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Abstract
We study a generic framework that provides a unified view on two important classes of problems:
(i) extensions of the k-median problem where clients are interested in having multiple facilities
in their vicinity (e.g., due to the fact that, with some small probability, the closest facility might
be malfunctioning and so might not be available for using), and (ii) finding winners according to
some appealing multiwinner election rules, i.e., election system aimed for choosing representatives
bodies, such as parliaments, based on preferences of a population of voters over individual can-
didates. Each problem in our framework is associated with a vector of weights: we show that the
approximability of the problem depends on structural properties of these vectors. We specifically
focus on the harmonic sequence of weights, since it results in particularly appealing properties
of the considered problem. In particular, the objective function interpreted in a multiwinner
election setup reflects to the well-known Proportional Approval Voting (PAV) rule.

Our main result is that, due to the specific (harmonic) structure of weights, the problem
allows constant factor approximation. This is surprising since the problem can be interpreted as
a variant of the k-median problem where we do not assume that the connection costs satisfy the
triangle inequality. To the best of our knowledge this is the first constant factor approximation
algorithm for a variant of k-median that does not require this assumption. The algorithm we
propose is based on dependent rounding [Srinivasan, FOCS’01] applied to the solution of a natural
LP-relaxation of the problem. The rounding process is well known to produce distributions over
integral solutions satisfying Negative Correlation (NC), which is usually sufficient for the analysis
of approximation guarantees offered by rounding procedures. In our analysis, however, we need
to use the fact that the carefully implemented rounding process satisfies a stronger property,
called Negative Association (NA), which allows us to apply standard concentration bounds for
conditional random variables.
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1 Introduction

This paper considers a general unified framework for two classes of problems: (i) extensions
of the k-median problem where clients care about having multiple facilities in their vicinity,
and (ii) finding winning committees according to a number of well-known, but hard-to-
compute multiwinner election systems1. Let us first formalize our framework; we will discuss
motivation and explain the relation to k-median and to multiwinner elections later on.

For a natural number t ∈ N, by [t] we denote the set {1, . . . , t}. Let F = {F1, . . . , Fm} be
the set of m facilities and let D = {D1, . . . , Dn} be the set of n clients (demands). The goal is
to pick a set of k facilities that altogether are most satisfying for the clients. Different clients
can have different preferences over individual facilities – by ci,j we denote the cost that client
Dj suffers when using facility Fi (this can be, e.g., the communication cost of client Dj to
facility Fi, or a value quantifying the level of personal dissatisfaction ofDj from Fi). Following
Yager [34], we use ordered weighted average (OWA) operators to define the cost of a client for a
bundle of k facilities C. Formally, let w =

(
w1, . . . , wk

)
be a non-increasing vector of k weights.

We define the w-cost of a clientDj for a size-k set of facilities C as w(C, j) =
∑k
i=1 wic

→
i (C, j),

where c→(C, j) = (c→1 (C, j), . . . , c→k (C, j)) = sortASC
({
ci,j : Fi ∈ C

})
is a non-decreasing

permutation of the costs of client Dj for the facilities from C. Informally speaking, the
highest weight is applied to the lowest cost, the second highest weight to the second lowest
cost, etc. In this paper we study the following computational problem.

I Definition 1 (OWA k-median). In OWA k-median we are given a set D = {D1, . . . , Dn}
of clients, a set F = {F1, . . . , Fm} of facilities, a collection of clients’ costs

(
ci,j
)
i∈[m],j∈[n], a

positive integer k (k ≤ m), and a vector of k non-increasing weights w =
(
w1, . . . , wk

)
. The

task is to compute a subset C of F that minimizes the value

w(C) =
n∑
j=1

w(C, j) =
n∑
j=1

k∑
i=1

wic
→
i (C, j).

Note that OWA k-median with weights (1, 0, 0, . . . , 0) is the k-median problem. Some-
times the costs represent distances between clients and facilities. Formally, this means that
there exists a metric spaceM with a distance function d : M×M→ R≥0, where each client
and each facility can be associated with a point in M so that for each Fi ∈ F and each
Dj ∈ D we have d(i, j) = ci,j . When this is the case, we say that the costs satisfy the triangle
inequality, and use the terms “costs” and “distance” interchangeably. Then, we use the prefix
Metric for the names of our problems. E.g., by Metric OWA k-median we denote the
variant of OWA k-median where the costs satisfy the triangle inequality.

We are specifically interested in the following two sequences of weights:

1 We note that multiwinner election rules have many applications beyond the political domain – such
applications include finding a set of results a search engine should display [12], recommending a
set of products a company should offer to its customers [25, 26], allocating shared resources among
agents [29, 28], solving variants of segmentation problems [23], or even improving genetic algorithms [15].
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(1) harmonic: whar =
(
1, 1/2, 1/3, . . . , 1/k

)
. By Harmonic k-median we denote the OWA

k-median problem with the harmonic vector of weights.
(2) p-geometric: wgeom =

(
1, p, p2, . . . , pk−1), for some p < 1.

The two aforementioned sequences of weights, whar and wgeom, have their natural interpreta-
tions, which we discuss later on (for instance, see Examples 3 and 4).

1.1 Motivation
In this subsection we discuss the applicability of the studied model in two settings.

Multiwinner Elections

Different variants of the OWA k-median problem are very closely related to the preference
aggregation methods and multiwinner election rules studied in the computational social choice,
in particular, and in AI, in general – we summarize this relation in Table 1 and in Figure 1.
In particular, one can observe that each “median” problem is associated with a corresponding
“winner” problem. Specifically, the k-median problem is known in computational social
choice as the Chamberlin–Courant rule. Let us now explain the differences between the
winner (“election”) and the median (“facility location”) problems:
1. The election problems are usually formulated as maximization problems, where instead

of (negative) costs we have (positive) utilities. The two variants, the minimization (with
costs) and the maximization (with utilities) have the same optimal solutions. Yet, there
is a substantial difference in their approximability.
Approximating the minimization variant is usually much harder. For instance, consider
the Chamberlin–Courant (CC) rule which is defined by using the sequence of weights
(1, 0, 0, . . . , 0). In the maximization variant standard arguments can be used to prove
that a greedy procedure yields the approximation ratio of (1 − 1/e). This stands in a
sharp contrast to the case when the same rule is expressed as the minimization one; in
such a case we cannot hope for virtually any approximation [30] (we extend this result in
Theorem 21 in [6]). Approximating the minimization variant is also more desired. E.g.,
a 1/2-approximation algorithm for (maximization) CC can effectively ignore half of the
population of clients, whereas it was argued [30] that a 2-approximation algorithm for
the minimization (if existed) would be more powerful. In this paper we study the harder
minimization variant, and give the first constant-factor approximation algorithm for the
minimization OWA-Winner with the harmonic weights.

2. In facility location problems it is usually assumed that the costs satisfy the triangle
inequality. This relates to the previous point: since the problem cannot be well approxim-
ated in the general setting, one needs to make additional assumptions. One of our main
results is showing that there is a k-median problem (OWA k-median with harmonic
weights) that admits a constant-factor approximation without assuming that the costs
satisfy the triangle inequality; this is the first known result of this kind.

The special case of Harmonic k-median where each cost belongs to the binary set
{0, 1} is equivalent to finding winners according to Proportional Approval Voting.
The harmonic sequence whar = (1, 1/2, 1/3, . . . , 1/k) is in a way exceptional: indeed, PAV can
be viewed as an extension of the well known D’Hondt method of apportionment (used for
electing parliaments in many contemporary democracies) to the case where the voters can
vote for individual candidates rather than for political parties [4]. Further, PAV satisfies
several other appealing properties, such as extended justified representation [3]. This is one
of the reasons why we are specifically interested in the harmonic weights. For more discussion
on PAV and other approval-based rules, we refer the reader to the survey of Kilgour [22].

ICALP 2018
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Table 1 The relation between the k-median problems and the corresponding problems studied
in AI, in particular in the computational social choice community.

k-median problem election rule comment

OWA k-median OWA-Winner [29] Finding winners according to OWA-Winner
rules is the maximization variant of OWA
k-median (utilities instead of costs).

Thiele methods [33] Thiele methods are OWA-Winner rules for
0/1 costs.

Harmonic k-median PAV [33] In PAV we assume the 0/1 costs. So far,
only the maximization variant was con-
sidered in the literature.

k-median Chamberlin–Courant [9] In CC, usually some specific form of utilities
is assumed – different utilities have been
considered, but always in the maximization
variant (utilities instead of costs).

OWA ��median

Harmonic ��median

(harmonic weights)

Proportional Approval Voting

(0-1 costs)

d�Hondt method
�approvals for a single party)

Figure 1 The relation between the considered models. OWA k-median is the most general
model. Proportional Approval Voting and Harmonic k-median due to the use of harmonic
weights can be viewed as natural extensions of the well known and commonly used D’Hondt method
of apportionment [4].

OWA k-median as an Extension of k-median

Intuitively, our general formulation extends k-median to scenarios where the clients not only
use their most preferred facilities, but when there exists a more complex relation of “using
the facilities” by the clients. Similar intuition is captured by the Fault Tolerant version
of the k-median problem introduced by Swamy and Shmoys [32] and recently studied by
Hajiaghayi et al. [17]. There, the idea is that the facilities can be malfunctioning, and to
increase the resilience to their failures each client needs to be connected to several of them.

I Definition 2 (Fault Tolerant k-median). In Fault Tolerant k-median problem
we are given the same input as in k-median, and additionally, for each client Dj we are
given a natural number rj ≥ 1, called the connectivity requirement. The cost of a client Dj is
the sum of its costs for the rj closest open facilities. Similarly as in k-median, we aim at
choosing at most k facilities so that the sum of the costs is minimized.

When the values
(
rj
)
j∈[n] are all the same, i.e., if rj = r for all j, then Fault Tolerant

k-median is called r-Fault Tolerant k-median and it can be expressed as OWA k-
median for the weight vector w with r ones followed by k − r zeros. Yet, in the typical
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setting of k-median problems one additionally assumes that the costs between clients and
facilities behave like distances, i.e., that they satisfy the triangle inequality. Indeed, the
(2.675 + ε)-approximation algorithm for k-median [5], the 93-approximation algorithm for
Fault Tolerant k-median [17], the 2-approximation algorithm for k-center [18], and the
6.357-approximation algorithm for k-means [1], they all use triangle inequalities. Moreover
it can be shown by straightforward reductions from the Set Cover problem that there are
no constant factor approximation algorithms for all these settings with general (non-metric)
connection costs unless P = NP.

Using harmonic or geometric OWA weights is also well-justified in case of facility location
problems, as illustrated by the following examples.

I Example 3 (Harmonic weights: proportionality). Assume there are ` ≤ k cities, and for
i ∈ [`] let Ni denote the set of clients who live in the i-th city. For the sake of simplicity, let
us assume that k · |Ni| is divisible by n. Further, assume that the cost of traveling between
any two points within a single city is negligible (equal to zero), and that the cost of traveling
between different cities is equal to one. Our goal is to decide in which cities the k facilities
should be opened; naturally, we set the cost of a client for a facility opened in the same city
to zero, and – in another city – to one. Let us consider OWA k-median with the harmonic
sequence of weights whar. Let ni denote the number of facilities opened in the i-th city in
the optimal solution. We will show that for each i we have ni = k|Ni|

n , i.e., that the number
of facilities opened in each city is proportional to its population. Towards a contradiction
assume there are two cities, i and j, with ni ≥ k|Ni|

n + 1 and nj ≤ k|Nj |
n − 1. By closing one

facility in the i-th city and opening one in the j-th city, we decrease the total cost by at least:

|Nj | · wnj+1 − |Ni| · wni = |Ni|
nj + 1 −

|Ni|
ni

>
|Nj |n
k|Nj |

− |Ni|n
k|Ni|

= 0.

Since, we decreased the cost of the clients, this could not be an optimal solution. As a result
we see that indeed for each i we have ni = k|Ni|

n .

I Example 4 (Geometric weights: probabilities of failures). Assume that we want to select k
facilities and that each client will be using his or her favorite facility only. Yet, when a client
wants to use a facility, it can be malfunctioning with some probability p; in such a case the
client goes to her second most preferred facility; if the second facility is not working properly,
the client goes to the third one, etc. Thus, a client uses her most preferred facility with
probability 1− p, her second most preferred facility with probability p(1− p), the third one
with probability p2(1− p), etc. As a result, the expected cost of a client Dj for the bundle of
k facilities C is equal to w(C, j) for the weight vector w =

(
1− p, (1− p)p, . . . , (1− p)pk−1).

Finding a set of facilities, that minimize the expected cost of all clients is equivalent to
solving OWA k-median for the p-geometric sequence of weights (in fact, the sequence that
we use is a p-geometric sequence multiplied by (1− p), yet multiplication of the weight vector
by a constant does not influence the structure of the optimal solutions).

1.2 Our Results and Techniques
Our main result is showing, that there exists a 2.3589-approximation algorithm for Harmonic
k-median for general connection costs (not assuming triangle inequalities). This is in contrast
to the innaproximability of most clustering settings with general connection costs.

Our algorithm is based on dependent rounding of a solution to a natural linear program
(LP) relaxation of the problem. We use the dependent rounding (DR) studied by Srinivasan
et al. [31, 16], which transforms in a randomized way a fractional vector into an integral one.
The sum-preservation property of DR ensures that exactly k facilities are opened.

ICALP 2018
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DR satisfies, what is well known as negative correlation (NC) – intuitively, this implies
that the sums of subsets of random variables describing the outcome are more centered
around their expected values than if the fractional variables were rounded independently.
More precisely, negative correlation allows one to use standard concentration bounds such as
the Chernoff-Hoeffding bound. Yet, interestingly, we find out that NC is not sufficient for our
analysis in which we need a conditional variant of the concentration bound. The property
that is sufficient for conditional bounds is negative association (NA) [20]. In fact its special
case that we call binary negative association (BNA), is sufficient for our analysis. It captures
the capability of reasoning about conditional probabilities. Thus, our work demonstrates how
to apply the (B)NA property in the analysis of approximation algorithms based on DR. To
the best of our knowledge, Harmonic k-median is the first natural computational problem,
where it is essential to use BNA in the analysis of the algorithm.

We additionally show that the 93-approximation algorithm of Hajiaghayi et al. [17] can
be extended to OWA k-median (our technique is summarized in Section 3) – this time we
additionally need to assume that the costs satisfy the triangle inequality. Indeed, without
this assumption the problem is hard to approximate for a large class of weight vectors; for
instance, for p-geometric sequences with p < 1/e or for sequences where there exists λ ∈ (0, 1)
such that clients care only about the λ-fraction of opened facilities. Due to space constraints
the formulation and the discussion on these hardness results are redelegated to the full
version of the paper [6, Appendix E].

For the paper to be self-contained in [6, Appendix A] we discuss in detail the process
of dependent rounding (including a few illustrative examples); in particular, we provide an
alternative proof that DR satisfies binary negative association. Our proof is more direct and
shorter than the proofs known in the literature [24].

2 Harmonic k-median and Proportional Approval Voting:
a 2.3589-approximation Algorithm

In this section we demonstrate how to use the Binary Negative Association (BNA) property
of Dependent Rounding (DR) to derive our main result – a randomized constant-factor
approximation algorithm for Harmonic k-median. In [6, Appendix A] we provide a detailed
discussion on DR and BNA, including a proof that DR satisfies BNA, and several examples.

I Theorem 5. There exists a polynomial time randomized algorithm for Harmonic k-
median that gives 2.3589-approximation in expectation.

I Corollary 6. There exists a polynomial time randomized algorithm for the minimization
Proportional Approval Voting that gives 2.3589-approximation in expectation.

In the remainder of this section we will prove the statement of Theorem 5. Consider the
following linear program (1–5) that is a relaxation of a natural ILP for Harmonic k-median.

min
n∑
j=1

k∑
`=1

m∑
i=1

w` · x`ij · cij (1)

m∑
i=1

yi = k (2)

k∑
`=1

x`ij ≤ yi ∀i ∈ [m], j ∈ [n] (3)

m∑
i=1

x`ij ≥ 1 ∀j ∈ [n], ` ∈ [k] (4)

yi, x
`
ij ∈ [0, 1] ∀i ∈ [m], j ∈ [n], ` ∈ [k] (5)

The intuitive meaning of the variables and constraints of the above LP is as follows.
Variable yi denotes how much facility Fi is opened. Integral values 1 and 0 correspond
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to, respectively, opening and not opening the i-th facility. Constraint (2) encodes opening
exactly k facilities. Each client Dj ∈ D has to be assigned to each among k opened facilities
with different weights. For that we copy each client k times: the `-th copy of a client Dj is
assigned to the `-th closest to Dj open facility. Variable x`ij denotes how much the `-th copy
of Dj is assigned to facility Fi. In an integral solution we have x`ij ∈ {0, 1}, which means that
the `-th copy of a client can be either assigned or not to the respective facility. The objective
function (1) encodes the cost of assigning all copies of all clients to the opened facilities,
applying proper weights. Constraint (3) prevents an assignment of a copy of a client to a
not-opened part of a facility. In an integer solution it also forces assigning different copies of
a client to different facilities. Observe that, due to non-increasing weights w`, the objective
(1) is smaller if an `′-th copy of a client is assigned to a closer facility than an `′′-th copy,
whenever `′ < `′′. Constraint (4) ensures that each copy of a client is served by some facility.

Just like in most facility location settings it is crucial to select the facilities to open,
and the later assignment of clients to facilities can be done optimally by a simple greedy
procedure. We propose to select the set of facilities in a randomized way by applying the
DR procedure to the y vector from an optimal fractional solution to linear program (1–5).
This turns out to be a surprisingly effective methodology for Harmonic k-median.

2.1 Analysis of the Algorithm

Let OPTLP be the value of an optimal solution (x∗, y∗) to the linear program (1–5). Let OPT
be the value of an optimal solution (xOPT, yOPT) for Harmonic k-median. Easily we can see
that (xOPT, yOPT) is a feasible solution to the linear program (1–5), so OPTLP ≤ OPT. Let
Y = (Y1, . . . , Ym) be the random solution obtained by applying the DR procedure described
in [6, Appendix A] to the vector y∗. Recall that DR preserves the sum of entries (see [6,
Appendix A]), hence we have exactly k facilities opened. It is straightforward to assign
clients to the open facilities, so the variables X = (X`

ij)j∈[n],i∈[m],`∈[k] are easily determined.
We will show that E[cost(Y )] ≤ 2.3589 ·OPTLP. In fact, we will show that E[costj(Y )] ≤

2.3589 ·OPTLP
j , where the subindex j extracts the cost of assigning client Dj to the facilities

in the solution returned by the algorithm. In our analysis we focus on a single client Dj ∈ D.
Next, we reorder the facilities {F1, F2, . . . , Fm} in the non-decreasing order of their connection
costs to Dj (i.e., in the non-decreasing order of cij). Thus, from now on, facility Fi is the
i-th closest facility to client Dj ; ties are resolved in an arbitrary but fixed way.

The ordering of the facilities is depicted in Figure 2, which also includes information
about the fractional opening of facilities in y∗, i.e., facility Fi is represented by an interval of
length y∗i . The total length of all intervals equals k. Next, we subdivide each interval into a
set of (small) ε-size pieces (called ε-subintervals); ε is selected so that 1/ε, and y∗i/ε for each i,
are integers. Note that the values y∗i , which originate from the solution returned by an LP
solver, are rational numbers. The subdivision of [0, k] into ε-subintervals is shown in Figure 2
on the "(Zr)r∈{1,2,...,k/ε}" level.

The idea behind introducing the ε-subintervals is the following. Although computationally
the algorithm applies DR to the y∗ variables, for the sake of the analysis we may think
that the DR process is actually rounding z variables corresponding to ε-subinterval under
the additional assumption that rounding within individual facilities is done before rounding
between facilities. Formally, we replace the vector Y = (Y1, Y2, . . . , Ym) by an equivalent
vector of random variables Z = (Z1, Z2, . . . , Zk/ε). Random variable Zr represents the r-th
ε-subinterval. We will use the following notation to describe the bundles of ε-subintervals

ICALP 2018
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client Dj

ordered facilities

c�;j c2;j c3;j c4;j cm;j

y�
� y�

2 y�
3 y�

4 y�m

1 2 k0

�Zr)r2f�;2;:::;k=�g

�Yi)i2f�;2;:::;mg

non-decreasing
distances

F� F2 F3 F4 Fm

�

submax�3) = 13sub�2) = f7; 8; 9g

1 2 3 4 5 6 1� 11 12 14 15 16 17 18 19 2� 21 k=�7 8 9 13

Figure 2 Ordering of the facilities by ci,j for the chosen client Dj . Definitions of the variables Yi,
Zr and of the indices sub(i) and submax(i).

that correspond to particular facilities:

submax(0) = 0 and submax(i) = submax(i− 1) + y∗i
ε
, (6)

sub(i) = {submax(i− 1) + 1, . . . , submax(i)}. (7)

Intuitively, sub(i) is the set of indexes r such that Zr represents an interval belonging to the
i-th facility. Examples for both definitions are shown in Figure 2 in the upper level. Formally,
the random variables Zr are defined so that:

Yi =
∑

r∈sub(i)

Zr and Yi = 1 =⇒ ∃! r ∈ sub(i) Zr = 1. (8)

For each r ∈ {1, 2, . . . , k/ε} we can write that:

Pr[Zr = 1] = Pr[Zr = 1
∣∣Ysub−1(r) = 1] · Pr[Ysub−1(r) = 1] = ε

y∗sub−1(r)
· y∗sub−1(r) = ε (9)

and Pr[Zr = 0] = 1− ε, hence E[Zr] = ε. Also we have:

Pr [Yi = 1] = Pr

 ∑
r∈sub(i)

Zr = 1

 = Pr

 ∨
r∈sub(i)

Zr = 1

 =
∑

r∈sub(i)

Pr [Zr = 1] . (10)

When Yi = 1 its representative is chosen randomly among (Zr)r∈sub(i) independently of the
choices of representatives of other facilities. Therefore

∀i∈[m] ∀r∈sub(i) E [f(Y ) | Yi = 1] = E [f(Y ) | Yi = 1 ∧ Zr = 1] , (11)

for any function f on vector Y = (Y1, Y2, . . . , Ym). Now we are ready to analyze the expected
cost for any client Dj ∈ D. Here we use the special assumption on the harmonic weights.
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E[costj(Y )] ≤
m∑
i=1

(
E

[
cij

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1
]
· Pr [Yi = 1]

)

(10)=
m∑
i=1

cij · E[ 1
1 +∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1
]
·
∑

r∈sub(i)
Pr [Zr = 1]


=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1
]
· Pr [Zr = 1]


(11)=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +∑i−1
i′=1 Yi′

∣∣∣∣∣Yi = 1 ∧ Zr = 1
]
· Pr [Zr = 1]


(8),(9)=

m∑
i=1

ε · cij · ∑
r∈sub(i)

E

[
1

1 +∑submax(i−1)
r′=1 Zr′

∣∣∣∣∣Zr = 1
]

(8)=
m∑
i=1

ε · cij · ∑
r∈sub(i)

E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣∣Zr = 1
] (12)

W.l.o.g., assume that OPTLP
j > 0. Hence the approximation ratio for any client Dj is

E[costj(Y )]
OPTLP

j

(7),(12)
≤

k/ε∑
r=1

ε · csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

k/ε∑
r=1

ε · csub−1(r),j · 1
drεe

=

note that sub−1(r) is an index of a facility that contains Zr. Now we convert the sum over
facilities into a sum over unit intervals. A unit interval is represented as a sum of 1/ε many
ε-subintervals:

=

k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · 1
`

≤

W.l.o.g., we can assume that first interval has non-zero costs:
∑1/ε
r=1 csub−1(r),j > 0, otherwise

the LP pays 0 and our algorithm pays 0 in expectation on intervals from non-empty prefix of
(1, 2, . . . , k). With this assumption we can take maximum over intervals:

Lemma 17 in [6]
≤ max

`∈[k]



/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E

[
1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · 1
`

 ≤

Costs csub−1(r),j can be general and they could be hard to analyze. Therefore we would like
to remove costs from the analysis. We will use Lemma 18 from [6] for which the technique of
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splitting variables Yi into Zr was needed. We are using the fact that the variables Zr have
the same expected values; otherwise the coefficient in front of the expected value would be
cij · y∗i , i.e., not monotonic. Thus

Lemma 18 in [6]
≤ max

`∈[k]

ε · ` · /̀ε∑
r=(`−1)/ε+1

E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
] . (13)

Consider the expected value in the above expression for a fixed r ∈ {(`−1)/ε + 1, . . . , /̀ε}:

Er = E

[
1

1 +∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1
]

=
k∑
t=1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
=

=
∑̀
t=1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
+

k∑
t=`+1

1
t
Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
. (14)

For t ∈ {1, 2, . . . , `} we consider the conditional probability in the above expression, denote
it by pr(t− 1), and analyze the corresponding cumulative distribution function Hr(t− 1):

pr(t− 1) = Pr
[
r−1∑
r′=1

Zr′ = t− 1
∣∣∣∣Zr = 1

]
, (15)

Hr(t− 1) = Pr
[
r−1∑
r′=1

Zr′ ≤ t− 1
∣∣∣∣Zr = 1

]
=

t−1∑
t′=0

pr(t′), (16)

We continue the analysis of Er:

Er
(14),(15)=

∑̀
t=1

1
t
pr(t− 1) +

k∑
t=`+1

1
t
pr(t− 1)

(16)= Hr(0) +
∑̀
t=2

1
t

(Hr(t− 1)−Hr(t− 2)) +
k∑

t=`+1

1
t
pr(t− 1)

= Hr(0) +
∑̀
t=2

1
t
Hr(t− 1)−

∑̀
t=2

1
t
Hr(t− 2) +

k∑
t=`+1

1
t
pr(t− 1)

=
∑̀
t=1

1
t
Hr(t− 1)−

`−1∑
t=1

1
t+ 1Hr(t− 1) +

k∑
t=`+1

1
t
pr(t− 1)

=
`−1∑
t=1

1
t
Hr(t− 1)−

`−1∑
t=1

1
t+ 1Hr(t− 1) + 1

`
Hr(`− 1) +

k∑
t=l+1

1
t
pr(t− 1)

≤
`−1∑
t=1

(
1
t
− 1
t+ 1

)
Hr(t− 1) + 1

`

(
Hr(`− 1) +

k∑
t=`+1

pr(t− 1)
)

=
`−1∑
t=1

1
t(t+ 1)Hr(t− 1) + 1

`

(
Hr(`− 1) +

k∑
t=`+1

pr(t− 1)
)

≤
`−1∑
t=1

1
t(t+ 1)Hr(t− 1) + 1

`
. (17)

I Lemma 7. For any ` ∈ [k], t ∈ [`− 1] and r ∈ {(`−1)/ε + 1, (`−1)/ε + 2, . . . , /̀ε} we have

Hr(t− 1) ≤ e−r·ε ·
(e · r · ε

t

)t
.
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The proof of Lemma 7 combines the use of the BNA property of variables {Z1, Z2, . . . , Zk/ε}
with applications of Chernoff-Hoeffding bounds. Due to the space constraints, the proof is
moved to the full version of the paper [6, Appendix C]. In the end, we get the following
bound on the approximation ratio.

I Lemma 8. For any j ∈ [n] we have

E[costj(Y )]
OPTLP

j

≤ 2.3589.

A proof uses inequalities (13), (17) as well as Lemma 7 with an upper bound derived by
an integral of the function ft(x) = e−x. We made numerical calculation for ` ∈ {1, 2, . . . , 88}
and for other case we used Stirling formula and Taylor series for e` to derive analytical
upper bound. Full proof, including a plot of numericaly obtained values, is presented in [6,
Appendix C].

3 OWA k-median with Costs Satisfying the Triangle Inequality

In this section we construct an algorithm for OWA k-median with costs satisfying the
triangle inequality. Thus, the problem we address in this section is more general than
Harmonic k-median (i.e., the problem we have considered in the previous section) in a
sense that we allow for arbitrary non-increasing sequences of weights. On the other hand, it
is less general in a sense that we require the costs to form a specific structure (a metric).

In our approach we first adapt the algorithm of Hajiaghayi et al. [17] for Fault Tolerant
k-median so that it applies to the following, slightly more general setting: for each client Dj

we introduce its multiplicity mj ∈ N – intuitively, this corresponds to cloning Dj and co-
locating all such clones in the same location as Dj . However, this will require a modification
of the original algorithm for Fault Tolerant k-median, since we want to allow the
multiplicities {mj}Dj∈D to be exponential with respect to the size of the instance (otherwise,
we could simply copy each client a sufficient number of times, and use the original algorithm
of Hajiaghayi et al.).

Next, we provide a reduction from OWA k-median to such a generalization of Fault
Tolerant k-median. The resulting Fault Tolerant k-median with Clients Multi-
plicities problem can be cast as the following integer program:

min
n∑
j=1

m∑
i=1

mj · xij · cij

m∑
i=1

yi = k

m∑
i=1

xij = rj ∀j ∈ [n]

xij ≤ yi ∀i ∈ [m], j ∈ [n]
yi, xij ∈ {0, 1} ∀i ∈ [m]
mj ∈ N ∀j ∈ [n]

I Theorem 9. There is a polynomial-time 93-approximation algorithm for Metric Fault
Tolerant k-median with Clients Multiplicities.

Proof can be found in [6, Appendix D]. Consider reduction from OWA k-median to
Fault Tolerant k-median with Clients Multiplicities depicted on Figure 3.

I Lemma 10. Let I be an instance of OWA k-median, and let I ′ be an instance of Fault
Tolerant k-median with Clients Multiplicities constructed from I through reduction
from Figure 3. An α-approximate solution to I ′ is also an α-approximate solution to I.

Proof can be found in [6, Appendix D].
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I Reduction. Let us take an instance I of OWA k-median
(
D,F , k, w, {cij}Fi∈F,Dj∈D

)
where wi = pi

qi
, i ∈ [k] are rational numbers in the canonical form. We construct an

instance I ′ of Fault Tolerant k-median with Clients Multiplicities with the
same set of facilities and the same number of facilities to open, k. Each client Dj ∈ D is
replaced with clients Dj,1, Dj,2, . . . , Dj,k with requirements 1, 2, . . . , k, respectively. For
Q =

∏k
r=1 qr, the multiples of the clients are defined as follows:

mj,` = (w` − w`+1) ·Q, for each ` ∈ [k − 1], and
mj,k = wk ·Q.

Figure 3 Reduction from OWA k-median to Fault Tolerant k-median with Clients
Multiplicities.

I Corollary 11. There exists a 93-approximation algorithm for Metric OWA k-median
that runs in polynomial time.

4 Concluding Remarks and Open Questions

We have introduced a new family of k-median problems, called OWA k-median, and we have
shown that our problem with the harmonic sequence of weights allows for a constant factor
approximation even for general (non-metric) costs. This algorithm applies to Proportional
Approval Voting. In the analysis of our approximation algorithm for Harmonic k-median,
we used the fact that the dependent rounding procedure satisfies Binary Negative Association.

We showed that any Metric OWA k-median can be approximated within a factor
of 93 via a reduction to Fault Tolerant k-median with Clients Multiplicities.
We also obtained that OWA k-median with p-geometric weights with p < 1/e cannot be
approximated without the assumption of the costs being metric. The status of the non-metric
problem with p-geometric weights with p > 1/e remains an intriguing open problem.

Using approximation and randomized algorithms for finding winners of elections requires
some comment. First, the multiwinner election rules such as PAV have many applications in
the voting theory, recommendation systems and in resource allocation. Using (randomized)
approximation algorithms in such scenarios is clearly justified. However, even for other high-
stake domains, such as political elections, the use of approximation algorithms is a promising
direction. One approach is to view an approximation algorithm as a new, full-fledged voting
rule (for more discussion on this, see the works of Caragiannis et al. [7, 8], Skowron et al. [30],
and Elkind et al. [13]). In fact, the use of randomized algorithms in this context has been
advocated in the literature as well – e.g., one can arrange an election where each participant
is allowed to suggest a winning committee, and the best out of the suggested committees is
selected; in such case the approximation guaranty of the algorithm corresponds to the quality
of the outcome of elections (for a more detailed discussion see [30]) 2. Nonetheless, we think
that it would be beneficial to learn whether our algorithm can be efficiently derandomized.

2 Indeed, approximation algorithms for many election rules have been extensively studied in the literature.
In the world of single-winner rules, there are already very good approximation algorithms known for
the Kemeny’s rule [2, 10, 21] and for the Dodgson’s rule [27, 19, 7, 14, 8]. A hardness of approximation
has been proven for the Young’s rule [7]. For the multiwinner case we know good (randomized)
approximation algorithms for Minimax Approval Voting [11], Chamberlin–Courant rule [30], Monroe
rule [30], or maximization variant of PAV [29].
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