
Approximate Convex Hull of Data Streams

Avrim Blum1

TTI-Chicago, Chicago, United States
avrim@ttic.edu

Vladimir Braverman2

Johns Hopkins University, Baltimore, United States
vova@cs.jhu.edu

Ananya Kumar3

Carnegie Mellon University, Pittsburgh, United States
skywalker94@gmail.com

Harry Lang4

Johns Hopkins University, Baltimore, United States
hlang8@math.jhu.edu

Lin F. Yang5

Princeton University, Princeton, United States
lin.yang@princeton.edu

Abstract
Given a finite set of points P ⊆ Rd, we would like to find a small subset S ⊆ P such that the
convex hull of S approximately contains P . More formally, every point in P is within distance ε
from the convex hull of S. Such a subset S is called an ε-hull. Computing an ε-hull is an important
problem in computational geometry, machine learning, and approximation algorithms.

In many applications, the set P is too large to fit in memory. We consider the streaming
model where the algorithm receives the points of P sequentially and strives to use a minimal
amount of memory. Existing streaming algorithms for computing an ε-hull require O(ε(1−d)/2)
space, which is optimal for a worst-case input. However, this ignores the structure of the data.
The minimal size of an ε-hull of P , which we denote by OPT, can be much smaller. A natural
question is whether a streaming algorithm can compute an ε-hull using only O(OPT) space.

We begin with lower bounds that show, under a reasonable streaming model, that it is not
possible to have a single-pass streaming algorithm that computes an ε-hull with O(OPT) space.
We instead propose three relaxations of the problem for which we can compute ε-hulls using space
near-linear to the optimal size. Our first algorithm for points in R2 that arrive in random-order
uses O(logn ·OPT) space. Our second algorithm for points in R2 makes O(log(ε−1)) passes before
outputting the ε-hull and requires O(OPT) space. Our third algorithm, for points in Rd for any
fixed dimension d, outputs, with high probability, an ε-hull for all but δ-fraction of directions
and requires O(OPT · log OPT) space.

1 This work was supported in part by the National Science Foundation under grant CCF-1525971. Work
was done while the author was at Carnegie Mellon University.

2 This material is based upon work supported in part by the National Science Foundation under Grants
No. 1447639, 1650041 and 1652257, Cisco faculty award, and by the ONR Award N00014-18-1-2364.

3 Now at DeepMind.
4 This research was supported by the Franco-American Fulbright Commission and supported in part

by National Science Foundation under Grant No. 1447639, 1650041 and 1652257. The author thanks
INRIA (l’Institut national de recherche en informatique et en automatique) for hosting him during the
writing of this paper.

5 This material is based upon work supported in part by National Science Foundation under Grant No.
1447639, 1650041 and 1652257. Work was done while the author was at Johns Hopkins University.

EA
T

C
S

© Avrim Blum, Vladimir Braverman, Ananya Kumar, Harry Lang, and Lin F. Yang;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:avrim@ttic.edu
mailto:vova@cs.jhu.edu
mailto:skywalker94@gmail.com
mailto:hlang8@math.jhu.edu
mailto:lin.yang@princeton.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Approximate Convex Hull of Data Streams

2012 ACM Subject Classification Theory of computation → Computational geometry, Theory
of computation → Sketching and sampling, Theory of computation → Streaming models

Keywords and phrases Convex Hulls, Streaming Algorithms, Epsilon Kernels, Sparse Coding

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.21

Related Version A full version of the paper is available at https://arxiv.org/abs/1712.
04564.

Acknowledgements We want to thank our anonymous reviewers for their useful feedback in
preparing this manuscript, and Rachel Holladay, Drew Bagnell, Maya Rau-Murthy, Satya Prateek
Tangirala, and Sunny Nahar for discussion of ideas and feedback on paper drafts.

1 Introduction

The question addressed by this paper is: Can we compute approximate convex hulls of
data streams using near-optimal space? Approximate convex hulls are fundamental in
computational geometry, computer vision, data mining, and many more (see e.g. [2]), and
computing them in a streaming manner is important in the big data regime.

Our notion of approximate convex hulls is the commonly used ε-hull. Let P be a set of n
points in Rd. Let C(P ) denote the convex hull of P , the smallest convex set containing P .
We want a small subset S of P such that all points in P are inside C(S) or within distance ε
from C(S). Since every point in P can be approximated by a sparse convex combination of
points in S, S is also called a generating set [7]. For an example motivation of this particular
definition, consider two far-away sensors rapidly collecting data: one of positive examples
and the other of negative examples; if it is expected that these should be linearly separable
with some margin ε, then an appropriate small summary of their data would be an ε-hull.

ε-hulls and their variants have been studied extensively in the literature. In the multiplic-
ative error variant, ε-kernels, one requires that any directional width (the diameter of S in a
particular direction) of S is a (1± ε) approximation to that of P . ε-hulls and ε-kernels are
intimately connected: algorithms for ε-kernels typically apply a transformation to the data,
and then use algorithms for ε-hulls. For more details, we refer the reader to [2].

Existing work focuses on worst case bounds, which scale poorly with the dimension d.
The worst case lower bound for the size of an ε-hull is Ω(ε−(d−1)/2). Recently, it has been
shown in [7] that one can do much better than the worst case bound if the size of the smallest
ε-hull for P (which we denote as OPT) is small. In their paper, they show that one can
efficiently obtain S of size nearly linear in OPT and at most linear in the dimension d.

One concern of the algorithms in [7] is that they require storing all points of P in memory.
The huge size of real-world datasets limits the applicability of these algorithms. A natural
question to ask is whether it is possible to efficiently maintain an ε-hull of P when P is
presented as a data stream while using a small amount of memory.

We provide both negative and positive results, summarized below.

1.1 Our Contributions
Let OPT be the optimal size of an ε-hull. In Section 3, we show, under a reasonable streaming
model, that no streaming algorithm can achieve space bounds comparable to OPT. In
particular, no streaming algorithm can have space complexity competitive with f(OPT, d) in 3

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.21
https://arxiv.org/abs/1712.04564
https://arxiv.org/abs/1712.04564


A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:3

dimensions or higher for any f : N×N→ N. This lower bound guides us to consider variants
on this problem. Note that the lower bound applies specifically to streaming algorithms; for
the batch setting, [7] gives a polynomial-time algorithm that computes an ε-hull with space
O(dOPT log OPT).

We devise and prove the correctness of streaming algorithms for three relaxations of
the problem. In Section 4, we show the first relaxation, in which the points are from R2

and come in a random order. In Section 5, we relax the problem (again in R2) by allowing
the algorithm to make multiple passes over the stream. In Section 6, we show the third
relaxation, in which the points come in an arbitrary order and from d-dimensional space,
but we only require to approximate the convex hull in a large fraction of all directions.

In the first relaxation, our algorithm maintains an initially empty point set S. When
our algorithm sees a new point p, it adds p to S if p is at least distance ε away from the
convex hull of S. Additionally, our algorithm keeps removing points p′ ∈ S when some p′ is
contained inside the convex hull of S \ {p′}, that is, removing p′ does not change the convex
hull of S. Surprisingly, for any point stream P , with high probability this algorithm keeps
an ε-hull of size O(OPT · logn), where n is the size of P .

In the second relaxation, we permit the algorithm to make a small number of passes over
the stream. Our algorithm begins the first pass by taking O(1) directions and storing the
point with maximal dot product with each direction. In each of O(log( 1

ε )) subsequent passes,
we refine the solution by adding a new direction in sectors that incurred too much error
while potentially deleting old directions that become no longer necessary. The algorithm
computes an ε-hull of size O(OPT).

In the third relaxation, we only need to be correct in most directions (all but a δ fraction
of directions). Our algorithm picks Od(OPT

δ2 log OPT
δ ) random unit vectors. For each of these

vectors v, we keep the point in the stream that has maximal dot product with v.
To the best of our knowledge, this is the first work that gives lower bounds and streaming

algorithms for ε-hulls with space complexity comparable to the optimal approximation.

1.2 Related Work

Batch Algorithms. We use the term batch algorithm for an algorithm that stores the
entire set of points in memory. In the batch setting, Bentley, Preparata, and Faust [5]
give a Od(1/ε(d−1)) space algorithm for computing an ε-hull of a set of points (assuming
constant dimension d). Agarwal, Har-Peled, and Varadarajan [1] improve the result to give a
Od(1/ε(d−1)/2) space algorithm for ε-kernels, a multiplicative approximation of convex hulls.
The running time bounds were further improved in [8, 10, 12]. Recently, Blum, Har-Peled,
and Raichel [7] give the only known batch algorithms for an ε-hull that are competitive with
the optimal ε-hull size of the given point set.

Streaming Algorithms with Worst Case Guarantees. Hershberger and Suri [11] and Agar-
wal & Yu [3] give 2D one-pass streaming algorithms for ε-hulls that uses O(1/

√
ε) space.

Agarwal, Har-Peled, and Varadarajan [1] give a one-pass streaming algorithm for ε-kernels
that uses Od((1/ε

d−1
2 ) logd n) space. Chan [8] removes the dependency on n and gives a

streaming algorithm for ε-kernels that uses Od((1/εd−3/2) logd 1/ε) space. This was then
improved to Od((1/ε

d−1
2 ) log 1

ε ) [13] and the time complexity was further improved by Arya
and Chan [4]. Chan [9] also gives a dynamic streaming (allowing deletions in the stream)
algorithm based on polynomial methods. All of these space bounds assume a constant
dimension d, and focus on worst case guarantees.

ICALP 2018



21:4 Approximate Convex Hull of Data Streams

(a) Set of points. (b) ε-hull in red (for suitable ε).

Figure 1 ε-hull of a set of points.

ε-kernels vs ε-hulls. Past work focuses on both ε-hulls and ε-kernels, a multiplicative error
variant. ε-kernels can be trickier to compute, but are closely related to ε-hulls, and often
use algorithms for ε-hulls as a core subroutine. We focus on ε-hulls, but extending this work
to ε-kernels is an exciting (non-trivial) avenue for future research. In particular, typical
reductions from ε-kernels to ε-hulls (e.g. see [2]) are not compatible with the notion of OPT.

Our Techniques. The proof of our 2D random order algorithm exposes an elegant connection
between our 2D result, and a classic 1D result. Our multipass algorithm and (ε, δ)-hull
algorithm are built on existing methods (e.g. [1, 3]) in that a core subroutine involves
preserving the maximal point along certain directions.

2 Preliminaries

I Definition 2.1. For any bounded set C ⊆ Rd, a point q is ε-close to C if infx∈C ‖q−x‖2 ≤ ε.

I Definition 2.2. Given a set of points P ⊆ Rn, S ⊆ P is an ε-hull of P if for every p ∈ P ,
p is ε-close to C(S), the convex hull of S.

I Definition 2.3. Let OPT(P, ε) denote the number of points in a (not necessarily unique)
smallest ε-hull of P . We omit P and ε if it is clear from the context.

2.1 Streaming Model
Our streaming model, while simple, captures most streaming algorithms for ε-hulls in the
literature. In our model, a streaming algorithm A is given ε in advance but not the size of
the input point stream P ∈ Rd. P is presented to an algorithm A sequentially:

P = (p1, p2, . . . , pt, . . .),

where pt ∈ Rd is the point coming at time t. Note that P may have duplicate points. For the
ε-hull problem, we require Algorithm A to maintain a subset S ⊆ P . For each point p ∈ P ,
A can choose to add p to S (remembering p) or ignore p (therefore permanently forgetting
p). A can also choose to delete points in S, in which case these points are permanently lost.
After one-pass of the stream, we require S to be an ε-hull of the points set P . A trivial
streaming algorithm could just keep all points it has seen. However, such an algorithm
would not be feasible in the big data regime. Ideally, A should use space competitive with
OPT(P, ε).



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:5

3 Lower Bounds

An (f, r)-optimal algorithm in dimension d uses space competitive with f(OPT(P, ε), d) and
maintains an (rε)-hull where r > 1. Note that this definition is rather permissive, since it
allows an arbitrary function of OPT and allows slack in ε as well.

I Definition 3.1. For r ≥ 1, f : N×N→ N, we say a streaming algorithm A is (f, r)-optimal
if given arbitrary ε > 0 and point stream P ⊆ Rd, A keeps an (rε)-hull of P of size at most
f(OPT(P, ε), d).

I Theorem 3.2. For all r ≥ 1, d ≥ 3, f : N× N→ N, there does not exist an (f, r)-optimal
streaming algorithm in Rd.

Proof. See Theorem A.5, Theorem A.6, and Corollary A.8 in the Appendix of the full version
for the proof. Here we give high level intuition for the case r = 1, d = 3. In our proof, we
assume for the sake of contradiction that there exists such a streaming algorithm A and
function f . We construct 3 sequences of points P1, P2, P3. Let P1 ◦ P2 denote sequence P1
followed by sequence P2 (P2 appended to P1). We then show that if A keeps an ε-hull of size
at most f(OPT(P1 ◦ P2, ε), 3) after receiving P1 ◦ P2, then it cannot keep an ε-hull of size at
most f(OPT(P1 ◦ P2 ◦ P3, ε), 3) after receiving P1 ◦ P2 ◦ P3. This is a contradiction.

To do this, we ensure that |P2| is much larger than |P1| and that P1 is an ε-hull of P1 ◦P2.
This forces the algorithm to keep only a small proportion of points in P1 ◦ P2. We then
ensure that |P3| is much larger than |P2| and that P2 is an ε-hull for P2 ◦ P3. However, since
the algorithm only kept a small number of points in P2, it is forced to keep many points in
P3. See the appendix for precise details. The result extends easily for d > 3. For r > 1, we
use a similar construction, but add more sets of points P4, P5, ... J

We can also ask a slightly different question: what if an algorithm is given an additional
parameter k in advance, and only needs to maintain an ε-hull at time t when OPT of the
substream at time t falls below k. The algorithm we give for (ε, δ)-hulls in Section 6 is of this
form. In the appendix of the full version (Definition A.9 and Theorem A.10), we formulate a
lower bound for this case.

Our lower bounds guide future research by showing that we need to think beyond the
current streaming models, add reasonable assumptions to the problem, or the space bounds
of our algorithms must include some functions of ε or |P | (along with OPT and d).

4 2D Random Order Algorithm (ROA)

In many cases, data points are generated i.i.d., for example in mixture models or topic
models (e.g. [6]). In this section we assume a more general setup: that the points come in a
random order. More precisely, for all sets of points P , every permutation of P must have
equal probability density. The case where the data points are generated i.i.d. (making no
assumptions about the distribution) is a special case. We assume the points are in 2D. To
begin, we introduce the following definition.

I Definition 4.1. A point p is interior to P if p is in the convex hull of P \ {p}.

4.1 1D Algorithm
To motivate our 2D algorithm, we begin with a classic result in 1-dimension. Consider the
algorithm ROA-insertion: Begin by keeping a set S = {}. For each point p ∈ P that the
algorithm sees, if the distance from p to the convex hull of S is at most ε, we discard p.
Otherwise, we add p to S.

ICALP 2018



21:6 Approximate Convex Hull of Data Streams

Algorithm 1 Pseudocode for ROA (2D random order algorithm).
1: S ← {}
2: when p ∈ P is received do:
3: if dist(p, C(S)) ≤ ε then:
4: // Discard p
5: else:
6: S ← S ∪ {p}
7: for p′ ∈ S sequentially do:
8: If p′ is an interior point of S then S ← S \ {p′}
9: end for

10: end when

I Lemma 4.2. There exists a constant c > 0 such that for any random order input stream
P containing at most n points, ROA-insertion maintains a subset S ⊆ P which is an ε-hull
of P at all times. Moreover, if P ⊆ R1 then with probability at least 1− 1/n3,

|S| ≤ c · logn ≤ c · OPT(P, ε) · logn,

note that for any ε ≥ 0, if P ⊆ R1 then 1 ≤ OPT(P, ε) ≤ 2.

A natural question is whether the space bound for this algorithm generalizes to higher
dimensions. Our experiments suggest that it does not even generalize to 2D. In our experi-
ments, we set ε = 0 and gave ROA-insertion n equally spaced points inside a square. OPT is
4, since all the points are contained inside a square. However, experimentally, the number of
points kept by ROA-insertion increases much faster than logn.

4.2 2D Algorithm
We extend algorithm ROA-Insertion to get algorithm ROA. Let the points kept by ROA at
the ith step of the algorithm be Si. At each step i, we iteratively delete interior points from
Si until Si has no interior points. We summarize algorithm ROA in Algorithm 1.

The proof of ROA gives an interesting connection between our 2D algorithm, and the 1D
classical result in the previous section. We begin with a technical lemma (see Lemma B.1 in
the appendix of the full version for the proof), and then proceed to the main theorem.

I Lemma 4.3. (Similar Boundaries) Suppose A and B are ε-hulls of P . Let H denote the
(two-way) Hausdorff distance and ∂C(A) denote the boundary of the convex hull of A. Then
H(∂C(A), ∂C(B)) ≤ ε.

I Theorem 4.4. There exists a constant c > 0 such that for any random order input stream
P containing at most n points, ROA maintains a subset S ⊆ P which is an ε-hull of P at
all times. Moreover, if P ⊆ R2 then with probability at least 1− 1/n2,

|S| ≤ c · OPT(P, ε) · logn.

Since the algorithm is deterministic, the probability is over the arrival order of P .

Proof. An inductive argument shows that at each iteration i, S is an ε-hull of P . We focus
on the proof of the space bound.

Step 1: Consider an optimal ε-hull T of P . We show that all points in S are near
the boundary ∂C(T ). Note that S does not contain any interior points, so for all s ∈ S,
s ∈ ∂C(S). Then by Lemma 4.3, for every point s ∈ S, dist(s, ∂C(T )) ≤ ε.



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:7

Figure 2 Figure for Theorem 4.4. Consider all points
near segment l = tjtj+1. Consider points q1, q2, q3 ∈ Q

on one side of l. They are contained in a thin strip R of
width ε.

Figure 3 A diagram of EarP (q1, q2).
The dotted line is `, and the length of the
dashed line is ErrorP (q1, q2).

Step 2: We split T into OPT sections, and show that with high probability our algorithm
keeps O(logn) points for each section. Since T is optimal, it does not contain any interior
points. Label the points in T : t1, ..., tk, clockwise along the boundary of the convex hull of
T . For every s ∈ S, since dist(s, ∂C(T )) ≤ ε, s is within distance ε from the line segment
connecting some ti and ti+1. Now, referring to Figure 2, consider the line segment l connecting
arbitrary tj and tj+1, and consider all points in P within distance ε from l. We group the
points based on which side of the line segment they are on - consider the points Q on one
side of the line segment.

The points Q are contained in some narrow strip R with width ε. Effectively, because
Q is contained in a narrow strip, we can reduce to the 1D case and apply the proof from
Lemma 4.2. To see this reduction, consider the projection of the points in Q onto the (infinite)
line l′ connecting tj and tj+1. Let f(qi) denote the projection of qi onto line l′. If f(qk)
is between f(qi) and f(qj), and qk arrives after qi and qj , then our algorithm discards qk
because qk is within distance ε from the line segment connecting qi and qj . Applying the 1D
proof, we get that with high probability we keep O(logn) points for each segment.

Step 3: We take a union bound over the OPT sections to get the desired result, where
we note that OPT ≤ n. J

5 2D Multipass Algorithm

In this section, we relax the problem by letting the algorithm pass over the stream P multiple
times. Let diam(P ) refer to the diameter of the point-set P which is maxx,y∈P d(x, y). Our
algorithm requires log( diam(P )

ε ) passes and O(OPT) memory. For convenience of exposition,
we assume diam(P ) = 1 and prove a bound of log( 1

ε ) passes. If diam(P ) 6= 1, we can simply
scale all the points, and ε, by 1

diam(P ) and run the algorithm to get the desired bound.
By convention, we define the distance between a point p and a set A to be d(p,A) =

mina∈A d(p, a). In a slight abuse of notation, for a finite set P we define ∂P to be the subset
of P that lies on the boundary of the convex hull of P . Formally:

I Definition 5.1. For a finite set P ⊂ R2, we define ∂P = P ∩ ∂C(P ). Here ∂C(P ) means
the boundary of the convex hull of P .

Given any two points q1, q2 ∈ ∂P , define ` = C({q1, q2}) to be the line segment with
endpoints q1 and q2. Observe that the set C(P ) \ ` has at most two connected components.
Define EarP (q1, q2) to be the component that lies to the left of the vector from q1 to q2. We
define ErrorP (q1, q2) = maxx∈EarP (q1,q2) d(x, `) to be the maximum distance of a point in this

ICALP 2018



21:8 Approximate Convex Hull of Data Streams

Algorithm 2 Input: a stream of points P ⊂ R2 and a value ε ∈ (0, 1]. Output: an
ε-approximate hull of P

1: t1 ← (1, 0), t2 ← (−1, 0)
2: T ← an ordered list (t1, t2)
3: For i = {1, 2}, associate qi ← GetMaxP (ti) with ti
4: Initialize Flag to down position
5: for all 1 ≤ i ≤ |T | (in parallel) do
6: Compute ErrorP (qi, qi+1)
7: Compute ErrorP (qi−1, qi+1)
8: t′i ← direction bisecting ti and ti+1
9: q′i ← GetMax(t′i)

10: for all 1 ≤ i ≤ |T | (in parallel) do
11: if ErrorP (qi−1, qi+1) ≤ ε and neither ti+1 or ti−1 have been deleted then
12: Remove ti from T

13: if ErrorP (qi, qi+1) > ε then
14: Add t′i to T and associate q′i with t′i
15: Raise Flag
16: Recompute indices of T to preserve clockwise-order
17: Delete any points/vectors except ti ∈ T and their associated qi
18: if Flag is up then
19: Go to Line 4
20: else
21: Output {q1, . . . , q|T |}

component from `. See Figure 3 for an example. Note that we can compute ErrorP (q1, q2) in
a single pass (see Algorithm 2 and Lemma C.1 in the Appendix of the full version).

Let t be a unit vector. Define GetMaxP (t) to be arg maxp∈P p · t. It is clear that GetMaxP (t)
can be computed in a single pass. Algorithm 2 is the main multipass algorithm, using Error
and GetMax as blackboxes. We always maintain a set of directions T . On Lines 5-9 we run
3|T | single-pass algorithms completely in parallel, therefore requiring only a single pass. By
the phrase “associating a point with a direction”, we mean to keep this point as piece of
satellite data.

Our main result for this section is the behavior of Algorithm 2. We define a word as the
space required to store a single point in R2.

We begin with some preliminary statements. We defer the proofs of these lemmas to the
Appendix of the full version (see Lemmas C.2, C.3, C.4, and C.6). Throughout this section,
we use the convention of incrementing subscripts modulo n (for example qn+1 = q1).

I Lemma 5.2. If Algorithm 2 terminates, it outputs an ε-hull to P .

I Lemma 5.3. Algorithm 2 terminates in 3 + dlog2(1/ε)e passes.

I Lemma 5.4. Let p, p′, q′, q ∈ ∂P be in clockwise order along ∂C(P ). Then ErrorP (p′, q′) ≤
ErrorP (p, q).

I Lemma 5.5. There exists an ε-hull for P using only points from ∂P of cardinality at most
2OPT(P, ε).

Note that Lemma 5.5 is not trivial. By definition, there exists an ε-hull for P of size
OPT(P, ε) using points from P . It may be that an ε-hull of optimal size must use a point
from the interior of P . For example, consider a square of side length r ∈ (

√
2ε, 2ε), where



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:9

∂P consists of the four corners. It is possible, due to interior points, that OPT(P, ε) = 2 and
yet an ε-hull using only points from ∂P must use all four corners. Note that this example
also shows that the bound in Lemma 5.5 is tight.

On Line 8, t′i is defined as the direction that bisects ti and ti+1. We define the bisection of
unit vectors a and b to be the unit vector obtained by rotating a clockwise through through
half of the rotation required to point in the direction of b.

I Theorem 5.6. Given a stream of points P ⊂ R2 and a value ε ∈ (0, 1], Algorithm 2
terminates within 3 + dlog2(1/ε)e passes, stores at most 24OPT(P, ε) + O(1) words, and
returns an ε-hull of P of cardinality 6OPT(P, ε).

Proof. By Lemma 5.3, Algorithm 2 terminates after 3 + dlog2(1/ε)e passes. By Lemma 5.2,
Algorithm 2 outputs an ε-hull to P . It only remains to bound the space usage and cardinality
of the set returned

Let W ⊂ ∂P be an ε-approximation of P such that n = |W | ≤ 2OPT(P, ε). Lemma 5.5
guarantees that such a W exists. Let W = {w1, . . . , wn} be an ordering of W that is
clockwise in ∂C(P ). By definition, ErrorP (wi, wi+1) ≤ ε for every i ∈ Z (recall the convention
of indexing modulo n). Consider the state of the algorithm at the beginning of a pass; for
notation let T contain the directions {ti}|T |i=1 associated respectively with {qi}|T |i=1.

For s ∈ {1, 2}, suppose that wi, qj , qj+s, wi+1 are in clockwise order of ∂C(P ). By
Lemma 5.4, ErrorP (qj , qj+s) ≤ ErrorP (wi, wi+1) ≤ ε. We draw two conclusions. The first
conclusion (s = 1) is that on Line 13, t′i will not be added to T . The second conclusion
(s = 2) is that on Line 11, ti+1 is a candidate for deletion (i.e. ti+1 will be deleted unless ti
or ti+2 have already been deleted).

Using the clockwise ordering of ∂C(P ), we say that a point q ∈ ∂P is on edge (wi, wi+1)
if it lies between wi and wi+1 in the ordering. Suppose that {qj}|T |j=1 contains m points on
edge (wi, wi+1). By the reasoning in the preceding paragraph, it is easy to verify that all but
dm−1

2 e+ 1 will be deleted on Line 11. As for points added on Line 13, this can only occur at
the boundary (between qj and qj+1 where qj is the last point on some edge) and therefore
adds at most 1 point per edge.

Combining these facts, we see that an edge which enters a pass with m points finishes
that pass with at most dm−1

2 e+ 2 points. Inductively we begin with m = {0, 1, 2} for each
edge. This implies that m ≤ 3 after each pass. Therefore |T | ≤ 3n ≤ 6OPT(P, ε) at all times.

Finally, observe that the storage of 4|T |+O(1) points are used in a pass. To compute
Error without precision issues, storing a single point suffices. Therefore for each i we store
one point for each of the two Error computations, one point for GetMax, and the original point
qi and vector ti. The O(1) is just a workspace to carry out the calculations. J

6 (ε, δ)-Hull

In this section we give an algorithm for a relaxation of ε-hulls, which we call (ε, δ)-hulls. Our
results hold for arbitrary point sets P ⊆ Rd. Intuitively, an (ε, δ)-hull of P is within distance
ε from the boundary of the convex hull of P in at least a 1− δ fraction of directions. We
begin by building up the definition of an (ε, δ)-hull.

I Definition 6.1. Given a vector v ∈ Rd and a finite point set P ⊆ Rd, we define the
directional extent as

ωv(P ) = max
p∈P

p · v.

ICALP 2018



21:10 Approximate Convex Hull of Data Streams

Figure 4 Point p maximizes the set of points
in direction u because its projection onto u is
the highest.

Figure 5 All vectors between u and v with
Euclidean norm at most 1 are in ET

D. See texts
for details.

If p ∈ Rd is a point we define ωv(p) = p · v = ωv({p}). We say that S maximizes P in v if
ωv(P ) = ωv(S) (see Figure 4). Note that S can be either a single vector or a set of vectors.

I Definition 6.2. Let P ⊂ Rd be a set of points and S ⊆ P . We say S ε-maximizes P in
v if v = 0 or, letting v′ = v/‖v‖2, we have

|ωv′(P )− ωv′(S)| ≤ ε.

Note that as per definition 6.1, S can be either a single vector or a set of vectors.

I Definition 6.3. Given P ⊆ Rd, an (ε, δ)-hull is a subset S ⊆ P such that if we pick a
vector v uniformly at random from the boundary of the unit sphere, Sd−1, S ε-maximizes P
in direction v with probability at least 1− δ, that is,

Prv∼Sd−1(|ωv(P )− ωv(S)| > ε) ≤ δ.

Suppose we fix the dimension d. We give a randomized algorithm that uses m points and
with probability at least 1− γ gives us an (ε, δ)-hull of a point set P , where k is the optimal
size for the ε-hull of P , and m satisfies:

m ∈ Od
(
k

δ2 · log k

γδ

)
.

Note that m does not explicitly depend on ε. Our algorithm for d-dimensional space is as
follows: Choose m uniformly random vectors in the unit ball Bd (or equivalently on the
boundary of the unit ball, Sd−1). For each chosen vector v we store a single point p ∈ P
that maximizes P in direction v, that is, p · v = ωv(P ). This can easily be done in streaming.
Note that the given complexity is for a fixed dimension d, the actual space complexity will
be multiplied by some (exponential) function of d, but independent of ε.

6.1 Proof of (ε, δ)-hull Algorithm
Consider an arbitrary point set P , and suppose that our algorithm keeps a subset S of
P . The core of our proof, leading up to lemma 6.11, shows that for each point that our
algorithm picks, S gets closer to an (ε, δ)-hull. In particular, we define the set C of bad
vectors in Bd, as vectors v s.t. S does not ε-maximize P in v. We want to bound the number
of points we need to include in S so that C is small. Crucially, we show that C is a union of
a small number of convex sets, and does not contain any vectors we selected (recall that our



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:11

algorithm selects uniformly random vectors in Bd, and uses these to select certain points in
P ). Then, we can approximate C with a union of ellipsoids, which has small VC-dimension.
This finally allows us to apply the machinery of ε-nets to get the desired result.

We begin with some definitions and lemmas.

I Definition 6.4. Let Bd denote the unit ball in d dimensions. Let Sd−1 denote the unit
sphere in d dimensions, which is ∂Bd (the boundary of Bd).

I Definition 6.5. Let V d(S) denote the d-dimensional volume (Lebesgue measure) of a
measurable set S in d-dimensional space.

I Definition 6.6. Given T ⊆ Rd and t ∈ Rd, we define ETt to be the set of all vectors v ∈ Bd
such that t maximizes T in v, that is,

ETt = {v | v · t = ωv(T ) ∧ |v|2 ≤ 1}.

Figure 5 shows a set of points T . All vectors between u and v with Euclidean norm at most 1,
in the range indicated by the angle, are in ETD. Note that u is perpendicular to line segment
CD and v is perpendicular to line segment DE. Only points t ∈ T that lie on the boundary
of the convex closure of T have non-empty ETt .

I Definition 6.7. Given a point stream P , and a set S, we say the set of bad vectors C (with
respect to P , S) is the set of vectors v in Bd such that S does not ε-maximize P in v. An
equivalent definition of (ε, δ)-hulls is that V d(C)/V d(Bd) ≤ δ.

We are now ready to present the following lemmas about the properties of ETt .

I Lemma 6.8 (ε-Maximization Lemma). Suppose P ⊆ Rd is a finite set of points and T ⊆ P
is an ε-hull of P , and t ∈ T . Then t ε-maximizes P for all vectors v ∈ ETt (see Definition 6.6).

I Lemma 6.9 (Covering Lemma). For all finite point sets T ⊆ Rd,
⋃
t∈T E

T
t = Bd.

I Lemma 6.10 (Convex Lemma). For any point t ∈ Rd and finite set T ⊆ Rd, ETt is convex
and has finite volume.

We want to show that the set of points S our algorithm chooses is ε-maximal in most
directions. One way is to show that for each point our algorithm picks, the set of bad vectors
(vectors that our stored points do not ε-maximize) shrinks. We present a crucial lemma that
formalizes this notion under some assumptions.

I Lemma 6.11. Given a finite point set P ⊆ Rd and a finite-volume convex set C ⊆ Rd.
Assume that there exists some p ∈ P s.t. for all unit vectors v ∈ C, p ε-maximizes P in v.
Suppose that we pick arbitrary vectors v1, ..., vk ∈ C and corresponding points p1, ..., pk ∈ P
s.t. for all i, pi maximizes P in vi. Then there exists a finite-volume convex subset C ′ ⊆ C
s.t.
1. For all i ∈ [k], vi 6∈ C ′.
2. For all vectors v ∈ C \ C ′, S = {p1, ..., pk} ε-maximizes P in v.

Proof. Consider a vector vi that we picked, and corresponding point pi. If pi = p, then
C ′ = {} satisfies the required conditions. Otherwise, let Hi = {v | pi · v ≥ p · v}. Hi is a
half-space that contains the vector vi. Furthermore for all vectors v ∈ Hi ∩C, S ε-maximizes
P in v. So the set of vectors in C that pi does not maximize are contained in Hc

i ∩ C,
where Hc

i does not contain vi. Applying this argument for each vector vi and corresponding

ICALP 2018



21:12 Approximate Convex Hull of Data Streams

point pi, we can construct C ′ to be the intersection of C with the k (open) half-spaces Hc
i

corresponding to each of the points pi we selected. Our constructed C ′ is convex, because it
is the intersection of convex sets, and it is bounded and measurable. J

For completeness, we include a standard lemma that is similar to the finite ε-net in
computational geometry. Before we proceed, for a family of sets H, we denote the simplified
version of VC-dimension d′ = ṼC(H) as the smallest positive integer d′ such that for every
finite set A ⊆ Rd, |{h ∩ A : h ∈ H}| ≤ |A|d′ (that is, such that a simple variant of Sauer’s
Lemma holds). We then have the following lemma, which we prove in the appendix.

I Lemma 6.12. Let τ, γ ∈ (0, 1) be two parameters. Let H be a set of measurable sets in
Rd such that ṼC(H) ≤ d′ for some integer d′. Given a measuable convex set C ⊆ Rd, let
HC = {c ∈ H : c ⊆ C} be the sets of subsets of H contained in C. Suppose we choose
m = Θ( d

′

τ2 log d′

τγ ) points uniformly random in C. Then, except with probability γ, all sets
u ∈ HC with V d(u)/V d(C) ≥ τ contains some selected point, where V d(u) denotes the
volume of u.

Before we present the main theorem, we note that the set of unions of k ellipsoids is of
small VC-dimension. The formal proof is presented in the Appendix.

I Lemma 6.13. Let E be the sets of all ellipsoids in Rd. Let Ek = {e1∪e2∪e3 . . .∪ek : ei ∈ E}.
Then ṼC(H) ≤ 4kd2.

Now we are ready to present the main theorem in this section.

I Theorem 6.14. Let γ, δ ∈ (0, 1), k ≥ 1 be parameters. Given a point stream P in Rd and
ε ≥ 0. Suppose OPT(P, ε) ≤ k. Then there exists a one-pass streaming algorithm, given
P, γ, δ, k, stores a set S ⊆ P of m = Θd

(
k
δ2 log k

γδ

)
points, such that, except with probability

γ, S is an (ε, δ)-hull of P .

Proof. To begin the proof, we recall the algorithm. We first pick uniformly at random
m = Θ

(
d2d+2k
δ2 log kd

γδ

)
directions from Bd, the d-dimensional unit ball. When the stream is

coming, we maintain the extreme point from P in each direction. The output S is the set of
extreme points in each direction.

Intuitively, S is an (ε, δ)-hull iff Bd only contains a small region of bad vectors (with
respect to P , S). Let T be an optimal ε-hull of P , with |T | = k. Fix t ∈ T . Consider the
set ETt . In our proof we will show that with high probability each set ETt only contains a
small subset of bad vectors, C ′t, such that, for all vectors v ∈ ETt \ C ′t, S ε-maximizes P in v.
Then we show that

∑
t∈T V

d(C ′t) ≤ δ, which completes the proof.
Suppose the selected random set of vectors is A ⊆ Bd. Fix t ∈ T . By Lemma 6.8, t ∈ T ε-

maximizes P for all vectors v ∈ ETt . Then by Lemma 6.11, there exists a finite-volume convex
subset C ′t ⊆ ETt such that C ′t ∩ A = ∅ and for all v ∈ ETt \ C ′t, S ε-maximizes v. Next, for
each t ∈ T , we select a large ellipsoid ut contained in C ′t such that V d(C ′t) ≤ V d(ut)dd. Note
that ∪t∈TC ′t is a member of the family E |T | = {h1∪h2∪ . . .∪h|T | : ∀i, hi is an ellipsoid}. By
Lemma 6.13, ṼC(E |T |) ≤ 4kd2. By Lemma 6.12, since all ut do not contain any point from A,
with probability at least 1− γ, it must be the case that V d(∪t∈Tut)/V d(Bd) ≤ δ/(dd). Since
the ut are disjoint, this means that V d(∪t∈TC ′t)/V d(Bd) ≤ δ. Furthermore, by Lemma 6.9,⋃
t∈T E

T
t = Bd. Therefore, with probability at least 1− γ, S ε-maximizes all vectors in Bd

except for those in ∪t∈TC ′t. Thus, S is an (ε, δ)-hull except with probability γ. J



A. Blum, V. Braverman, A. Kumar, H. Lang, and L. F. Yang 21:13

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent

measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.
2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approxima-

tion via coresets, pages 1–30. University Press, 2005.
3 Pankaj K Agarwal and Hai Yu. A space-optimal data-stream algorithm for coresets in the

plane. In Proceedings of the twenty-third annual symposium on Computational geometry,
pages 1–10. ACM, 2007.

4 Sunil Arya and Timothy M. Chan. Better epsilon-dependencies for offline approximate
nearest neighbor search, euclidean minimum spanning trees, and epsilon-kernels. In Pro-
ceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, pages
416:416–416:425, New York, NY, USA, 2014. ACM. doi:10.1145/2582112.2582161.

5 Jon Louis Bentley, Franco P. Preparata, and Mark G. Faust. Approximation algorithms
for convex hulls. Commun. ACM, 25(1):64–68, jan 1982. doi:10.1145/358315.358392.

6 David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.
7 Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generat-

ing point sets. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 548–557, 2016.

8 Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimen-
sions. Computational Geometry, 35(1):20–35, 2006. doi:10.1016/j.comgeo.2005.10.002.

9 Timothy M. Chan. Dynamic streaming algorithms for epsilon-kernels. In Proc. 32nd Annu.
Sympos. Comput. Geom. (SoCG), 2016.

10 Timothy M. Chan. Applications of chebyshev polynomials to low-dimensional computa-
tional geometry. In Proc. 33rd Annu. Sympos. Comput. Geom. (SoCG), 2017.

11 John Hershberger and Subhash Suri. Adaptive sampling for geometric problems over data
streams. In Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’04, pages 252–262, New York, NY, USA, 2004.
ACM. doi:10.1145/1055558.1055595.

12 David M. Mount Sunil Arya, Guilherme D. da Fonseca. Near-optimal epsilon-kernel con-
struction and related problems. In Proc. 33rd Annu. Sympos. Comput. Geom. (SoCG),
2017.

13 Hamid Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed
dimensions. Algorithmica, 60(1):46–59, 2011. doi:10.1007/s00453-010-9392-2.

ICALP 2018

http://dx.doi.org/10.1145/1008731.1008736
http://dx.doi.org/10.1145/2582112.2582161
http://dx.doi.org/10.1145/358315.358392
http://dx.doi.org/10.1016/j.comgeo.2005.10.002
http://dx.doi.org/10.1145/1055558.1055595
http://dx.doi.org/10.1007/s00453-010-9392-2

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Streaming Model

	Lower Bounds
	2D Random Order Algorithm (ROA)
	1D Algorithm
	2D Algorithm

	2D Multipass Algorithm
	(epsilon,delta)-Hull
	Proof of (epsilon, delta)-hull Algorithm


