} weights, we created two distance buckets
(cij ≥ B/` and cij < B/`) with weight multipliers 1 and 0, we now create O

(
log1+ε(nε )

)
buckets by grouping distances in powers of (1 + ε). We guess the average weight (roughly
speaking) incurred for a bucket by an optimal solution, and use this as the weight multiplier
for the bucket. As argued in [2]: (a) if we enumerate average weights in powers of (1 + ε) then
there are only polynomially many choices; and (b) the resulting proxy distances provide a good
approximation for the actual cost(w; .)-cost. Finally, we show that the primal-dual algorithm
and its analysis developed in Section 2.1 extends to solve the k-median problem with these
new proxy distances. Combining these ingredients, we obtain an (18 + ε)-approximation.

Other related work. While the ordered k-median problem, and its special cases, have been
well studied in the Operations Research literature (see, e.g., [18, 14]), much of this work
has focused either on modeling issues and formulations, or on solving the problem exactly
in special cases, or via (non-polynomial time) heuristics. There is little prior work (i.e.,
discounting [3]) on the design of approximation algorithms for this problem, in general
metrics. As mentioned earlier, for general metrics, we are only aware of the work of [2], who
obtain a logarithmic-approximation ratio, and [1], who obtain a bicriteria approximation for
the special case of the centridian problem.
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A significant amount of research has taken place for special cases of the problem, e.g.,
the k = 1 setting [17], and the “continuous” version of the problem where centers can also be
opened “in the middle of an edge” [19]. For these settings, fast exact algorithms have been
developed in many interesting cases; see, e.g., [8, 23, 20] and the references therein. There is
also a large body of work looking at compact integer-programming formulations, branch and
bound methods etc.; for a detailed account of this and other work related to location theory
and ordered-median models, we refer the reader to the books [18, 14].

2 The setting with {0, 1}-weights

We first consider the setting with {0, 1} weights. Let ` ∈ [n] be such w1 = . . . = w` = 1,
w`+1 = 0 = . . . = wn. We abbreviate cost(w;~c) to cost(`;~c), or simply cost(~c). The {0, 1}-
weight setting serves as a natural starting point for two reasons. First, the problem of
minimizing the ` most expensive assignment costs is a natural, well-motivated problem that
is interesting in its own right. Second, the study of the {0, 1}-case serves to introduce some
of the key underlying ideas that are also used to handle the general setting. Notice also that
a non-decreasing weight vector w can be written as a nonnegative linear-combination of such
{0, 1} weight vectors.

The natural LP-relaxation for this `-centrum problem has an Ω(`) integrality gap, and, as
noted earlier, the integrality gap does not decrease even if we guess the maximum assignment
cost and incorporate this in our LP and lower bound. Our constant-factor approximation
algorithms are based on an alternate novel LP-relaxation, where, given a “guess” B of the
optimal value, we seek to minimize the total assignment cost of clients having assignment
cost at least B/`. The rationale is that assignment costs that are smaller than B/` can
contribute at most B to the `-centrum cost, and can hence be ignored when searching for a
solution of `-centrum cost O(B). For d ≥ 0, define fB(d) = d if d ≥ B/`, and 0 otherwise.
Throughout, i and j index points of D. We consider the following LP.

min
∑
j

∑
i

fB(cij)xij (PB)

s.t.
∑
i

xij ≥ 1 for all j (1)

0 ≤ xij ≤ yi for all i, j (2)∑
i

yi ≤ k. (3)

Variable yi indicates if facility i is open (i.e., i is chosen as a center), and xij indicates if client
j is assigned to facility i. The first two constraints say that each client must be assigned to
an open facility, and the third constraint encodes that at most k centers may be chosen.

An atypical aspect of our relaxation is that, while an integer solution corresponds to
a solution to our problem, its objective value under (PB) may underestimate the actual
objective value; however, as alluded to above, the objective value of (PB) is within an
additive B of the actual objective value. Let OPTB denote the optimal value of (PB), and
opt denote the optimal value of the `-centrum problem.

I Claim 1. If B ≥ opt, then OPTB ≤ opt ≤ B.

Proof. Let (x̃, ỹ) be the integer point corresponding to an optimal solution. Clearly, (x̃, ỹ)
is feasible to (PB). There are at most ` assignment costs that are at least opt/` (and hence
at least B/`). Therefore, the objective value of (x̃, ỹ) is at most opt. J

ICALP 2018



29:6 Approximation Algorithms for Ordered k-Median

I Claim 2. Let ~c be an assignment-cost vector (where ~cj is the assignment cost of j). Then,
cost(`;~c) ≤

∑
j fB(~cj) +B.

I Claim 3. For any B ≥ 0, we have: (i) fB(x) ≤ fB(y) if x ≤ y; (ii) max{fB(x), fB(y),
fB(z)} ≥ fB

(
x+y+z

3
)
for any x, y, z ≥ 0; and (iii) 3fB(x/3) = f3B(x) for any x ≥ 0.

We may assume that we have B ≤ (1 + ε)opt (e.g., by enumerating all possible choices for
opt in powers of (1 + ε), or using binary search to find, within a (1 + ε)-factor, the smallest
B such that OPTB ≤ B). While (PB) closely resembles the LP-relaxation for k-median,
notice that the assignment costs {fB(cij)} used in the objective of (PB) do not form a
metric. Despite this complication, we show that (PB) can be leveraged to obtain a solution
of cost(`; .)-cost O(B). We devise two algorithms for obtaining such a guarantee. The first
algorithm is based on the primal-dual method and the Jain-Vazirani (JV) template [13]; this
yields a 12-approximation algorithm. The second algorithm is based on LP-rounding, and
shows that any LP-relative α-approximation algorithm for k-median can be used to obtain a
solution of cost(`.)-cost at most 2(α+ 1)B.

I Theorem 4. We can obtain a solution to the `-centrum problem of cost at most
(
12 +

O(ε)
)
·B ≤

(
12 +O(ε)

)
opt.

I Theorem 5. Let (kmed-P) denote the k-median LP: min
{∑

j,i cijxij : (1)–(3)
}
. Let

A be an α-approximation algorithm for k-median whose approximation guarantee is proved
relative to (kmed-P). We can obtain a solution to the `-centrum problem of cost at most
2(α + 1)B. Thus, taking A to be the 3.25-approximation algorithm in [7], we obtain an
(8.5 + ε)-approximation algorithm for the `-centrum problem.

Although Theorem 4 yields a worse approximation factor, the underlying primal-dual
algorithm and analysis are quite versatile and extend easily to the setting with general
weights. We prove Theorem 4 in this extended abstract. The proof of Theorem 5 can be
found in Appendix A of the arXiv version [5] of this paper.

2.1 Proof of Theorem 4
As noted earlier, the proof relies on the primal-dual method. The dual of (PB) is as follows.

max
∑
j

αj − k · λ (DB)

s.t. αj ≤ fB(cij) + βij ∀i, j (4)∑
j

βij ≤ λ ∀i (5)

α, λ ≥ 0.

Let OPT := OPTB denote the optimal value of (PB). We first fix λ and construct a solution
that may open more than k centers but will have some near-optimality properties (see
Theorem 6).

P1. Dual-ascent. Initialize D′ = D, αj = βij = 0 for all i, j ∈ D, F = ∅. The clients in D′
are called active clients. If αj ≥ fB(cij), we say that j reaches i. (So if cij ≤ B/`, then
j reaches i from the very beginning.)
We repeat the following until all clients become inactive. Uniformly raise the αjs of all
active clients, and the βijs for (i, j) such that i /∈ F , j is active, and can reach i until
one of the following events happen.
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Some client j ∈ D reaches some i (and previously could not reach i): if i ∈ F , we
freeze j, and remove j from D′.
Constraint (5) becomes tight for some i /∈ F : we add i to F ; for every j ∈ D′ that
can reach i, we freeze j and remove j from D′.

P2. Pruning. Pick a maximal subset T of F with the following property: for every j ∈ D,
there is at most one i ∈ T such that βij > 0. Let P = {j : ∃i ∈ T s.t. βij > 0}.

P3. Return T as the set of centers, and assign every j to the nearest point (in terms of cij)
in T , which we denote by i(j).

I Theorem 6. The solution satisfies 3λ|T |+
∑
j∈P fB(ci(j)j) +

∑
j /∈P f3B(ci(j)j) ≤ 3

∑
j αj .

Proof. The proof resembles the analysis of the JV primal-dual algorithm for facility location,
but the subtlety is that we need to deal with the complication that the {fB(cij)}i,j∈D
“distances” do not form a metric.

Observe that for every i ∈ T , every client j ∈ P for which βij > 0 satisfies i(j) = i. So∑
j∈P

3αj ≥
∑
j∈P

(
3βi(j)j + fB(ci(j)j)

)
= 3λ|T |+

∑
j∈P

fB(ci(j)j).

We show that for each client j /∈ P , there is some i′′ ∈ T such that f3B(ci′′j) ≤ 3αj , which will
complete the proof. Let i ∈ F be the facility that caused j to freeze, so fB(cij) ≤ αj . If i ∈ T ,
then we are done. Otherwise, since T is maximal, there is some i′ ∈ T and some client k ∈ P
such that βi′k, βik > 0. Notice that αj ≥ αk, since αj grows at least until the time point when
i joins F , and αk grows until at most this time point. Therefore, fB(cik), fB(ci′k) ≤ αk ≤ αj .
We have ci′j ≤ ci′k + cik + cij . Now, by Claim 3, we have f3B(ci′j) ≤ f3B(ci′k + cik + cij) =
3fB((ci′k + cik + cij)/3) ≤ 3 max(fB(cik), fB(ci′k), fB(cij)) ≤ 3αj . J

Using standard arguments, by performing binary search on λ, we can achieve one of the
following two outcomes.
(a) Obtain some λ such that the above algorithm returns a solution T with |T | = k: in this

case, Theorem 6 implies that
∑
j f3B(ci(j)j) ≤ 3OPT , and Claim 2 then implies that the

cost(`; .)-cost of our solution is at most 3OPT + 3B ≤ 6B.
(b) Obtain λ1 < λ2 with λ2 − λ1 <

εB
n such that letting T1 and T2 be the solutions returned

for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|. We describe below the procedure
for extracting a low-cost feasible solution from T1 and T2, and analyze it, which will
complete the proof of Theorem 4.

Extracting a feasible solution from T1 and T2 in outcome (b). Let a, b ≥ 0 be such that
ak1 + bk2 = k, a+ b = 1. Thus, a convex combination of T1 and T2, called a bipoint solution,
yields a feasible fractional solution and our task is to round this into a feasible solution.
Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively. Let
i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let
d1,j = f3B(ci1(j)j) and d2,j = f3B(ci2(j)j). Let C1 :=

∑
j d1,j and C2 :=

∑
j d2,j . Then,

aC1 + bC2 ≤ 3a
(∑

j

α1,j − k1λ1

)
+ 3b

(∑
j

α2,j − k2λ2

)
≤ 3a

(∑
j

α1,j − kλ2

)
+ 3b

(∑
j

α2,j − kλ2

)
+ 3ak1(λ2 − λ1) ≤ 3OPT + 3εB

where the last inequality follows since (α1, β1, λ2), (α2, β2, λ2) are feasible solutions to (DB). If
b ≥ 0.5, then T2 yields a feasible solution of cost(`; .)-cost at most C2 +3B ≤ 6OPT +(3+ε)B.
So suppose a ≥ 0.5. The procedure for rounding the bipoint solution is as follows.

ICALP 2018
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B1. Clustering. We first match facilities in T2 with a subset of facilities in T1 as follows.
Initialize D′ ← D, A ← ∅, and M ← ∅. While D′ 6= ∅, we repeatedly pick the client
j ∈ D′ with minimum d1,j +d2,j value, and add j to A. We add the tuple (i1(j), i2(j)) to
M , remove from D′ all clients k (including j) such that i1(k) = i1(j) or i2(k) = i2(j), and
set σ(k) = j for all such clients. Let M1 = M denote the matching when D′ = ∅. Next,
for each unmatched i ∈ T2, we pick an arbitrary unmatched facility i′ ∈ T1, and add (i′, i)
to M . Let F1 be the set of T1-facilities that are matched, and S := {j ∈ D : i1(j) ∈ F1}.
Note that |F1| = |M | = k2.

B2. Opening facilities. We will open k2 facilities at locations in A∪M , and k−k2 facilities
from T1 \ F1. We solve the following LP to determine how to do this. Variables zi for
every i ∈ T1 \ F1 indicate if we open facility i; variable θ indicates if we give preference
to F1 (i.e., the T1-facilities in M), or the facilities in T2 (which are always matched).

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k))(d2,k+d1,σ(k)+d2,σ(k))

)
(R-P)

s.t.
∑

i∈T1\F1

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F1.

The above LP is integral. Given an integral optimal solution (θ̃, z̃) to (R-P), we open
facilities as follows. We open the facilities in T1 \ F1 specified by the z̃i variables that
are 1. If θ̃ = 1, we open all the T1-facilities in M \M1, and if θ̃ = 0, we open all the
T2-facilities in M \M1. For some clients j ∈ A, we may open a facility at j (instead of
at i1(j) or i2(j)). For every j ∈ A, if θ̃d1,j + (1− θ̃)d2,j = 0, then we open a facility at
j; otherwise, we open a facility at i1(j) if θ̃ = 1 and at i2(j) if θ̃ = 0.

Analysis. It suffices to show that (R-P) has a fractional solution of small objective value,
and that the integral optimal solution (θ̃, z̃) yields a feasible solution to our problem whose
cost(`; .)-cost is comparable to the objective value of (θ̃, z̃) in (R-P).

For the former, we argue that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a feasible
solution of objective value at most 2(aC1 + bC2). We have

∑
i∈T1\F1

zi = a(k1−k2) = k−k2.
Every j ∈ S contributes ad1,j + bd2,j to the objective value of (R-P), which is also its
contribution to aC1 + bC2. Consider k /∈ S with σ(k) = j, so d1,j + d2,j ≤ d1,k + d2,k. Its
contribution to the objective value of (R-P) is ad1,k+b(d2,k+d1,j+d2,j) ≤ (a+b)d1,k+2bd2,k,
which is at most twice its contribution to aC1 + bC2.

For the latter, we first show that every k ∈ S has assignment cost at most θ̃d1,k + (1−
θ̃)d2,k + 6B/`. If a facility is opened in {k, i1(k), i2(k)}, then this clearly holds. Otherwise,
it must be that k /∈ A. Let i = i1(k) if θ̃ = 1, and i2(k) if θ̃ = 0. Since i is not open, it must
be that i belongs to a tuple (i1(j), i2(j)) of M . Then, j ∈ A, and a facility is opened at j.
we have that ci,k ≤ θ̃d1,k + (1− θ̃)d2,k + 3B/` and ci,j ≤ 3B/`. The last inequality follows
since the fact that none of i1(j), i2(j) is open implies that θ̃d1,j + (1− θ̃)d2,j = 0.

Now consider k /∈ S with σ(k) = j. If z̃i1(k) = 1, it’s assignment cost is at most
d1,k + 3B/`. Otherwise, a facility is opened in {j, i1(j), i2(j)}. If a facility is opened in
{j, i2(j)}, then k’s assignment cost is at most ci2(k)k + ci2(j)j ≤ d2,k + d1,j + d2,j + 6B/`.
Otherwise, it must be that θ̃ = 1 and d1,j = ci1(j)j > 3B/`; in this case, k’ assignment
cost is at most ci2(k)k + ci2(j)j + ci1(j)j ≤ (d2,k + 3B/`) + (d2,j + 3B/`) + d1,j . Thus, the
cost(`; .)-cost of our solution is at most the objective value of (θ̃, z̃) + 6B, which is at most
2(aC1 + bC2) + 6B ≤ 6OPT + (6 + 3ε)B ≤

(
12 +O(ε)

)
B. This completes the proof.
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3 The general weighted case

We now consider the general setting, where we have n = |D| non-increasing nonnegative
weights w1 ≥ . . . ≥ wn ≥ 0, and the goal is to open k centers from D and assign each client
j ∈ D to a center i(j) ∈ F , so as to minimize cost

(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

∑n
j=1 wj~c

↓
j .

By combining the ideas in Section 2 with an enumeration procedure due to Aouad and
Segev in [2], we obtain the following result.

I Theorem 7. We can obtain an
(
18 +O(ε)

)
-approximation algorithm for ordered k-median

that runs in time poly
(
(nε )1/ε).

As before, we define suitable proxy costs analogous to the fB(cij)s for the setting with
general weights. By defining these appropriately, it will be easy to argue that the primal-dual
algorithm and its analysis extend to the setting with general weights, since essentially the only
property that we use about {fB(cij)} costs in Section 2 is that they satisfy Claim 3. Instead
of creating two distance buckets in the {0, 1} weighted case (cij ≥ B/` and cij < B/`), with
weight multipliers 1 and 0, we now create O

(
log1+ε(nε )

)
buckets and utilize an enumeration

idea due to Aouad and Segev [2]. In Section 3.1, we describe this enumeration procedure using
our notation, and restate the main claims in [2] in a simplified form. Next, in Section 3.2,
we discuss how to adapt the ideas in Section 2 to the k-median problem for the proxy costs
(given by (7)) that we obtain from Section 3.1. At the end of this section, we combine this
ingredients to prove Theorem 7.

3.1 Proxy costs and the enumeration idea of [2]
Throughout, let ~o↓ denote the assignment-cost vector corresponding to an optimal solution,
whose coordinates are sorted in non-increasing order. So the optimal cost opt is

∑n
i=1 wi~o

↓
i .

By a standard argument, we can perturb w to eliminate very small weights wi: for i ∈ [n],
set w̃i = wi if wi ≥ εw1

n , and w̃i = 0 otherwise.

I Claim 8. For any vector v ∈ Rn+, we have (1− ε)cost(w; v) ≤ cost(w̃; v) ≤ cost(w; v).

Proof. Since w̃i ≤ wi for all i ∈ [n], the upper bound on cost(w̃; v) is immediate. We have

cost(w̃; v) =
n∑
i=1

w̃iv
↓
i = cost(w; v)−

∑
i∈[n]:wi<εw1/n

wiv
↓
i ≥ cost(w; v)− εw1

n · nv
↓
1 . J

In the sequel, we always work with the w̃-weights. We guess an estimate M of ~o↓1 , and
group distances in the range

[
εM
n ,M

]
(roughly speaking) by powers of (1 + ε). Let T be the

largest integer such that εM
n (1 + ε)T ≤M . For r = 0, . . . , T , we define the distance interval

Ir :=
[
εM
n (1 + ε)T−r, εMn (1 + ε)T−r+1). There are at most 1 + log1+ε

(
n
ε

)
= O

( 1
ε log n

ε

)
intervals.

Finally, we guess a non-increasing vector west
0 ≥ west

1 ≥ . . . ≥ west
T , where the west

r s
are powers of (1 + ε) in the range [ εw̃1

n , w̃1(1 + ε)). As argued in [2], there are only
exp
(
O( 1

ε log(nε ))
)

= O
(
(nε )1/ε) choices for west := (west

0 , . . . , west
T ). The intention is for

west
r to represent (within a (1 + ε)-factor) the average w̃-weight of the set {i ∈ [n] : ~o↓i ∈ Ir}.

More precisely, we would like west
r to estimate the following quantity, for all r ∈ {0, . . . , T}.

wavg
r :=


(∑

i∈[n]:~o↓
i
∈Ir

w̃i
)
/|{i ∈ [n] : ~o↓i ∈ Ir}| if {i ∈ [n] : ~o↓i ∈ Ir} 6= ∅;

min {w̃i : ~o↓i ∈
⋃
s<r Is} if

⋃
s<r Is 6= ∅;

w̃1 otherwise.
(6)
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The following claim will be useful.

I Claim 9. For any r ∈ {0, . . . , T}, we have wavg
r ≥ max {w̃i : ~o↓i /∈

⋃
s≤r Is}.

Proof. If wavg
r is defined by cases 1 or 2 of (6), then the inequality follows since for every

i′ ∈
⋃
s≤r Ir and i /∈

⋃
s≤r Is, we have w̃i′ ≥ w̃i (since ~o↓i′ ≥ ~o

↓
i ). If wavg

r is defined by case 3
of (6), then wavg

r = w̃1, and again, the inequality holds. J

Given M and the corresponding intervals I0, . . . , IT , and the vector west, we can now
finally define our proxy costs as follows. For d ≥ 0 and γ ≥ 1, define

gM,west(γ; d) =


w̃1(1 + ε)d if d/γ ≥ εM

n (1 + ε)T+1;
west
r d if d/γ ∈ Ir (where r ∈ {0, . . . , T})

0 if d/γ < εM
n .

(7)

The above definition is essentially the scaled surrogate function in [2]. We abbreviate
gM,west(1; d) to gM,west(d). The following two key lemmas are analogous to Claims 1 and 2,
and show that for the right choice of M and west, evaluating the above proxy costs on an
assignment-cost vector ~c yields a good estimate of the actual cost(w̃; .)-cost of ~c. Similar
statements, albeit stated somewhat differently, are proved in [2].

I Lemma 10 (adapted from [2]). Suppose M ≥ ~o↓1 and the west satisfies west
r ≤ (1 + ε)wavg

r

for all r ∈ {0, . . . , T}. Then,
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓).

Proof. Since εM
n (1 + ε)T+1 > M ≥ ~o↓1 , there is no i such that ~o↓i ≥ εM

n (1 + ε)T+1. Fix
r ∈ {0, . . . , T}, and consider all i ∈ [n] such that ~o↓i ∈ Ir. We have∑
i∈[n]:~o↓

i
∈Ir

gM,west(~o↓i ) = west
r

∑
i∈[n]:~o↓

i
∈Ir

~o↓i ≤
εM

n
(1 + ε)T−r+1 · west

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
≤ (1 + ε) · εM

n
(1 + ε)T−r+1 · wavg

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
= (1 + ε) · εM

n
(1 + ε)T−r+1 ·

∑
i∈[n]:~o↓

i
∈Ir

w̃i ≤ (1 + ε)2
∑

i∈[n]:~o↓
i
∈Ir

w̃i~o
↓
i .

It follows that
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓). J

I Lemma 11 (adapted from [2]). Let γ ≥ 1. LetM ≥ 0, and suppose west satisfies wavg
r ≤ west

r

for all r ∈ {0, . . . , T}. Let ~c be an assignment-cost vector. Then, we have the upper bound
cost(w̃;~c) ≤

∑n
i=1 gM,west(γ;~ci) + γ(1 + ε)cost(w̃;~o↓) + γεw̃1M .

Proof. We have cost(w̃;~c) =
∑n
i=1 w̃i~c

↓
i ≤

∑n
i=1 gM,west(γ;~ci)+

∑
i: w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i .

Consider some i ∈ [n] for which w̃i~c↓i > gM,west(γ;~c↓i ). It must be that ~c↓i /γ < εM
n (1 + ε)T+1

as otherwise (see (7)), we have gM,west(γ;~c↓i ) = (1 + ε)w̃1~c
↓
i > w̃i~c

↓
i . If gM,west(γ;~c↓i ) = 0,

then we have w̃i~c↓i /γ < w̃i · εMn ≤ w̃1 · εMn .
Otherwise, we claim that ~c↓i /γ ≤ (1 + ε)~o↓i . Suppose not. Suppose ~c↓i /γ ∈ Ir, where

r ∈ {0, . . . , T}. Since ~c↓
i
/γ

~o↓
i

> (1 + ε), we have that ~o↓i /∈
⋃
s≤r Is. So by Claim 9, we

have wavg
r ≥ w̃i. Hence, gM,west(γ;~c↓i ) = west

r ~c
↓
i ≥ wavg

r ~c↓i ≥ w̃i~c
↓
i , which contradicts our

assumption that w̃i~c↓i > gM,west(γ;~c↓i ).
Putting everything together, we have that

∑
i:w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i ≤ nγw̃1 · εMn + γ(1 +

ε)
∑
i∈[n] w̃i~o

↓
i , which proves the lemma. J
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Finally, we show that gM,west satisfies the analogue of Claim 3, which will be crucial in
arguing that our algorithms and analysis from Section 4 carry over and allow us to solve, in
an approximate sense, the k-median problem with the {gM,west(cij)} proxy costs.

I Lemma 12. For any γ ≥ 1, M ≥ 0, and west, we have: (i) gM,west(γ;x) ≤ gM,west(γ; y)
if x ≤ y; and (ii) 3 max{gM,west(γ;x), gM,west(γ; y), gM,west(γ; z)} ≥ gM,west(3γ;x+ y + z) for
any x, y, z ≥ 0.

3.2 Solving the k-median problem with the
{
gM,west(cij)

}
proxy costs

We now work with a fixed guess M , west, and give an algorithm for finding a near-optimal
k-median solution with the {gM,west(cij)} proxy costs. Our algorithm and analysis will be
quite similar to the one in Section 4. The primal and dual LPs we consider are the same as
(PB) and (DB), except that we replace all occurrences of fB(cij) and fB(cij) with gM,west(cij).
Let OPTM,west denote the optimal value of this LP.

The primal-dual algorithm for a given center-cost λ (steps P1–P3 in Section 4) is
unchanged. The analysis also is essentially identical, since, previously, we only relied on
the fact that the proxy costs satisfy an approximate triangle inequality, which is also true
here (Lemma 12). We state below the guarantee from the primal-dual algorithm slightly
differently, in the form suggested by part (ii) of Lemma 12; the proof mimics the proof of
Theorem 6.

I Theorem 13. For any λ ≥ 0, the primal-dual algorithm (P1)–(P3) returns a set T of
centers, an assignment i(j) ∈ T for every j ∈ D, and a dual feasible solution (α, β, λ) such
that 3λ|T |+

∑
j gM,west(3; ci(j)j) ≤ 3

∑
j αj.

Given Theorem 13, we can use binary search on λ, to either obtain: (a) some λ such for
which we return a solution T with |T | = k; or (b) λ1 < λ2 with λ2 − λ1 <

εw̃1M
n such that

letting T1 and T2 be the solutions returned for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|.
In case (a), Theorem 13 implies that

∑
j gM,west(3; ci(j)j) ≤ 3OPTM,west . In case (b), we

again extract a low-cost feasible solution from T1 and T2 by rounding the bipoint solution
given by their convex combination. As before, a, b ≥ 0 be such that ak1 + bk2 = k, a+ b = 1.
Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively. Let
i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let
d1,j = gM,west(3; ci1(j)j) and d2,j = gM,west(3; ci2(j)j). Let C1 :=

∑
j d1,j and C2 :=

∑
j d2,j .

Similar to before, we have aC1 + bC2 ≤ 3OPTM,west + 3εw̃1M . The procedure for rounding
this bipoint solution requires only minor changes to steps B1, B2 in Section 4.

Rounding the bipoint solution. If b ≥ 1/3, then T2 yields a feasible solution with∑
j gM,west(3; ci2(j)j) = C2 ≤ 9OPTM,west + 9εw̃1M . So suppose a ≥ 2/3.

G1. Clustering. We match facilities in T2 with a subset of facilities in T1 as follows. Initialize
D′ ← D, A ← ∅, and M ← ∅. We repeatedly pick the client j ∈ D′ with minimum
max{d1,j , d2,j} value, and add j to A. (This is the only change, compared to step
B1.) We add the tuple (i1(j), i2(j)) toM , remove from D′ all clients k (including j) such
that i1(k) = i1(j) or i2(k) = i2(j), and set σ(k) = j for all such clients. Let M1 = M

denote the matching when D′ = ∅. Next, for each unmatched i ∈ T2, we pick an arbitrary
unmatched facility i′ ∈ T1, and add (i′, i) to M . Let F1 be the set of T1-facilities that
are matched, and S := {j ∈ D : i1(j) ∈ F1}. Note that |F1| = |M | = k2.
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G2. Opening facilities. This is almost identical to step B2, except that we decide which
facilities to open by now solving the following LP.

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k)) ·3 max{d1,k, d2,k}

)
(GR-P)

s.t.
∑

i∈T1\F

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F.

Let (θ̃, z̃) be an optimal integral solution to (GR-P). If θ̃ = 1, we open all facilities in
F1, and otherwise, all facilities in T2. We also open the facilities from T1 \ F1 for which
z̃i = 1.

To analyze this, we first show that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a
feasible solution to (GR-P) of objective value at most 3(aC1 + bC2). We have

∑
i∈T1\F1

zi =
a(k1 − k2) = k − k2. Every j ∈ S contributes ad1,j + bd2,j to the objective value of (GR-P).
Consider k /∈ S. Its contribution to the objective value of (GR-P) is

ad1,k + 3bmax{d1,k, d2,k} = max{(a+ 3b)d1,k, ad1,k + 3bd2,k} ≤ 3(ad1,k + bd2,k)

where the inequality follows since a + 3b ≤ 3a when a ≥ 2/3. Thus, for every j ∈ D, its
contribution to the objective value of (GR-P) is at most thrice its contribution to aC1 + bC2.

Suppose ~c is the assignment-cost vector resulting from (θ̃, z̃). We show that∑
j gM,west(9;~cj) is at most the objective value of (θ̃, z̃) under (GR-P). For every k ∈ S, we

have gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ θ̃d1,k + (1− θ̃)d2,k. Now consider k /∈ S with σ(k) = j,
so max{d1,j , d2,j} ≤ max{d1,k, d2,k}. If z̃i1(k) = 1, then gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ d1,k.
Otherwise, ~ck ≤ ci2(k)k + ci1(j)j + ci2(j)j , and so by Lemma 12, we have

gM,west (9;~ck) ≤ gM,west (9; ci2(k)k + ci1(j)j + ci2(j)j)
≤ 3 max{gM,west (3; ci2(k)), gM,west (3; ci1(j)j), gM,west (3; ci2(j)j)} ≤ 3 max{d1,k, d2,k}.

So in every case, gM,west(9;~ck) is bounded by the contribution of k to the objective value of
(θ̃, z̃). Thus, we have proved the following theorem.

I Theorem 14. For any M ≥ 0, west, we can obtain a solution opening k centers whose
assignment-cost vector ~c satisfies

∑
j gM,west(9;~cj) ≤ 9OPTM,west + 9εw̃1M .

Proof of Theorem 7. The proof follows by combining Theorem 14, Lemmas 10 and 11, and
Claim 8. Recall that ~o↓ is the assignment-cost vector corresponding to an optimal solution
with coordinates sorted in non-increasing order, and opt =

∑n
i=1 wi~o

↓
i is the optimal cost.

There are only n2 choices forM , and O
(
(nε )1/ε) choices for west, so we may assume that in

polynomial time, we have obtained M = ~o↓1 , and west
r s satisfying wavg

r ≤ west
r ≤ (1+ ε)wavg

r for
all r ∈ {0, . . . , T}. By Lemma 10, we know that OPTM,west ≤ (1+ε)2cost(w̃;~o↓) ≤ (1+ε)2opt.
Let ~c be the assignment-cost vector of the solution returned by Theorem 14 for this M , west.
Combining Theorem 14, Lemma 11, and Claim 8, we obtain that

(1− ε)cost(w;~c) ≤ cost(w̃;~c) ≤
(
9OPTM,west + 9εw̃1M

)
+ 9(1 + ε)cost(w̃;~o↓) + 9εw̃1M

≤ 9(1 + ε)2opt + 9opt +O(ε)opt =
(
18 +O(ε)

)
opt.

4 Conclusions and discussion

We have described algorithms achieving approximation guarantees of 12 + ε and 18 + ε for
the `-centrum and ordered k-median problems. Our algorithms are combinatorial, utilizing
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the primal-dual schema and Lagrangian relaxation, and improve upon the algorithms in [3],
both in terms of approximation factors and simplicity of analysis.

One interesting research direction suggested by our work is to investigate the ordered-
median and `-centrum (i.e., ordered median with {0, 1}-weights) versions of other optimization
problems. In further work, we have been able to develop a general framework for devising
algorithms for ordered-median problems. Our framework also yields improved guarantees
for the `-centrum and ordered k-median problems studied here. We obtain analogous
improvements for ordered k-median. We defer details to a forthcoming manuscript.
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