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Abstract
Ranking algorithms are deployed widely to order a set of items in applications such as search
engines, news feeds, and recommendation systems. Recent studies, however, have shown that,
left unchecked, the output of ranking algorithms can result in decreased diversity in the type of
content presented, promote stereotypes, and polarize opinions. In order to address such issues,
we study the following variant of the traditional ranking problem when, in addition, there are
fairness or diversity constraints. Given a collection of items along with 1) the value of placing
an item in a particular position in the ranking, 2) the collection of sensitive attributes (such as
gender, race, political opinion) of each item and 3) a collection of fairness constraints that, for
each k, bound the number of items with each attribute that are allowed to appear in the top k

positions of the ranking, the goal is to output a ranking that maximizes the value with respect
to the original rank quality metric while respecting the constraints. This problem encapsulates
various well-studied problems related to bipartite and hypergraph matching as special cases and
turns out to be hard to approximate even with simple constraints. Our main technical contri-
butions are fast exact and approximation algorithms along with complementary hardness results
that, together, come close to settling the approximability of this constrained ranking maximiza-
tion problem. Unlike prior work on the approximability of constrained matching problems, our
algorithm runs in linear time, even when the number of constraints is (polynomially) large, its
approximation ratio does not depend on the number of constraints, and it produces solutions
with small constraint violations. Our results rely on insights about the constrained matching
problem when the objective function satisfies certain properties that appear in common ranking
metrics such as discounted cumulative gain (DCG), Spearman’s rho or Bradley-Terry, along with
the nested structure of fairness constraints.
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1 Introduction

Selecting and ranking a subset of data is a fundamental problem in information retrieval and
at the core of ubiquitous applications including ordering search results such (e.g., Google),
personalized social media feeds (e.g., Facebook, Twitter or Instagram), ecommerce websites
(e.g., Amazon or eBay), and online media sites (e.g., Netflix or YouTube). The basic
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28:2 Ranking with Fairness Constraints

algorithmic problem that arises is as follows: There are m items (e.g., webpages, images,
or documents), and the goal is to output a list of n � m items in the order that is most
valuable to a given user or company. For each item i ∈ [m] and a position j ∈ [n] one is
given a number Wij that captures the value that item i contributes to the ranking if placed
at position j. These values can be tailored to a particular query or user and a significant
effort has gone into developing models and mechanisms to learn these parameters [31]. In
practice there are many ways one could arrive at Wij , each of which results in a slightly
different metric for the value of a ranking – prevalent examples include versions of discounted
cumulative gain (DCG) [26], Bradley-Terry [6] and Spearman’s rho [41]. Note that for many
of these metrics, one does not necessarily need nm parameters to specify W and typically m

“degrees of freedom” is enough (just specifying the “quality of each item”). Still, we choose
to work with this general setting, and only abstract out the most important properties such
a weight matrix W satisfies. Generally, for such metrics, Wij is non-increasing in both i and
j, and if we interpret i1 < i2 to mean that i1 has better quality than i2, then the value of
the ranking can only increase by placing i1 above i2 in the ranking. Formally, such values
satisfy the following property (known as monotonicity and the Monge condition)

Wi1j1 ≥Wi2j1 and Wi1j1 ≥Wi1j2 and Wi1j1 + Wi2j2 ≥Wi1j2 + Wj1i2 (1)

for all 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n. The ranking maximization problem is to find
an assignment of the items to each of the n positions such that the total value obtained is
maximized. In this form, the problem is equivalent to finding the maximum weight matching
in a complete m×n bipartite graph and has a well known solution – the Hungarian algorithm.

However, recent studies have shown that producing rankings in this manner can result
in one type of content being overrepresented at the expense of another. This is a form
of algorithmic bias and can lead to grave societal consequences – from search results that
inadvertently promote stereotypes by over/under-representing sensitive attributes such as
race and gender [28, 5], to news feeds that can promote extremist ideology [18] and possibly
even influence the results of elections [2, 3]. For example, [21] demonstrated that by varying
the ranking of a set of news articles the voting preferences of undecided voters can be
manipulated. Towards ensuring that no type of content is overrepresented in the context of
the ranking problem as defined above, we introduce the constrained ranking maximization
problem that restricts allowable rankings to those in which no type of content dominates –
i.e., to ensure the rankings are fair.

Since fairness (and bias) could mean different things in different contexts, rather than
fixing one specific notion of fairness, we allow the user to specify a set of fairness constraints;
in other words, we take the constraints as input. As a motivating example, consider the
setting in which the set of items consists of m images of computer scientists, each image
is associated with several (possibly non-disjoint) sensitive attributes or properties such as
gender, ethnicity and age, and a subset of size n needs to be selected and ranked. The user
can specify an upper-bound Uk` ∈ Z≥0 on the number of items with property ` that are
allowed to appear in the top k positions of the ranking, and similarly a lower-bound Lk`.
Formally, let {1, 2, . . . , p} be a set of properties and let P` ⊆ [m] be the set of items that
have the property ` (note that these sets need not be disjoint). Let x be an m× n binary
assignment matrix whose j-th column contains a one in the i-th position if item i is assigned
to position j (each position must be assigned to exactly one item and each item can be
assigned to at most one position). We say that x satisfies the fairness constraints if for all
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` ∈ [p] and k ∈ [n], we have

Lk` ≤
∑

1≤j≤k

∑
i∈P`

xij ≤ Uk`,

If we let B be the family of all assignment matrices x that satisfy the fairness constraints,
the constrained ranking optimization problem is: Given the sets of items with each property
{P1, . . . , Pp}, the fairness constraints, {Lk`}, {Uk`}, and the values {Wij}, find

arg max
x∈B

∑
i∈[m],j∈[n]

Wijxij .

This problem is equivalent to finding a maximum weight matching of size n that satisfies the
given fairness constraints in a weighted complete m× n bipartite graph, and now becomes
non-trivial – its complexity is the central object of study in this paper.

Beyond the fairness and ethical considerations, traditional diversification concerns in
information retrieval such as query ambiguity (does “jaguar” refer to the car or the animal?)
or user context (does the user want to see webpages, news articles, academic papers or
images?) can also be cast in this framework. Towards this, a rich literature on diversifying
rankings has emerged in information retrieval. On a high-level, several approaches redefine
the objective function to incorporate a notion of diversity and leave the ranking maximization
problem unconstrained. E.g., a common approach is to re-weight the wijs to attempt to
capture the amount of diversity item i would introduce at position k conditioned on the
items that were placed at positions 1, . . . , k − 1 (see [7, 47, 17, 46, 48]), or casting it directly
as an (unconstrained) multi-objective optimization problem [43]. Alternate approaches mix
together or aggregate different rankings, e.g., as generated by different interpretations of a
query [36, 20]. Diversity has also been found to be desirable by users [14], and has been
observed to arise inherently when the ranking is determined by user upvotes [12]. Despite
these efforts and the fact that all major search engines now diversify their results, highly
uniform content is often still displayed – e.g., certain image searches can display results
that have almost entirely the same attributes [28]. Further, [23] showed that no single
diversification function can satisfy a set of natural axioms that one would want any fair
ranking to have. In essence, there is a tension between relevance and fairness – if the wijs
for items that have a given property are much higher than the rest, the above approaches
cannot correct for overrepresentation. Hence the reason to cast the problem as a constrained
optimization problem: The objective is still determined by the values but the solution space
is restricted by fairness constraints.

Theoretically, the fairness constraints come with a computational price: The constrained
ranking maximization problem can be seen to generalize various NP-hard problems such as
independent set, hypergraph matching and set packing. Unlike the unconstrained case, even
checking if there is a complete feasible ranking (i.e., B 6= ∅) is NP-hard. As a consequence,
in general, we cannot hope to produce a solution that does not violate any constraints. Some
variants and generalizations of our problem have been studied in the TCS and optimization
literature; here we mention the three most relevant. Note that some may leave empty positions
in the ranking as opposed to selecting n elements to rank as we desire. [1] considered the
bipartite perfect matching problem with poly(m) constraints. They present a polynomial
time randomized algorithm that finds a near-perfect matching which violates each constraint
additively by at most O(

√
m). [24] improved the above result to a (1 + ε)-approximation

algorithm; however, the running time of their algorithm is roughly mK2.5/ε2 where K is the
number of hard constraints and the output is a matching. [42] studied the approximability of
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28:4 Ranking with Fairness Constraints

the packing integer program problem which, when applied to our setting and gives an O(
√

m)
approximation algorithm. In the constrained ranking maximization problem presented above,
all of these results seem inadequate; the number of fairness constraints is 2np which would
make the running time of [24] too large and an additive violation of O(

√
m) would render

the upper-bound constraints impotent.
The main technical contributions of this paper are fast, exact and approximation al-

gorithms for this constrained ranking maximization problem along with complementary
hardness results which, together, give a solid understanding of the computational complexity
of this problem. To overcome the limitations of the past work on constrained matching
problems, our results often make use of two structural properties of such a formulation: A)
The set of constraints can be broken into p groups; for each property ` ∈ [p] we have n (nested)
upper-bound constraints, one for each k ∈ [n], and B) The objective function satisfies the
property stated in (1). Using properties A) and B) we obtain efficient – polynomial, or even
linear time algorithms for this problem in various interesting regimes. Both these properties
are natural in the information retrieval setting and could be useful in other algorithmic
contexts involving rankings.

2 Our model

We study the following constrained ranking maximization problem

arg max
x∈Rm,n

∑
i∈[m],j∈[n]

Wijxij s.t. Lk` ≤
∑

1≤j≤k

∑
i∈P`

xij ≤ Uk` ∀ ` ∈ [p], k ∈ [n], (2)

where Rm,n is the set of all matrices {0, 1}m×n which represent ranking m items into n

positions. Recall that Wij represents the profit of placing item i at position j and for every
property ` ∈ [p] and every position k in the ranking, Lk` and Uk` are the lower and upper
bound on the number of items having property ` that are allowed to be in the top k positions
in the ranking. For an example, we refer to Figure 1.

We distinguish two important special cases of the problem: when only the upper-bound
constraints are present, and when only the lower-bound constraints are present. These variants
are referred to as the constrained ranking maximization problem (U) and the constrained
ranking maximization problem (L) respectively, and to avoid confusion we sometimes add (LU)
when talking about the general problem with both types of constraints present. Furthermore,
most our results hold under the assumption that the weight function W is monotone and
satisfies the Monge property (1), whenever these assumptions are not necessary, we emphasize
this fact by saying that general weights are allowed.

3 Our results

In this section, we present an overview of our results. The statements of theorems here are
informal for the ease of readability and for the formal statements our results, we refer the
reader to the full version of the paper [13].

Let the type

Ti := {` ∈ [p] : i ∈ P`}

of item i be the set of properties that the item i has. Our first result is an exact algorithm
for solving the constrained ranking maximization problem whose running time is polynomial
if the number of distinct Tis, denoted by q, is constant.
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(a) An example of a value matrix W . The values
corresponding to the optimal (unconstrained) rank-
ing in (b) and the optimal constrained ranking in
(c) are depicted by gray and orange respectively.
(Note that, for clarity of the rank order, the above
is the transpose of the matrix referred to as W in
the text.)

(b) The optimal un-
constrained ranking.
The upper-bound con-
straint at position D
is violated as there are
3 men, but only 2 are
allowed.

(c) The optimal
constrained ranking.
The upper-bound con-
straint at position D
is no longer violated;
in fact all constraints
are satisfied.

Figure 1 A simple example of our framework: In (a) a matrix of Wijs is presented. Here, the
options are people who are either male (blue) or female (yellow), and 6 of them must be ranked.
We assume that there is a single upper-bound constraint for each position in the ranking which is
applied to both genders as depicted in figures (b) and (c). The constraints are satisfied in the latter,
but not the former. The weights of these two rankings are depicted in figure (a).

I Theorem 3.1 (Exact dynamic programming-based algorithm). There is an algorithm that
solves the constrained ranking maximization problem (LU) in O(pqnq + pm) time when the
values W satisfy property (1).

This algorithm combines a geometric interpretation of our problem along with dynamic
programming and proceeds by solving a sequence of q−dimensional sub-problems. When q

is allowed to be large, the problem is NP-hard; see Theorem 3.5.
Generally, we may not be able to assume that q is a constant and, even then, it would be

desirable to have algorithms whose running time is close to (m + n)p, the size of the input.
Towards this we consider a natural parameter of the set of properties: The size of the largest
Ti, namely

∆ := max
i∈[m]

|Ti|.

The complexity of the constrained ranking maximization problem turns out to show interesting
behavior with respect to ∆ (note that ∆ ≤ p and typically p� q). The case when ∆ = 1
corresponds to the simplest practical setting where there are p disjoint properties, i.e., the
properties partition the set of items. For instance, a set of images of humans could be
partitioned based on the ethnicity or age of the individual. Note that even though q = p for
∆ = 1, this q could still be large and the previous theorem may have a prohibitively large
running time.

When ∆ = 1 we prove that the constrained ranking maximization problem (LU) is
polynomial time solvable even when the matrix W does not satisfy the property (1).

I Theorem 3.2 (Polynomial time algorithm for ∆ = 1). The constrained ranking maximization
problem (LU) for general weights and ∆ = 1 can be solved in Õ(n2m) time.

ICALP 2018



28:6 Ranking with Fairness Constraints

The above is obtained by reducing this variant of the ranking maximization problem to the
minimum cost flow problem, that can be solved efficiently (the network is acyclic). We note
that even though the running time is polynomial in m, it might be still not satisfactory for
practical purposes. With the aim of designing faster – linear time algorithms, we focus on
the case when only upper-bound constraints are present. For this case, we analyze a natural
linear programming (LP) relaxation for the constrained ranking maximization problem (U). It
reveals interesting structure of the problem and motivates a fast greedy algorithm. Formally,
the relaxation considers the set Ωm,n defined as

Ωm,n :=

x ∈ [0, 1]m×n :
n∑

j=1
xij ≤ 1 for all i ∈ [m],

m∑
i=1

xij = 1, for all j ∈ [n]


and the following linear program

max
x∈Ωm,n

m∑
i=1

n∑
j=1

Wijxij s.t.
∑
i∈P`

k∑
j=1

xij ≤ Uk`, ∀ ` ∈ [p], k ∈ [n]. (3)

Observe that in the absence of fairness constraints, (3) represents the maximum weight
bipartite matching problem – it is well known that the feasible region of its fractional
relaxation has integral vertices and hence the optimal values of these two coincide. However,
in the constrained setting, even for ∆ = 1, it can be shown that the feasible region is no
longer integral – it can have fractional vertices. For this reason, it is not true that maximizing
any linear objective results in an integral solution. Surprisingly, we prove that for ∆ = 1 the
cost functions we consider are special and never yield optimal fractional (vertex) solutions.

I Theorem 3.3 (Exact LP-based algorithm for ∆ = 1). Consider the linear programming
relaxation (3) for the constrained ranking maximization problem (U) when ∆ = 1 and the
objective function satisfies (1). Then there exists an optimal solution with integral entries
and hence the relaxation is exact. Further, there exists a greedy algorithm to find an optimal
integral solution in O(np + m) time.

The proof relies on a combinatorial argument on the structure of tight constraints that
crucially uses the assumption that ∆ = 1 and the property (1) of the objective function. Note
that the result of Theorem 3.3 implies in particular that whenever the linear program (3) is
feasible then there is also an integer solution – a feasible ranking. This can be also argued
for the general (LU) variant of the problem and its corresponding LP relaxation. However,
extending Theorem 3.3 to this case seems more challenging and is left as an open problem.

When trying to design algorithms for larger ∆, the difficulty is that the constrained
ranking feasibility problem remains NP-hard (in fact, even hard to approximate when
feasibility is guaranteed) for ∆ ≥ 3; see Theorem 3.5. Together, these results imply that
unless we restrict to feasible instances of the constrained ranking problem, it is impossible to
obtain any reasonable approximation algorithm for this problem. In order to bypass this
barrier, we focus on the (U) variant of the problem and present an algorithmically verifiable
condition for feasibility and argue that it is natural in the context of information retrieval.
For each 1 ≤ k ≤ n, we consider the set

Sk := {l ∈ [p] : U(k−1)` + 1 ≤ Uk`}

of all properties whose constraints increase by at least 1 when going from the (k − 1)st to
the kth position. We observe that the following abundance of items condition is sufficient for
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feasibility:

∀k there are at least n items i s.t. Ti ⊆ Sk. (4)

Intuitively, this says that there should be always at least a few ways to extend a feasible
ranking of (k − 1) items to a ranking of k items. Simple examples show that this condition
can be necessary for certain constraints {Uk`}. In practice, this assumption is almost never
a problem – the available items m (e.g., webpages) far outnumber the size of the ranking
n (e.g., number of results displayed in the first page) and the number of properties p (i.e.,
there are only so many “types” of webpages).

We show that assuming condition (4), there is a linear-time algorithm that achieves an
(∆ + 2)-approximation, while only slightly violating the upper-bound constraints. This result
does not need assumption (1), rather only that the Wijs are non-negative. This result is
near-optimal; we provide an Ω

(
∆

log ∆

)
hardness of approximation result (see Theorem 3.5

and the full version of the paper [13] for more details).

I Theorem 3.4 ((∆ + 2)-approximation algorithm). For the constrained ranking maximization
problem (U), under the assumption (4), there is an algorithm that in linear time outputs a
ranking x with value at least 1

∆+2 times the optimal one, such that x satisfies the upper-bound
constraints with at most a twice multiplicative violation, i.e.,

∑
i∈P`

k∑
j=1

xij ≤ 2Uk`, for all ` ∈ [p] and k ∈ [n].

One can construct artificial instances of the ranking problem, where the output of the
algorithm indeed violates upper-bound constraints with a 2-multiplicative factor. However,
these violations are caused by the presence of high-utility items with a large number of
properties. Such items are unlikely to appear in real-life instances and thus we expect the
practical performance of the algorithm to be better than the worst-case bound given in
Theorem 3.4 suggests. Lastly we summarize our hardness results for the constrained ranking
problem.

I Theorem 3.5 (Hardness Results – Informal). The following variants of the constrained
ranking feasibility (U) and constrained ranking maximization (U) problem are NP-hard.
1. Deciding feasibility for the case of ∆ ≥ 3.
2. Under the feasibility condition (4), approximating the optimal value of a ranking within a

factor O (∆/log ∆), for any ∆ ≥ 3.
3. Deciding feasibility when only the number of items m, number of positions n, and upper-

bounds u are given as input; the properties are fixed for every m.
4. For every constant c, deciding between whether there exists a feasible solution or every

solution violates some constraint by a factor of c.

Organization of the rest of the paper

In Section 4 we discuss other related work. Section 5 contains an overview of the proofs of
our main results. For complete proofs, we refer the reader to the full version of the paper [13].
In Section 6 we provide a discussion of possible directions for future work and open problems.

ICALP 2018
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4 Other related work

Information retrieval, which focuses on selecting and ranking subsets of data, has a rich
history in computer science, and is a well-established subfield in and of itself; see, e.g., the
foundational work by [39]. The probability ranking principle (PRP) forms the foundation of
information retrieval research [32, 38]; in our context it states that a system’s ranking should
order items by decreasing value. Our problem formulation and solutions are in line with this
– subject to satisfying the diversity constraints.

A related problem is diverse data summarization in which a subset of items with var-
ied properties must be selected from a large set [35, 9], or similarly, voting with diversity
constraints in which a subset of items of people with varied properties or attributes must
be selected via a voting procedure [34, 10]. However, the formulation of these problem is
considerably different as there is no need to produce a ranking of the selected items, and
hence the analogous notion of constraints is more relaxed. Extending work on fairness in
classification problems [45], the fair ranking problem has also been studied as an (uncon-
strained) multi-objective optimization problem, and various fairness metrics of a ranking
have been proposed [43].

Combining the learning of values along with the ranking of items has also been studied
[37, 40]; in each round an algorithm chooses an ordered list of k documents as a function of
the estimated values Wij and can receive a click on one of them. These clicks are used to
update the estimate of the Wijs, and bounds on the regret (i.e., learning rate) can be given
using a bandit framework. In this problem, while there are different types of items that can
affect the click probabilities, there are no constraints on how they should be displayed.

Recent work has shown that, in many settings, there are impossibility results that prevent
us from attaining both property and item fairness [30]. Indeed, our work focuses on ensuring
property fairness (i.e., no property is overrepresented), however this comes at an expense
of item fairness (i.e., depending on which properties an item has, it may have much higher
/ lower probability of being displayed than another item with the same value). In our
motivating application we deal with the ranking of documents or webpages, and hence are
satisfied with this trade-off. However, further consideration may be required if, e.g., we wish
to rank people as this would give individuals different likelihoods of being near the top of
the list based on their properties rather than solely on their value.

5 Proof overviews

Overview of the proof of Theorem 3.1. We first observe that the constrained ranking
maximization problem has a simple geometric interpretation. Every item i ∈ [m] can be
assigned a property vector ti ∈ {0, 1}p whose `-th entry is 1 if item i has property ` and 0
otherwise. We can then think of the constrained ranking maximization problem as finding
a sequence of n distinct items i1, i2, . . . , in such that Lk ≤

∑k
j=1 tij

≤ Uk for all k ∈ [n],
where Uk is the vector whose `-th entry is U`k. In other words, we require that the partial
sums of the vectors corresponding to the top k items in the ranking stay within the region
[Lk1, Uk1]× [Lk2, Uk2]× · · · × [Lkn, Ukn] defined by the fairness constraints.

Let Q := {ti : i ∈ [m]} be the set of all the different property vectors ti that appear
for items i ∈ [m], and let us denote its elements by v1, v2, . . . , vq. A simple but important
observation is that whenever two items i1, i2 ∈ [m] (with say i1 < i2) have the same property
vector: ti1 = ti2 , then in every optimal solution either i1 will be ranked above i2, only i1
is ranked, or neither is used. This follows from the assumption that the weight matrix is
monotone in i and j and satisfies the property as stated in (1).
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Let us now define the following sub-problem that asks for the property vectors of a feasible
solution: Given a tuple (s1, s2, . . . , sq) ∈ Nq such that k = s1 + s2 + · · ·+ sq ≤ n, what is the
optimal way to obtain a feasible ranking on k items such that sj of them have property vector
equal to vj for all j = 1, 2, . . . , q? Given a solution to this sub-problem, using the observation
above, it is easy to determine which items should be used for a given property vector, and in
what order. Further, one can easily solve such a sub-problem given the solutions to smaller
sub-problems (with a smaller sum of sjs), resulting in a dynamic programming algorithm
with O(nq) states and, hence, roughly the same running time.

Overview of the proof of Theorem 3.2. The main idea is to reduce ranking maximization
to the minimum cost flow problem and then observe several structural properties of the
resulting instance which allow one to solve it efficiently (in Õ(n2m) time).

Given an instance of the constrained ranking maximization problem (U), we construct a
weighted flow network G = (V, E) such that every feasible ranking corresponds to a feasible
flow of value n in G. Roughly, for every item i and every property ` a chain of n vertices is
constructed so that placing item i (such that i ∈ P`) at position k corresponds to sending
one unit of flow through the chain corresponding to item i up to its kth vertex and then
switching to the chain corresponding to property `. Edge weights in these gadgets (chains)
are chosen in such a way that the cost of sending a unit through this path is −Wi,k. The
capacities in chains corresponding to properties implement upper-bound constraints. The
lower-bound constraints can be also enforced by putting appropriate weights on edges of
these chains.

The instance of the minimum cost flow problem we construct has O(nm) vertices and
O(nm) edges and is acyclic, which allows to replace the application of the Bellman-Ford
algorithm in the first phase of the Successive Shortest Path algorithm by a linear-time
procedure. This then easily leads to an implementation in O(n2m log m) time.

Overview of the proof of Theorem 3.3. Unlike the ∆ = 0 case where the LP-relaxation
(3) has no non-integral vertex (it is the assignment polytope) , even when p = 1, fractional
vertices can arise (see the full version of the paper [13]). Theorem 3.3 implies that for ∆ = 1,
although the feasible region of (3) is not integral in all directions, it is along the directions of
interest. In the proof we first reduce the problem to the case when m = n (i.e., when one has
to rank all of the items) and w has the strict form of property (1) (i.e., when the inequalities
in assumption (1) are strict). Our strategy then is to prove that for every fractional feasible
solution x ∈ Ωm,m there is a direction y ∈ Rm×m such that the solution x′ := x + εy is still
feasible (for some ε > 0) and its weight is larger than the weight of x. This implies that
every optimal solution is necessarily integral.

Combinatorially, the directions we consider correspond to 4-cycles in the underlying
complete bipartite graph, such that the weight of the matching can be improved by swapping
edges along the cycle. The argument that shows the existence of such a cycle makes use of
the special structure of the constraints in this family of instances.

To illustrate the approach, suppose that there exist two items i1 < i2 that have the same
property ` ∈ [p], and for some ranking positions j1 < j2 we have

xi1j2 > 0 and xi2j1 > 0. (5)

Following the strategy outlined above, consider x′ = x + εy with y ∈ Rm×m to be zero
everywhere except yi1j1 = yi2j2 = 1 and yi1j2 = yi2j1 = −1. We would like to prove that the
weight of x′ is larger than the weight of x and that x′ is feasible for some (possibly small)
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ε > 0. The reason why we gain by moving in the direction of y follows from property (1).
Feasibility in turn follows because y is orthogonal to every constraint defining the feasible
region. Indeed, the only constraints involving items i1, i2 are those corresponding to the
property `. Further, every such constraint is of the form1 〈1Rk

, x〉 ≤ Uk` where 1Rk
is the

indicator vector of a rectangle Rk := P` × [k]. Such a rectangle contains either all non-zero
entries of y, two non-zero entries (with opposite signs), or none. In any of these cases,
〈1Rk

, y〉 = 0.
Using a reasoning as above, one can show that no configuration of the form (5) can appear

in any optimal solution for i1, i2 that share a property `. This implies that the support
of every optimal solution has a certain structure when restricted to items that have any
given property ` ∈ [p]; this structure allows us to find an improvement direction in case
the solution is not integral. To prove integrality we show that for every fractional solution
x ∈ Rm×m there exists a fractional entry xij ∈ (0, 1) that can be slightly increased without
violating the fairness constraints. Moreover since the i-th row and the j-th column must
contain at least one more fractional entry each (since the row- and column-sums are 1), we
can construct (as above) a direction y, along which the weight can be increased. The choice
of the corresponding entries that should be altered requires some care, as otherwise we might
end up violating fairness constraints.

The second part of Theorem 3.3 is an algorithm for solving the constrained ranking
maximization problem for ∆ = 1 in optimal (in the input size) running time of O(np + m).
We show that a natural greedy algorithm can be used. More precisely, one iteratively fills in
ranking positions by always selecting the highest value item that is still available and does
not lead to a constraint violation. An inductive argument based that relies on property 1
and the ∆ = 1 assumption gives the correctness of such a procedure.

Overview of the proof of Theorem 3.4. Let ∆ > 1 be arbitrary. The most important
part of our algorithm is a greedy procedure that finds a large weight solution to a slightly
relaxed problem in which not all positions in the ranking have to be occupied. It processes
pairs (i, j) ∈ [m]× [n] in non-increasing order of weights Wij and puts item i in position j

whenever this does not lead to constraint violation.
To analyze the approximation guarantee of this algorithm let us first inspect the combin-

atorial structure of the feasible set. In total there are p ·n fairness constraints in the problem
and additionally m + n “matching” constraints, saying that no “column” or “row” can have
more than a single one in the solution matrix x ∈ {0, 1}m×n. However, after relaxing the
problem to the one where not all ranking positions have to be filled, one can observe that
the feasible set is just an intersection of p + 2 matroids on the common ground set [m]× [n].
Indeed, two of them correspond to the matching constraints, and are partition matroids.
The remaining p matroids correspond to properties: for every property ` there is a chain of
subsets S1 ⊆ S2 ⊆ · · · ⊆ Sn of [m]× [n] such that

I` = {S ⊆ [m]× [n] : |S ∩ Sk| ≤ Uk` for all k = 1, 2, . . . , n}

is the set of independent sets in this (laminar) matroid. In the work [27] it is shown that
the greedy algorithm run on an intersection of K matroids yields K-approximation, hence
(p + 2)-approximation of our algorithm follows.

1 By 〈·, ·〉 we denote the inner product between two matrices, i.e., if x, y ∈ Rm×n then 〈x, y〉 :=∑m

j=1

∑n

i=1 xijyij .
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To obtain a better – (∆ + 2)-approximation bound, a more careful analysis is required.
The proof is based on the fact that, roughly, if a new element is added to a feasible solution
S, then at most ∆ + 2 elements need to be removed from S to make it again feasible. Thus
adding greedily one element can cost us absence of ∆+2 other elements of weight at most the
one we have added. This idea can be formalized and used to prove the (∆ + 2)-approximation
of the greedy algorithm. This is akin to the framework of K-extendible systems by [33] in
which this greedy procedure can be alternatively analyzed. Finally, we observe that since
the problem solved was a relaxation of the original ranking maximization problem, the
approximation ratio we obtain with respect to the original problem is still (∆ + 2).

It remains to complete the ranking by filling in any gaps that may have been left by the
above procedure. This can be achieved in a greedy manner that only increases the value of
the solution, and violates the constraints by at most a multiplicative factor of 2.

Overview of the proof of Theorem 3.5. Our hardness results are based on a general
observation that one can encode various types of packing constraints using instances of the
constrained ranking maximization (U) and feasibility (U) problem. The first result (part
1. in Theorem 3.5) – NP-hardness of the feasibility problem (for ∆ ≥ 3) is established by
a reduction from the hypergraph matching problem. Given an instance of the hypergraph
matching problem one can think of its hyperedges as items and its vertices as properties.
Degree constraints on vertices can then be encoded by upper-bound constraints on the
number of items that have a certain property in the ranking. The inapproximability result
(part 2. in Theorem 3.5) is also established by a reduction from the hypergraph matching
problem, however in this case one needs to be more careful as the reduction is required to
output instances that are feasible.

Our next hardness result (part 3. in Theorem 3.5) illustrates that the difficulty of the
constrained ranking optimization problem (U) could be entirely due to the upper-bound
numbers Uk`s. In particular, even when the part of the input corresponding to which item
has which property is fixed, and only depends on m (and, hence, can be pre-processed as
in [22]), the problem remains hard. This is proven via a reduction from the independent
set problem. The properties consists of all pairs of items {i1, i2} for i1, i2 ∈ [m]. Given
any graph G = (V, E) on m vertices, we can set up a constrained ranking problem whose
solutions are independent sets in G of a certain size. Since every edge e = {i1, i2} ∈ E is a
property, we can set a constraint that allows at most one item (vertex) from this property
(edge) in the ranking.

Finally, part 4. in Theorem 3.5 states that it is not only hard to decide feasibility but even
to find a solution that does not violate any constraint by more than a constant multiplicative
factor c ∈ N. The obstacle in proving such a hardness result is that, typically, even if a
given instance is infeasible, it is easy to find a solution that violates many constraints by
a small amount. To overcome this problem we employ an inapproximability result for the
maximum independent set problem by [25] and an idea by [16]. Our reduction (roughly)
puts a constraint on every (c + 1)−clique in the input graph G = (V, E), so that at most one
vertex (item) is picked from it. Then a solution that does not violate any constraint by a
multiplicative factor more than c corresponds to a set of vertices S such that the induced
subgraph G[S] has no c-clique. Such a property allows us to prove (using elementary bounds
on Ramsey numbers) that G has a large independent set. Hence, given an algorithm that is
able to find a feasible ranking with no more than a c-factor violation of the constraints, we
can approximate the maximum size of an independent set in a graph G = (V, E) up to a
factor of roughly |V |1−1/c; which is hard by [25].
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6 Discussion and future work

In this paper, motivated by controlling and alleviating algorithmic bias in information
retrieval, we initiate the study of the complexity of a natural constrained optimization
problem concerning rankings. Our results indicate that the constrained ranking maximization
problem, which is a generalization of the classic bipartite matching problem, shows fine-
grained complexity. Both the structure of the constraints and the numbers appearing in
upper-bounds play a role in determining its complexity. Moreover, this problem generalizes
several hypergraph matching/packing problems. Our algorithmic results bypass the obstacles
implicit in the past theory work by leveraging on the structural properties of the constraints
and common objective functions from information retrieval. More generally, our results not
only contribute to the growing set of algorithms to counter algorithmic bias for fundamental
problems [19, 4, 44, 9, 11, 8, 29, 15], the structural insights obtained may find use in other
algorithmic settings related to the rather broad scope of ranking problems.

Our work also suggests some open problems and directions. The first question concerns
the ∆ = 1 case and its (LU) variant; Theorem 3.2 implies that it can be solved in Õ(n2m)
time, can this be improved to nearly-linear time, as we do for the (U) variant (Theorem 3.3)?
Another question is the complexity of the constrained ranking maximization problem (in
all different variants) when ∆ = 2 – is it in P? The various constants appearing in our
approximation algorithms are unlikely to be optimal and improving them remains important.
In particular, our approximation algorithm for the case of large ∆ in Theorem 3.4 may
incur a 2-multiplicative violation of constraints. This could be significant when dealing with
instances where the upper bound constraints are rather large (i.e., Uk` & k

2 ) in which case,
such a violation effectively erases all the constraints. It is an interesting open problem to
understand whether this 2-violation can be avoided, either by providing a different algorithm
or by making different assumptions on the instance.

In this work we consider linear objective functions for the the ranking optimization
problem, i.e., the objective is an independent sum of profits for individual item placements.
While this model might be appropriate in certain settings, there may be cases where one
would prefer to measure the quality of a ranking as a whole, and in particular the utility of
placing a given item at the kth position should also depend on what items were placed above
it [46]. Thus defining and studying a suitable variant of the problem for a class of objectives
on rankings that satisfy some version of the diminishing returns principle (submodularity),
is of practical interest.

A related question that deserves independent exploration is to study the complexity of
sampling a constrained ranking from the probability distribution induced by the objective
(rather than outputting the ranking that maximizes its value, output a ranking with probab-
ility proportional to its value). Finally, extending our results to the online setting seems like
an important technical challenge which is also likely to have practical consequences.

References

1 Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for the as-
signment problem with applications to dense graph arrangement problems. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA,
14-16 October, 1996, pages 21–30, 1996. doi:10.1109/SFCS.1996.548460.

2 Drake Baer. The ‘Filter Bubble’ Explains Why Trump Won and You Didn’t See It Coming,
November 2016. NY Mag.

http://dx.doi.org/10.1109/SFCS.1996.548460


L. E. Celis, D. Straszak, and N.K. Vishnoi 28:13

3 Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideologically diverse
news and opinion on facebook. Science, 348(6239):1130–1132, 2015.

4 S. Barocas and A.D. Selbst. Big Data’s Disparate Impact. SSRN eLibrary, 2015.
5 Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.

Man is to computer programmer as woman is to homemaker? Debiasing word embeddings.
In Advances in Neural Information Processing Systems, pages 4349–4357, 2016.

6 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

7 Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st annual inter-
national ACM SIGIR conference on Research and development in information retrieval,
pages 335–336. ACM, 1998.

8 L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth K. Vish-
noi. On the complexity of constrained determinantal point processes. In APPROX/RAN-
DOM 2017, pages 36:1–36:22, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.36.

9 L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K Vishnoi. How to be fair
and diverse? Fairness, Accountability and Transparency in Machine Learning, 2016.

10 L. Elisa Celis, Lingxiao Huang, and Nisheeth K. Vishnoi. Multiwinner voting with fairness
constraints. In IJCAI-ECAI, 2018.

11 L. Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria,
and Nisheeth K. Vishnoi. Fair and diverse DPP-based data summarization. CoRR,
abs/1802.04023, 2018. arXiv:1802.04023.

12 L. Elisa Celis, Peter M. Krafft, and Nathan Kobe. Sequential voting promotes collective
discovery in social recommendation systems. In Proceedings of the Tenth International
Conference on Web and Social Media, Cologne, Germany, May 17-20, 2016., pages 42–51,
2016. URL: http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13160.

13 L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with fairness constraints.
CoRR, abs/1704.06840, 2017. arXiv:1704.06840.

14 L. Elisa Celis and Siddartha Tekriwal. What Do Users Want in Q&A Sites: Quality or
Diversity? In International Conference on Computational Social Science (IC2S2), 2017.

15 L. Elisa Celis and Nisheeth K. Vishnoi. Fair Personalization. Fairness, Accountability, and
Transparency in Machine Learning, 2017.

16 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005. doi:10.1137/
S0097539700382820.

17 Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin Ashkan,
Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information retrieval evalu-
ation. In Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 659–666. ACM, 2008.

18 Matthew Costello, James Hawdon, Thomas Ratliff, and Tyler Grantham. Who views online
extremism? Individual attributes leading to exposure. Computers in Human Behavior,
63:311–320, 2016.

19 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In ITCS, New York, NY, USA, 2012. ACM. doi:10.1145/2090236.
2090255.

20 Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation
methods for the web. In Proceedings of the 10th international conference on World Wide
Web, pages 613–622. ACM, 2001.

ICALP 2018

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.36
http://arxiv.org/abs/1802.04023
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13160
http://arxiv.org/abs/1704.06840
http://dx.doi.org/10.1137/S0097539700382820
http://dx.doi.org/10.1137/S0097539700382820
http://dx.doi.org/10.1145/2090236.2090255
http://dx.doi.org/10.1145/2090236.2090255


28:14 Ranking with Fairness Constraints

21 Robert Epstein and Ronald E. Robertson. The search engine manipulation effect (SEME)
and its possible impact on the outcomes of elections. Proceedings of the National Academy
of Sciences, 112(33):E4512–E4521, 2015. doi:10.1073/pnas.1419828112.

22 Uriel Feige and Shlomo Jozeph. Universal factor graphs. In Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13,
2012, Proceedings, Part I, pages 339–350, 2012. doi:10.1007/978-3-642-31594-7_29.

23 Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification.
In Proceedings of the 18th international conference on World wide web, pages 381–390.
ACM, 2009.

24 Fabrizio Grandoni, R Ravi, Mohit Singh, and Rico Zenklusen. New approaches to multi-
objective optimization. Mathematical Programming, 146(1-2):525–554, 2014.

25 J. Hastad. Clique is Hard to Approximate Within n1−ε. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96. IEEE Computer Society, 1996.

26 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

27 T.A. Jenkyns. The Efficacy of the ’greedy’ Algorithm. In Proc. of 7th S-E. Conf. on
Combinatorics, Graph Theory and Computing, pages 341–350, 1976.

28 Matthew Kay, Cynthia Matuszek, and Sean A Munson. Unequal representation and gender
stereotypes in image search results for occupations. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pages 3819–3828. ACM, 2015.

29 Keith Kirkpatrick. Battling algorithmic bias: how do we ensure algorithms treat us fairly?
Communications of the ACM, 59(10):16–17, 2016.

30 Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. Innovations in Theoretical Computer Science, 2017.

31 Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to
information retrieval. Cambridge university press Cambridge, 2008.

32 Melvin Earl Maron and John L Kuhns. On relevance, probabilistic indexing and information
retrieval. Journal of the ACM (JACM), 7(3):216–244, 1960.

33 Julián Mestre. Greedy in approximation algorithms. In Algorithms - ESA 2006, 14th
Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings,
pages 528–539, 2006. doi:10.1007/11841036_48.

34 Burt L Monroe. Fully proportional representation. American Political Science Review,
89(4):925–940, 1995.

35 Debmalya Panigrahi, Atish Das Sarma, Gagan Aggarwal, and Andrew Tomkins. Online
selection of diverse results. In Proceedings of the fifth ACM international conference on
Web search and data mining, pages 263–272. ACM, 2012.

36 Filip Radlinski, Paul N Bennett, Ben Carterette, and Thorsten Joachims. Redundancy,
diversity and interdependent document relevance. In ACM SIGIR Forum, volume 43, pages
46–52. ACM, 2009.

37 Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings
with multi-armed bandits. In Proceedings of the 25th International conference on Machine
learning, pages 784–791. ACM, 2008.

38 Stephen E Robertson. The probability ranking principle in ir. Journal of documentation,
33(4):294–304, 1977.

39 Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5):513–523, 1988. doi:10.1016/
0306-4573(88)90021-0.

40 Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. Ranked bandits in metric
spaces: learning diverse rankings over large document collections. Journal of Machine
Learning Research, 14(Feb):399–436, 2013.

http://dx.doi.org/10.1073/pnas.1419828112
http://dx.doi.org/10.1007/978-3-642-31594-7_29
http://dx.doi.org/10.1007/11841036_48
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0


L. E. Celis, D. Straszak, and N.K. Vishnoi 28:15

41 Charles Spearman. The proof and measurement of association between two things. The
American journal of psychology, 15(1):72–101, 1904.

42 Aravind Srinivasan. Improved approximations of packing and covering problems. In Pro-
ceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-
1 June 1995, Las Vegas, Nevada, USA, pages 268–276, 1995. doi:10.1145/225058.225138.

43 Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings of the
29th International Conference on Scientific and Statistical Database Management, Chicago,
IL, USA, June 27-29, 2017, pages 22:1–22:6, 2017. doi:10.1145/3085504.3085526.

44 Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna Gummadi.
Fairness Constraints: A Mechanism for Fair Classification. In Fairness, Accountability, and
Transparency in Machine Learning, 2015. URL: http://www.fatml.org/cfp.html.

45 Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair
representations. In Proceedings of The 30th International Conference on Machine Learning,
pages 325–333, 2013.

46 Cheng Xiang Zhai, William W Cohen, and John Lafferty. Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion retrieval,
pages 10–17. ACM, 2003.

47 Mi Zhang and Neil Hurley. Avoiding monotony: improving the diversity of recommendation
lists. In Proceedings of the 2008 ACM conference on Recommender systems, pages 123–130.
ACM, 2008.

48 Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In Proceedings of the 14th international
conference on World Wide Web, pages 22–32. ACM, 2005.

ICALP 2018

http://dx.doi.org/10.1145/225058.225138
http://dx.doi.org/10.1145/3085504.3085526
http://www.fatml.org/cfp.html

	Introduction
	Our model
	Our results
	Other related work
	Proof overviews
	Discussion and future work

