
Rollercoasters and Caterpillars
Therese Biedl1
School of Computer Science, University of Waterloo, Canada
biedl@uwaterloo.ca

Ahmad Biniaz2

School of Computer Science, University of Waterloo, Canada
ahmad.biniaz@gmail.com

Robert Cummings
School of Computer Science, University of Waterloo, Canada
rcummings000@gmail.com

Anna Lubiw3

School of Computer Science, University of Waterloo, Canada
alubiw@uwaterloo.ca

Florin Manea4

Department of Computer Science, Kiel University, D-24098 Kiel, Germany
flm@zs.uni-kiel.de

Dirk Nowotka5

Department of Computer Science, Kiel University, D-24098 Kiel, Germany
dn@zs.uni-kiel.de

Jeffrey Shallit6

School of Computer Science, University of Waterloo, Canada
shallit@cs.uwaterloo.ca

Abstract
A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence
– increasing or decreasing – has length at least three. By translating this sequence to a set of
points in the plane, a rollercoaster can be defined as an x-monotone polygonal path for which
every maximal sub-path, with positive- or negative-slope edges, has at least three vertices. Given
a sequence of distinct real numbers, the rollercoaster problem asks for a maximum-length (not
necessarily contiguous) subsequence that is a rollercoaster. It was conjectured that every sequence
of n distinct real numbers contains a rollercoaster of length at least dn/2e for n > 7, while the
best known lower bound is Ω(n/ logn). In this paper we prove this conjecture. Our proof
is constructive and implies a linear-time algorithm for computing a rollercoaster of this length.
Extending the O(n logn)-time algorithm for computing a longest increasing subsequence, we show
how to compute a maximum-length rollercoaster within the same time bound. A maximum-length
rollercoaster in a permutation of {1, . . . , n} can be computed in O(n log logn) time.

The search for rollercoasters was motivated by orthogeodesic point-set embedding of cater-
pillars. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. A
top-view caterpillar is one of maximum degree 4 such that the two leaves adjacent to each vertex
lie on opposite sides of the spine. As an application of our result on rollercoasters, we are able to

1 Supported by NSERC.
2 Supported by NSERC Postdoctoral Fellowship.
3 Supported by NSERC.
4 Supported by DFG.
5 Supported by DFG.
6 Supported by NSERC Grant # 105829/2013.

EA
T

C
S

© Therese Biedl, Ahmad Biniaz, Robert Cummings, Anna Lubiw, Florin Manea,
Dirk Nowotka, and Jeffrey Shallit;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:biedl@uwaterloo.ca
mailto:ahmad.biniaz@gmail.com
mailto:rcummings000@gmail.com
mailto:alubiw@uwaterloo.ca
mailto:flm@zs.uni-kiel.de
mailto:dn@zs.uni-kiel.de
mailto:shallit@cs.uwaterloo.ca
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Rollercoasters and Caterpillars

find a planar drawing of every n-vertex top-view caterpillar on every set of 25
3 (n + 4) points in

the plane, such that each edge is an orthogonal path with one bend. This improves the previous
best known upper bound on the number of required points, which is O(n logn). We also show
that such a drawing can be obtained in linear time, when the points are given in sorted order.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases sequences, alternating runs, patterns in permutations, caterpillars

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.18

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1801.
08565.

1 Introduction

A run in a sequence of real numbers is a maximal contiguous subsequence that is increasing
or decreasing. A rollercoaster is a sequence of real numbers such that every run has length at
least three.7 For example the sequence (8, 5, 1, 3, 4, 7, 6, 2) is a rollercoaster with runs (8, 5, 1),
(1, 3, 4, 7), (7, 6, 2), which have lengths 3, 4, 3, respectively. The sequence (8, 5, 1, 7, 6, 2, 3, 4)
is not a rollercoaster because its run (1, 7) has length 2. Given a sequence S = (s1, s2, . . . , sn)
of n distinct real numbers, the rollercoaster problem is to find a maximum-size set of indices
i1 < i2 < · · · < ik such that (si1 , si2 , . . . , sik

) is a rollercoaster. In other words, this problem
asks for a longest rollercoaster in S, i.e., a longest subsequence of S that is a rollercoaster.

One can interpret S as a set P of points in the plane by translating each number si ∈ S
to a point pi = (i, si). With this translation, a rollercoaster in S translates to a “rollercoaster”
in P , which is a polygonal path whose vertices are points of P and such that every maximal
sub-path, with positive- or negative-slope edges, has at least three points. See Figure 1(a).
Conversely, for any point set in the plane, the y-coordinates of the points, ordered by their
x-coordinates, form a sequence of numbers. Therefore, any rollercoaster in P translates to a
rollercoaster of the same length in S.

The best known lower bound on the length of a longest rollercoaster is Ω(n/ logn) due to
Biedl et al. [4], who posed the following conjecture; see Appendix B in the full version of [4].

I Conjecture 1. Every sequence of n > 7 distinct real numbers contains a rollercoaster of
length at least dn/2e.

Conjecture 1 can be viewed as a statement about patterns in permutations, a topic
with a long history, and the subject of much current research. For example, the Eulerian
polynomials, introduced by Euler in 1749, are the generating function for the number of
descents in permutations. For surveys of recent work, see, for example, Linton et al. [13]
and Kitaev [12]. Specifically, Conjecture 1 is related to the following seminal result of Erdős
and Szekeres [7] in the sense that they prove the existence of an increasing or a decreasing
subsequence of length at least a+ 1 for n = a2 + 1, which is essentially a rollercoaster with
one run.

7 The term “rollercoaster permutation” has also been used to refer to a permutation that, together with
all its subsequences, has maximum number of changes from increasing to decreasing and vice versa; see
e.g. [1].

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.18
https://arxiv.org/abs/1801.08565
https://arxiv.org/abs/1801.08565

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) (b)

Figure 1 (a) Translating the sequence (8, 5, 1, 3, 4, 7, 6, 2) to a set of points. (b) A planar L-shaped
drawing of a top-view caterpillar.

I Theorem 2 (Erdős and Szekeres, 1935). Every sequence of ab + 1 distinct real numbers
contains an increasing subsequence of length at least a+ 1 or a decreasing subsequence of
length at least b+ 1.

Hammersley [11] gave an elegant proof of the Erdős–Szekeres theorem that is short,
simple, and based on the pigeonhole principle. The Erdős–Szekeres theorem also follows
from the well-known decomposition of Dilworth (see [17]). The following is a restatement of
Dilworth’s decomposition for sequences of numbers.

I Theorem 3 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences where k is the maximum length of a descending
sequence in S.

Besides its inherent interest, the study of rollercoasters is motivated by point-set embed-
ding of caterpillars [4]. A caterpillar is a tree such that deleting the leaves gives a path,
called the spine. An ordered caterpillar is a caterpillar in which the cyclic order of the edges
incident to each vertex is specified. A top-view caterpillar is an ordered caterpillar where
all vertices have degree 4 or 1 such that the two leaves adjacent to each spine vertex lie
on opposite sides of the spine; see Figure 1(b). Planar orthogonal drawings of trees on a
fixed set of points in the plane have been explored recently, see e.g., [4, 10, 15]; in these
drawings every edge is drawn as an orthogonal path between two points, and the edges are
non-intersecting. A planar L-shaped drawing is a simple type of planar orthogonal drawing
in which every edge is an orthogonal path of exactly two segments. Such a path is called
an L-shaped edge. For example see the top-view caterpillar in Figure 1(b) together with a
planar L-shaped drawing on a given point set. Biedl et al. [4] proved that every top-view
caterpillar on n vertices has a planar L-shaped drawing on every set of O(n logn) points in
the plane that is in general orthogonal position, meaning that no two points have the same x-
or y-coordinate.

1.1 Our Contributions
In Section 2 we study rollercoasters and prove Conjecture 1. In fact we prove something
stronger: every sequence of n distinct numbers contains two rollercoasters of total length n.
Our proof is constructive and yields a linear-time algorithm for computing such rollercoasters.
We also extend our result to rollercoasters whose runs are of length at least k, for k > 3. Then
we present an O(n logn)-time algorithm for computing a longest rollercoaster, extending

ICALP 2018

18:4 Rollercoasters and Caterpillars

the classical algorithm for computing a longest increasing subsequence. This algorithm
can be implemented in O(n log logn) time if each number in the input sequence is an
integer that fits in a constant number of memory words. Then we give an estimate on the
number of permutations of {1, . . . , n} that are rollercoasters. In Section 3 we prove, by using
Conjecture 1, that every n-vertex top-view caterpillar has a planar L-shaped drawing on
every set of 25

3 (n+ 4) points in the plane in general orthogonal position.

2 Rollercoasters

In this section we investigate lower bounds for the length of a longest rollercoaster in a
sequence of numbers. We also study algorithmic aspects of computing such rollercoasters.
First we prove Conjecture 1: any sequence of n distinct real numbers contains a rollercoaster
of length at least dn/2e. Observe that the length 4 sequence (3, 4, 1, 2) has no rollercoaster,
so we will restrict to n > 5 in the remainder of this section. Also, due to the following
proposition we assume that n > 8.

I Proposition 1. Every sequence of n ∈ {5, 6, 7} distinct real numbers contains a rollercoaster
of length at least 3. This bound is tight in the worst case.

Proof. By applying Theorem 2 with a = b = 2 we get that every sequence of at least
ab+ 1 = 5 distinct numbers contains an increasing or a decreasing subsequence of length
at least 3. This subsequence is a rollercoaster of length at least 3. For the tightness of this
bound, consider the sequence (5, 2, 6, 3, 7, 1, 4), depicted in the figure below. It has length 7
and its longest rollercoaster has length 3.

1 2 3 4 5 6 7

1
2
3
4
5
6
7

J

We refer to a polygonal path as a chain. We define an ascent (resp., a descent) as an
increasing (resp., a decreasing) sequence. We define a k-ascent (resp., a k-descent) as an
ascent (resp., a descent) with at least k elements. We also use k-ascent and k-descent to refer
to increasing and decreasing chains with at least k points, respectively. With this definition,
a rollercoaster is a sequence in which every run is either a 3-ascent or a 3-descent. We refer
to the rightmost run of a rollercoaster as its last run.

2.1 A Proof of Conjecture 1
In this section we prove the following theorem, which is a restatement of Conjecture 1. Our
proof is constructive, and yields a linear-time algorithm for finding such a rollercoaster.

I Theorem 4. Every sequence of n > 8 distinct real numbers contains a rollercoaster of
length at least dn/2e; such a rollercoaster can be computed in linear time. The lower bound
of dn/2e is tight in the worst case.

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:5

`

RA

RD

d

a

Figure 2 One iteration of algorithm: Constructing two pseudo-rollercoasters.

Consider a sequence with n > 8 distinct real numbers, and let P be its point-set translation
with points p1, . . . , pn that are ordered from left to right. We define a pseudo-rollercoaster as
a sequence in which every run is a 3-ascent or a 3-descent, except possibly the first run. That
is, the first run of a pseudo-rollercoaster could be of length at most two, while the other runs
are of length at least three. We present an algorithm that computes two pseudo-rollercoasters
R1 and R2 in P such that |R1| + |R2| > n; the length of the longer one is at least dn/2e.
Then with a more involved proof we show how to extend this longer pseudo-rollercoaster to
obtain a rollercoaster of length at least dn/2e; this will prove the lower bound.

2.1.1 An Algorithm
First we provide a high-level description of our algorithm as depicted in Figure 2. Our
algorithm is iterative, and proceeds by sweeping the plane by a vertical line ` from left to
right. We maintain the following invariant:

I Invariant. At the beginning of every iteration we have two pseudo-rollercoasters whose
union is the set of all points to the left of ` and such that the last run of one of them is an
ascent and the last run of the other one is a descent. Furthermore, these two last runs have
a point in common.

During every iteration we move ` forward and try to extend the current pseudo-rollercoas-
ters. If this is not immediately possible with the next point, then we move ` farther and
stop as soon as we are able to split all the new points into two chains that can be appended
to the current pseudo-rollercoasters to obtain two new pseudo-rollercoasters that satisfy the
invariant. See Figure 2.

Now we present our iterative algorithm in detail.

The First Iteration: We take the leftmost point p1, and initialize each of the two pseudo-
rollercoasters by p1 alone. We may consider one of the pseudo-rollercoasters to end in an
ascent and the other pseudo-rollercoaster to end in a descent. The two runs share p1.

An Intermediate Iteration: By the above invariant we have two pseudo-rollercoasters RA

and RD whose union is the set of all points to the left of ` and such that the last run of one
of them, say RA, is an ascent and the last run of RD is a descent. Furthermore, the last run
of RA and the last run of RD have a point in common. During the current iteration we make
sure that every swept point will be added to RA or RD or both. We also make sure that at
the end of this iteration the invariant will hold for the next iteration. Let a and d denote
the rightmost points of RA and RD, respectively; see Figure 2. Observe that a lies above d.
Let pi be the first point to the right of `. If pi is above a, we add pi to RA to complete this
iteration. Similarly, if pi is below d, we add pi to RD to complete this iteration. In either

ICALP 2018

18:6 Rollercoasters and Caterpillars

pk′
pi+1

pi
RA

RD

a

d

pred(pk′ , A1)

A′
1

A2

A′′
1pk′′

pi+2

pk

Figure 3 Illustration of an intermediate iteration of the algorithm.

case we get two pseudo-rollercoasters that satisfy the invariant for the next iteration. Thus
we may assume that pi lies below a and above d.

Consider the next point pi+1. (If there is no such point, go to the last iteration; see
below.) Suppose by symmetry that pi+1 lies above pi as depicted in Figure 3. Then d, pi, pi+1
forms a 3-ascent. Continue considering points pi+2, . . . , pk until for the first time, there is
a 3-descent in a, pi, . . . , pk. In other words, k is the smallest index for which a, pi, . . . , pk

contains a descending chain of length 3. (If we run out of points before finding a 3-descent,
then go to the last iteration.)

Without pk there is no descending chain of length 3. Thus the longest descending chain
has two points, and by Theorem 3, the sequence P ′ = a, pi, pi+1, . . . , pk−1 is the union of two
ascending chains. We give an algorithm to find two such chains A1 and A2 with A1 starting
at a and A2 starting at pi. The algorithm also finds the 3-descent ending with pk. For every
point q ∈ A2 we define its A1-predecessor to be the rightmost point of A1 that is to the left
of q. We denote the A1-predecessor of q by pred(q, A1).

The algorithm is as follows: While moving ` forward, we denote by r1 and r2 the rightmost
points of A1 and A2, respectively; at the beginning r1 = a, r2 = pi, and pred(pi, A1) = a.
Moreover, we maintain this invariant that pred(r2, A1) is above r2. Let p be the next point
to be considered. If p is above r1 then we add p to A1. If p is below r1 and above r2, then we
add p to A2 and set pred(p,A1) = r1; notice that this assignment satisfies the invariant. If p
is below r2, then we find our desired first 3-descent formed by (in backwards order) pk = p,
pk′ = r2, and pk′′ = pred(r2, A1). See Figure 3. This algorithm runs in time O(k − i), which
is proportional to the number of swept points.

We add point d to the start of chain A2. The resulting chains A1 and A2 are shaded in
Figure 3. Observe that A2 ends at pk′ . Also, all points of P ′ that are to the right of pk′ (if
there are any) belong to A1, and lie to the right of pk′′ , and form an ascending chain. Let
A′′1 be this ascending chain. Let A′1 be the sub-chain of A1 up to pk′′ ; see Figure 3. Now
we form one pseudo-rollercoaster (shown in red) consisting of RA followed by A′1 and then
by the descending chain pk′′ , pk′ , pk. We form another pseudo-rollercoaster (shown in blue)
consisting of RD followed by A2 and then by A′′1 . We need to verify that the ascending chain
added after d has length at least 3. This chain contains d, pi and pk′ . This gives a chain of
length at least 3 unless k′ = i, but in this case pk′′ = a, so pi+1 is part of A′′1 (because pi+1
is above pi) and consequently part of this ascending chain. Thus we have constructed two
longer pseudo-rollercoasters whose union is the set of all points up to point pk, one ending
with a 3-ascent and one with a 3-descent and such that the last two runs share the point pk′ .
Figure 4(a) shows an intermediate iteration.

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:7

p1

d

a = pk′′

pi

pi+1 = pk′

pk

p1 pn

R1

R2

(a) (b)

Figure 4 (a) An intermediate iteration. (b) A point set for which any rollercoaster of length at
least n/4 + 3 does not contain p1 and pn. The green (dashed) rollercoaster, which contains p1, has
length n/4 + 2. The red (solid) and blue (dash-dotted) chains are the two rollercoasters returned by
our algorithm.

The Last Iteration: If there are no points left, then we terminate the algorithm. Otherwise,
let pi be the first point to the right of `. Let a and d be the endpoints of the two pseudo-
rollercoasters obtained so far, such that a is the endpoint of an ascent and d is the endpoint
of a descent. Notice that pi is below a and above d, because otherwise this iteration would
be an intermediate one. Moreover, the remaining points pi, . . . , pn do not contain a 3-ascent
together with a 3-descent, again, because otherwise this iteration would be an intermediate
one. If pi is the last point, i.e., i = n, then we discard this point and terminate this iteration.
Assume that i 6= n, and suppose by symmetry that the next point pi+1 lies above pi. In this
setting, by Theorem 3 and as described in an intermediate iteration, with the remaining
points, we can get two ascending chains A1 and A2 such that A2 contains at least two points.
By connecting A1 to a and A2 to d we get two pseudo-rollercoasters whose union is all the
points (in this iteration we do not need to maintain the invariant).

Final Refinement: At the end of algorithm, we obtain two pseudo-rollercoasters R1 and R2
that share p1 and such that their union contains all points of P , except possibly pn. Thus,
|R1|+ |R2| > n, and the length of the longer one is at least

⌈
n
2
⌉
.

Recall that every run of pseudo-rollercoasters R1 and R2 is a 3-ascent or a 3-descent,
except possibly the first run. If the first run of R1 (resp., R2) contains only two points, then
we remove p1 to obtain a rollercoaster R1 (resp., R2). Therefore, we obtain two rollercoasters
whose union contains all points, except possibly p1 and pn.

This is the end of our algorithm. In the next section we analyze the length of the resulting
rollercoaster, the tightness of the claimed lower bound, and the running time of the algorithm.

2.1.2 Length and Running-Time Analysis

Our algorithm computes two rollercoasters R1 and R2 consisting of all points of P , except
possibly p1 and pn. Thus, the total length of these rollercoasters is at least n− 2, and the
length of the longer one is at least

⌈
n−2

2
⌉
. In the full version of the paper (see [3]) we show

how to improve this bound to
⌈

n
2
⌉
by revisiting the first and last iterations of our algorithm

with some case analysis.
We note that there are point sets, with n points, for which every rollercoaster of length

at least n/4 + 3 does not contain any of p1 and pn; see e.g., the point set in Figure 4(b). To
verify the tightness of the dn/2e lower bound, consider a set of n points in the plane where

ICALP 2018

18:8 Rollercoasters and Caterpillars

dn/2e of the points lie on a positive-slope line segment in the (−,+)-quadrant and the other
bn/2c points lie on a positive-slope line segment in the (+,−)-quadrant.

To verify the running time, notice that the first iteration and final refinement take
constant time, and the last iteration is essentially similar to an intermediate iteration. As
described in an intermediate iteration the time complexity to find a 3-ascent and a 3-descent
for the first time, together with the time complexity to compute chains A′1, A′′1 , and A2 is
O(k− i), which is linear in the number of swept points pi, . . . , pk. Based on this and the fact
that every point is considered only in one iteration, our algorithm runs in O(n) time.

2.2 An Extension
In this section we extend our result to k-rollercoasters. A k-rollercoaster is a sequence of
real numbers in which every run is either a k-ascent or a k-descent.

I Theorem 5. Let k > 4 be an integer. Then every sequence of n > (k − 1)2 + 1 distinct
real numbers contains a k-rollercoaster of length at least n

2(k−1) −
3k
2 . Moreover, for every

n > 0 there exists a sequence of n distinct real numbers whose longest k-rollercoaster has
length at most d n

k−1e.

Proof. Our proof of the lower bound follows the same iterative approach of the proof of
Theorem 4. Consider a sequence of n distinct real numbers and its point-set translation
p1, . . . , pn. We sweep the plane by a line `, and maintain two k-rollercoasters RA and RD to
the left of ` such that the last run of RA is an ascent and the last run of RD is a descent. In
each iteration, except the last one, we move ` forward and stop as soon as we see a k-ascent
A and a k-descent D in the swept points. Then we attach D to RA, and A to RD. To achieve
the claimed lower bound, we make sure that the total length of A and D is at least 1/(k− 1)
times the number of swept points.

Consider an intermediate iteration where pi lies below the rightmost point of RA and
above the rightmost point of RD. Let m be the number of swept points in this iteration
and let P ′ = (pi, pi+1 . . . , pi+m−2, pi+m−1) be the sequence of these points. Notice that
m > 2k− 1 because we need to sweep at least 2k− 1 points to get a k-ascent and a k-descent,
which may share one point. Our strategy for stopping ` ensures that P ′ contains a k-ascent
and a k-descent, while P ′′ = (pi, . . . , pi+m−2) may contain only one of them but not both.
Without loss of generality assume that P ′′ does not contain a k-descent. Since m−1 > 2k−2,
there exists an integer α > 2 for which

(α− 1)(k − 1) < m− 1 6 α(k − 1). (1)

The left-hand side of Inequality (1) implies that P ′′ has at least (α − 1)(k − 1) + 1
points. Having this and our assumption that P ′′ does not contain a k-descent, Theorem 2
implies that P ′′ contains an increasing subsequence of length at least α. We take the longest
increasing and the longest decreasing subsequences in P ′ as A and D, respectively. Observe
that |A| > max{k, α} and |D| = k. This and the right-hand side of Inequality (1) imply that

|A|+ |D| > α+ k >
m− 1
k − 1 + k >

m

k − 1 ,

which means that the total length of A and D is at least 1/(k− 1) times the number of swept
points. In the last iteration if we sweep at most (k − 1)2 points then we discard all of them.
But if we sweep m > (k − 1)2 points then by an argument similar to the one above there
exists an integer α, with α > m/(k− 1), for which we get either an α-ascent or an α-descent,
which contains at least 1/(k − 1) fraction of the swept points.

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:9

The first iteration is similar to the one in the proof of Theorem 4: we assume the existence
of an ascent and a descent that end at the first point. At the end of algorithm if the first run
of any of RA and RD contains k′ points, for some k′ < k, then by removing k′ − 1(6 k − 2)
points from its first run we get a valid k-rollercoaster. The total length of the resulting two
k-rollercoasters is

|RA|+ |RD| >
n− (k − 1)2

k − 1 − 2(k − 2),

where the length of the longer one is at least
n− (k − 1)2

2(k − 1) − (k − 2) > n

2(k − 1) −
3(k − 1)

2 .

This finishes our proof of the lower bound. To verify the upper bound, consider a set of n
points that are placed in the main-diagonal cells of a (k − 1)× (k − 1) grid, such that every
cell contains at most d n

k−1e points that are placed on a positive-slope line. J

2.3 Algorithms for a Longest Rollercoaster
In this section we study algorithmic aspects of computing a longest rollercoaster in a given
sequence S of n distinct real numbers. By Theorem 4 we can compute a rollercoaster of length
at least dn/2e in O(n) time. However this rollercoaster may not necessarily be a longest one.
If we run our algorithm of Section 2.1.1 on the point set in the figure below, then it returns
two rollercoasters R1 and R2 each of length at most dn

2 e while the longest rollercoaster
R has length n. In this section, first we adapt the existing O(n logn)-time algorithm for
computing a longest increasing subsequence in S to compute a longest rollercoaster in S
within the same time bound. Then we show that if S is a permutation of {1, . . . , n}, then
we can compute a longest rollercoaster in O(n log logn) time.

R1

R2

R

First we recall Fredman’s version of the O(n logn)-time algorithm for computing a longest
increasing subsequence [9]; for more information about longest increasing subsequence, see
Romik [14]. We maintain an array R[i], which initially has R[1] = S[1] and is empty
otherwise. Then as i proceeds from 2 to n, we find the largest l for which R[l] < S[i], and set
R[l+1] = S[i]; if S[i] is smaller than all elements of R, then l = 0. This insertion ensures that
every element R[l] stores the smallest element of S[1..i] in which an increasing subsequence
of length l ends. After all elements of S have been processed, the index of the last non-empty
element of R is the largest length of an increasing sequence; the corresponding sequence can
also be retrieved from R. Notice that R is always sorted during the above process. So, the
proper location of S[i] in R can be computed in O(logn) time by a predecessor search, which
can be implemented as a binary search. Therefore, this algorithm runs in O(n logn) time.

To compute a longest rollercoaster we need to extend this approach. We maintain six
arrays R(w, h) with w ∈ {inc, dec} and h ∈ {2, 3+, 3′+} where inc stands for “increasing”,
dec stands for “decreasing”, and both 3+ and 3′+ stand for any integer that is at least 3
(we will see the difference between 3+ and 3′+ later when we fill the arrays). We define a

ICALP 2018

18:10 Rollercoasters and Caterpillars

w-h-rollercoaster to be a rollercoaster whose last run has h points and is increasing if w = inc
and decreasing if w = dec. We insert S[i] into arrays R(inc, h) such that after this insertion
the following invariants hold:

The array R(inc, 2)[l] stores the smallest element of S[1..i] in which an inc-2-rollercoaster
of length l ends. The array R(dec, 2)[l] stores the largest element of S[1..i] in which a
dec-2-rollercoaster of length l ends.
The arrayR(inc, 3+)[l] stores the smallest element of S[1..i] in which an inc-3+-rollercoaster
of length l ends. The array R(dec, 3+)[l] stores the largest element of S[1..i] in which an
dec-3+-rollercoaster of length l ends.
The array R(inc, 3′+)[l] stores the largest element of S[1..i] in which an inc-3+-rollercoaster
of length l ends. The array R(dec, 3′+)[l] stores the smallest element of S[1..i] in which a
dec-3+-rollercoaster of length l ends. These arrays will be used when the last run of the
current rollercoaster changes from an ascent to a descent, and vice versa.

We insert S[i] into arrays R(dec, h) so to maintain analogous aforementioned invariants.
To achieve these invariants we insert S[i] as follows:

R(inc, 2): Find the largest index l such that R(dec, 3′+)[l] < S[i]. If S[i] < R(inc, 2)[l+ 1]
then update R(inc, 2)[l + 1] = S[i].
R(inc, 3+): Find the largest indices l1 and l2 such thatR(inc, 2)[l1] < S[i] andR(inc, 3+)[l2]
< S[i]. Let l = max{l1, l2}. If S[i] < R(inc, 3+)[l+1] then update R(inc, 3+)[l+1] = S[i].
R(inc, 3′+): Find the largest index l1 and l2 such that R(inc, 2)[l1] < S[i] and R(inc, 3′+)[l2]
< S[i]. Let l = max{l1, l2}. If S[i] > R(inc, 3′+)[l+1] then update R(inc, 3′+)[l+1] = S[i].
The arrays R(dec, h) are updated in a similar fashion.

Since our arrays R(w, h) are not necessarily sorted, we cannot perform a predecessor
search to find proper locations of S[i]. To insert S[i] we need to find the largest index l such
that R(w, h)[l] is smaller (or, alternatively, larger) than S[i] for some w and h, and also need
to update contents of these arrays. Thereby, if A is an R(w, h) array, we need to perform the
following two operations on A:

FindMax(A,S[i]): Find the largest index l such that A[l] > S[i] (or A[l] < S[i]).
Update(A, l, S[i]): Set A[l] = S[i].

We implement each R(w, h) as a Fenwick tree [8], which supports FindMax and Update
in O(logn) time. Thus, the total running time of our algorithm is O(n logn). After all
elements of S have been processed, the largest length of a rollercoaster is the largest value l
for which R(w, 3+)[l] or R(w, 3′+)[l] is not empty; the corresponding rollercoaster can also be
retrieved from arrays R(w, h), by keeping the history of the way the elements of these arrays
were computed, and then rolling back the computation.

A Longest Rollercoaster in Permutations: Here we consider a special case where our input
sequence S consists of n distinct integers, each of which can be represented using at most
c memory words for some constant c > 1, in a RAM model with logarithmic word size. In
linear time, we can sort S, using Radix Sort, and then hash it to a permutation of {1, . . . , n}.
This reduces the problem to finding a longest rollercoaster in a permutation of {1, . . . , n}.
The longest increasing subsequence of such a sequence can be computed in O(n log logn)
time by using a van Emde Boas tree [18], which supports predecessor search and updates
in O(log logn) time.8 To compute a longest rollercoaster in the same time, we need a data

8 We note that a longest increasing subsequence of a permutation can also be computed in O(n log log k)
time (see [5]) where k is the largest length of an increasing sequence. However, in our case, the largest

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:11

structures that supports FindMax and Update in permutations in O(log logn) time. In the
full version of the paper (see [3]) we show how to obtain such a data structure by using van
Emde Boas trees combined with some other structures.

I Lemma 6. Let A be an array with n elements from the set {0, 1, . . . , n} such that each
non-zero number occurs at most once in A. We can construct, in linear time, a data structure
that performs FindMax and Update operations in O(log logn) amortized time.

With Lemma 6 in hand, we can compute a longest rollercoaster in S in O(n log logn)
time. We note that this algorithm can also compute a longest increasing subsequence by
maintaining only the array R(inc, 3+).

Notice that both of our algorithms (for general sequences and for permutations) can be
generalized to compute a longest k-rollercoaster in O(kn logn) time and in O(kn log logn)
time, respectively. A straightforward way is to maintain 2k arrays R(w, h) with w ∈ {inc, dec}
and h ∈ {2, . . . , k−1, k+, k

′
+} and fill them in a way analogous to what we did for rollercoasters.

The following theorem summarizes our results in this section.

I Theorem 7. Let k > 3 be an integer. Then a longest k-rollercoaster in every sequence of
n distinct real numbers can be computed in O(kn logn) time, and a longest k-rollercoaster in
every permutation of {1, . . . , n} can be computed in O(kn log logn) time.

2.4 Counting Rollercoaster Permutations
In this section we estimate the number r(n) of permutations of {1, 2, . . . , n} that are roller-
coasters. A brief table follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
r(n) 1 0 2 2 14 42 244 1208 7930 52710 40580 3310702 29742388 285103536

This is sequence A277556 in the On-Line Encyclopedia of Integer Sequences [16].
The first step is to rephrase the condition that a permutation is a rollercoaster in the

language of ascents and descents. Given a length-n permutation π = π1π2 · · ·πn, its descent
word u(π) is defined to be u1u2 · · ·un−1 where ui = a if πi < πi+1 and b otherwise. For
example if π = 2, 4, 6, 1, 3, 5, then u(π) = aabaa. Notice that π is a rollercoaster if and only
if every maximal contiguous subsequence of u(π), that consists of only a’s or b’s, has length
at least two. In other words, π is a rollercoaster if and only if u(π) does not have an isolated
a or an isolated b; in fact u(π) does not contain patterns {aba,bab}, and also begins and
ends with either aa or bb. The set of all such descent words u(π) is given by the expression

(aaa∗ + bbb∗)∗.

This expression specifies that every increasing run and every decreasing run must contain
at least three elements. Since this description is a regular expression, one can, in principle,
obtain the asymptotic behavior of r(n) using the techniques of [2], but the calculations
appear to be formidable.

Instead, we follow the approach of Ehrenborg and Jung [6]. This is based on specifying
sets of permutations through pattern avoidance. We say a word w avoids a set of words
S if no contiguous subword of w belongs to S. Although rollercoasters are not specifiable
in terms of a finite set of avoidable patterns, they “almost are”. Consider the patterns

length of a rollercoaster is Ω(n).

ICALP 2018

http://oeis.org/A277556

18:12 Rollercoasters and Caterpillars

{aba,bab}. Every descent word of a rollercoaster must avoid both these patterns, and
every word avoiding these patterns that also begins and ends with either aa or bb is the
descent word of some rollercoaster. Let s(n) be the number of permutations of length n

whose descent word avoids {aba,bab}. Then r(n) = Θ(s(n)). From [6, Prop. 5.2] we know
that s(n) ∼ c · n! · λn−3 where λ .= 0.6869765032 · · · is the root of a certain equation. It
follows that r(n) ∼ c′ · n! · λn−3 where c′ is a constant, approximately 0.204.

3 Caterpillars

In this section we study the problem of drawing a top-view caterpillar, with L-shaped edges,
on a set of points in the plane that is in general orthogonal position. Recall that a top-view
caterpillar is an ordered caterpillar of degree 4 such that the two leaves adjacent to each
vertex lie on opposite sides of the spine; see Figure 1(b) for an example. The best known
upper bound on the number of required points for a planar L-shaped drawing of the n-vertex
top-view caterpillar is O(n logn), for all n; this bound is due to Biedl et al. [4]. We use
Theorem 4 and improve this bound to 25

3 n+O(1).
In every planar L-shaped drawing of a top-view caterpillar, every node of the spine, except

for the two endpoints, must have its two incident spine edges aligned either horizontally
or vertically. Such a drawing of the spine (which is essentially a path) is called a straight-
through drawing. It has been proved in [4] that every n-vertex path has an x-monotone
straight-through drawing on any set of at least c · n logn points, for some constant c. The
following theorem improves this bound.

I Theorem 8. Any path of n vertices has an x-monotone straight-through drawing on any
set of at least 3n−3 points in the plane that is in general orthogonal position.

Proof. Fix an arbitrary set of 3n−3 points. As in the proof of Theorem 4, find two pseudo-
rollercoasters that together cover all but the last point and that both contain the first
point. Append the last point to both sets; we hence obtain two subsequences R1, R2 with
|R1|+ |R2| > 3n−1 and for which all but the first and last run have length at least 3.

We may assume |R1| > 3
2n−

1
2 , and will find the straight-through drawing within it. To

do so, consider any run r of R1 that is neither the first nor the last run, and that has even
length (hence length at least 4). By removing from r one point that is not shared with an
adjacent run, we turn it into a run of odd length. Let R′ be the subsequence that results after
applying this to every such run of R1; then R′ satisfies that every run except the first and
last one has odd length. Observe that we can find an x-monotone straight-through drawing
of length |R′| on this, see e.g. the black path in Figure 5 that is drawn on the black points.

It remains to argue that |R′| > n. Let r1, . . . , r` be the runs of R1, and assign to
each run ri all but the last point of ri (the last point of ri is counted with ri+1, or not
counted at all if i = `). Therefore |r1| + · · · + |r`| = |R1|−1 > 3

2n −
3
2 . For each ri with

2 6 i 6 `−1, we remove a point only if |ri| > 3, hence we keep at least 2
3 |ri| points. Therefore

|R′| > |r1|+ |r`|+
∑

26i6`−1
2
3 |ri| =

∑
16i6`

2
3 |ri|+ 1

3 (|r1|+ |r`|) > 2
3 · (

3
2n−

3
2)+ 1

3 (2+1) = n

as desired. J

To draw top-view caterpillars, we essentially use Theorem 8 and place the spine on the
resulting straight-through x-monotone path. But we will get a slightly better factor if we
analyze the number of points directly.

I Theorem 9. For every n, the n-vertex top-view caterpillar has a planar L-shaped drawing
on any set of 25

3 (n+4) points in the plane that is in general orthogonal position. Such a

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:13

s1

s2

sN

b1

a1

c1

d1

a2

b2

s3

d2

c2

Figure 5 An x-monotone straight-through drawing of an N -vertex path. Red (lighter shade)
points are reserved.

drawing can be computed in O(n) time, provided that the input points are given in sorted
order.

Proof. Fix any 25
3 (n+4) points P in general orthogonal position. Partition P , by vertical

lines, into 5
3 (n+4) sets, each of them containing five points. We call every such set a 5-set.

Let P ′ be the set of the mid-points (with respect to y-coordinates) of every 5-set. We have
|P ′| > 5

3 (n+4), so by Theorem 4 it contains a rollercoaster R of length at least 5
6 (n+4).

Let s1, . . . , sN (for N > 5
6 (n+4)) be the points of R, ordered from left to right. For every

i ∈ {1, . . . , N}, consider the 5-set containing si and let its other points be ai, bi, ci, di from
top to bottom; we call these the reserved points. The main idea is to draw the spine of
the caterpillar along R and the leaves at reserved points, though we will deviate from this
occasionally. Let the spine consist of vertices v1, v2, . . . , v`, where v1 and v` are leaves while
v2, v3, . . . are vertices of degree 4. We process the vertices in order along the spine, and
maintain the following invariant:

I Invariant. At time k > 1, vertex v2k is drawn on a point si that is not an extremal vertex
of a run of R. Edge (v2k, v2k−1) attaches vertically at v2k. All vertices v1, . . . , v2k−1, all
their incident leaves, and one incident leaf of v2k are drawn on points to the left of si.

By a suitable reflection we may assume that s2 is above s1. To initiate this process, we
draw v1 on s1, v2 on s2, and one leaf incident to s2 on b1. See Figure 5. Clearly the invariant
holds for v2. Now assume that vertex v2k has been placed at si, and we want to place v2k+1
and v2k+2 next. We know that si is in the middle of some run of R; up to symmetry we may
assume that it is an ascending run. Let sj be the last point of this run of R; by the invariant
j > i. We distinguish cases:

Case 1: j 6 i + 4. See Figure 6(a). We will completely ignore the 5-sets containing
si+1, . . . , sj−1. Recall that there are two reserved points aj and bj above sj . We place v2k+1
at bj and v2k+2 at sj+1. We connect leaves as follows: The leaves incident to v2k+1 are
placed at aj and sj . To place one leaf each incident to v2k and v2k+2, we use the two points
cj and dj , using the one farther left for v2k. Clearly the invariant holds.

Observe that there are at most five 5-sets (corresponding to si+1, . . . , sj+1) that were
parsed, and we have used two for placing spine-vertices. Therefore, we have used at least
2
5 th of the parsed 5-sets.

ICALP 2018

18:14 Rollercoasters and Caterpillars

si sj+1

bj
sj

aj

cj

dj

si

si+1

si+3

si+2

si+4

bi+2

ci+2

Figure 6 Placing the next two spine-vertices. (a) j 6 i + 4. (b) j > i + 4. The dashed line
indicates R, the solid line is the spine.

Case 2: j > i+ 4. See Figure 6(b). We ignore the reserved points corresponding to si+1
and si+3. We place v2k+1 at si+2 and v2k+2 at si+4. Note that by case-assumption si+4 is
not the end of the run, so this satisfies the invariant. We connect, as leaves, si+1 to v2k (at
si), and si+3 to v2k+2 (at si+4). The two leaves of v2k+1 can be placed in the 5-set of si+2.
We have used four 5-sets and placed two spine-vertices, and have therefore used half of the
parsed 5-sets.

This is the end of one iteration. In every iteration, we have used at least 2
5 th of the

parsed 5-sets. Since there were 5
6 (n+4) 5-sets, we hence can place 1

3 (n+4) spine-vertices.
Since the spine of the n-vertex top-view caterpillar has 1

3 (n+4) vertices, our claim about
the size of the input point set follows. If the input points are given in sorted order, we can
find the rollercoaster in linear time, and then we do one scan of the points to find a planar
L-shaped drawing. Thus, our claim about the running time follows. J

References
1 Tanbir Ahmed and Hunter Snevily. Some properties of roller coaster permutations. Bulletin

of the Institute of Combinatorics and its Applications, 68:55–69, 2013.
2 Nicolas Basset. Counting and generating permutations in regular classes. Algorithmica,

76(4):989–1034, 2016.
3 Therese C. Biedl, Ahmad Biniaz, Robert Cummings, Anna Lubiw, Florin Manea, Dirk

Nowotka, and Jeffrey Shallit. Rollercoasters and caterpillars. CoRR, abs/1801.08565, 2018.
arXiv:1801.08565.

4 Therese C. Biedl, Timothy M. Chan, Martin Derka, Kshitij Jain, and Anna Lubiw. Im-
proved bounds for drawing trees on fixed points with L-shaped edges. In Proceedings of the
25th International Symposium on Graph Drawing and Network Visualization (GD), volume
10692 of Lecture Notes in Computer Science, pages 305–317. Springer, 2017. Full version
in arXiv:1709.01456.

5 Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subsequence
and application. Information and Computation, 208(9):1054–1059, 2010.

6 R. Ehrenborg and J. Jung. Descent pattern avoidance. Advances in Applied Mathematics,
49:375–390, 2012.

7 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Math-
ematica, 2:463–470, 1935.

8 Peter M. Fenwick. A new data structure for cumulative frequency tables. Software—
Practice and Experience, 24(3):327–336, 1994.

9 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

http://arxiv.org/abs/1801.08565

T. Biedl, A. Biniaz, R. Cummings, A. Lubiw, F. Manea, D. Nowotka, and J. Shallit 18:15

10 Emilio Di Giacomo, Fabrizio Frati, Radoslav Fulek, Luca Grilli, and Marcus Krug. Ortho-
geodesic point-set embedding of trees. Computational Geometry: Theory and Applications,
46(8):929–944, 2013.

11 John M. Hammersley. A few seedlings of research. In Proceedings of the 6th Berkeley Sym-
posium on Mathematical Statistics and Probability, pages 345–394. University of California
Press, 1972.

12 Sergey Kitaev. Patterns in Permutations and Words. Springer, 2011.
13 S. Linton, N. Ruškuc, and V. Vatter, editors. Permutation Patterns. London Mathematical

Society Lecture Note Series, vol. 376, Cambridge, 2010.
14 Dan Romik. The Surprising Mathematics of Longest Increasing Subsequences. Cambridge,

2015.
15 Manfred Scheucher. Orthogeodesic point set embeddings of outerplanar graphs. Master’s

thesis, Graz University of Technology, 2015.
16 N. J. A. Sloane et al. The On-Line Encylopedia of Integer Sequences. URL: https://oeis.

org.
17 J. Michael Steele. Variations on the monotone subsequence theme of Erdős and Szekeres.

In David Aldous, Persi Diaconis, Joel Spencer, and J. Michael Steele, editors, Discrete
Probability and Algorithms, pages 111–131. Springer New York, 1995.

18 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977.

ICALP 2018

https://oeis.org
https://oeis.org

	Introduction
	Our Contributions

	Rollercoasters
	A Proof of Conjecture 1
	An Algorithm
	Length and Running-Time Analysis

	An Extension
	Algorithms for a Longest Rollercoaster
	Counting Rollercoaster Permutations

	Caterpillars

