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Abstract
We study sublinear algorithms for two fundamental graph problems, MAXCUT and correlation
clustering. Our focus is on constructing core-sets as well as developing streaming algorithms for
these problems. Constant space algorithms are known for dense graphs for these problems, while
Ω(n) lower bounds exist (in the streaming setting) for sparse graphs.

Our goal in this paper is to bridge the gap between these extremes. Our first result is to
construct core-sets of size Õ(n1−δ) for both the problems, on graphs with average degree nδ (for
any δ > 0). This turns out to be optimal, under the exponential time hypothesis (ETH). Our
core-set analysis is based on studying random-induced sub-problems of optimization problems.
To the best of our knowledge, all the known results in our parameter range rely crucially on
near-regularity assumptions. We avoid these by using a biased sampling approach, which we
analyze using recent results on concentration of quadratic functions. We then show that our
construction yields a 2-pass streaming (1 + ε)-approximation for both problems; the algorithm
uses Õ(n1−δ) space, for graphs of average degree nδ.
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1 Introduction

Sublinear algorithms are a powerful tool for dealing with large data problems. The range of
questions that can be answered accurately using sublinear (or even polylogarithmic) space
or time is enormous, and the underlying techniques of sketching, streaming, sampling and
core-sets have been proven to be a rich toolkit.
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16:2 Sublinear MAXCUT and Correlation Clustering

When dealing with large graphs, the sublinear paradigm has yielded many powerful
results. For many NP-hard problems on graphs, classic results from property testing [20, 7]
imply extremely efficient sublinear approximations. In the case of dense graphs, these results
(and indeed older ones of [10, 16]) provide constant time/space algorithms. More recently,
graph sketching techniques have been used to obtain efficient approximation algorithms for
cut problems on graphs [2, 3] in a streaming setting. These algorithms use space that is
nearly linear in n (the number of vertices) and are sublinear in the number of edges as long
as |E| = ω(n) (this is called the “semi-streaming” setting).

By way of lower bounds, recent results have improved our understanding of the limits of
sketching and streaming. In a sequence of results [22, 23, 25], it was shown that for problems
like matching and MaxCut in a streaming setting, Ω(n) space is necessary in order to obtain
any approximation better than a factor 2 in one round. (Note that a factor 2 is trivial by
simply counting edges.) Furthermore, Andoni et al. [9] showed that any sketch for all the
cuts in a graph must have size Ω(n).

While these lower bounds show that O(n) space is the best possible for approximating
problems like MaxCut in general, the constructions used in these bounds are quite specialized.
In particular, the graphs involved are sparse, i.e., have Θ(n) edges. Meanwhile, as we
mentioned above, if a graph is dense (Ω(n2) edges), random sampling is known to give O(1)
space and time algorithms. The question we study in this paper is if there is a middle ground:
can we get truly sublinear (i.e., o(n)) algorithms for natural graph problems in between
(easy) dense graphs and (hard) sparse graphs?

Our main contribution is to answer this in the affirmative. As long as a graph has average
degree nδ for some δ > 0, truly sub-linear space (1 + ε) approximation algorithms are possible
for problems such as MaxCut and correlation clustering.1 Indeed, we show that a biased
sample of vertices forms a “core-set” for these problems. A core-set for an optimization
problem (see [1]), is a subset of the input with the property that a solution to the subset
provides an approximation to the solution on the entire input.

Our arguments rely on understanding the following fundamental question: given a graph
G, is the induced subgraph on a random subset of vertices a core-set for problems such as
MaxCut? This question of sub-sampling and its effect on the value of an optimization
problem is well studied. Results from property testing imply that a uniformly random sample
of constant size suffices for many problems on dense graphs. [16, 6] generalized these results
to the case of arbitrary k-CSPs. More recently, [12], extending a result in [14], studied
the setting closest to ours. For graphs, their results imply that when the maximum and
minimum degrees are both Θ(nδ), then a random induced subgraph with Õ(n1−δ) acts as
a core-set for problems such as MaxCut. Moreover, they showed that for certain lifted
relaxations, subsampling does not preserve the value of the objective. Finally, using more
modern techniques, [31] showed that the cut norm of a matrix (a quantity related to the
MaxCut) is preserved up to a constant under random sampling, improving on [16, 6]. While
powerful, we will see that these results are not general enough for our setting. Thus we
propose a new, conceptually simple technique to analyze sub-sampling, and present it in the
context of MaxCut and correlation clustering.

1.1 Our Results
As outlined above, our main result is to show that there exist core-sets of size Õ(n1−δ) for
MaxCut and correlation clustering for graphs with Ω(n1+δ) edges (where 0 < δ ≤ 1). This

1 We consider the max-agreement version of correlation clustering (see Section 2).
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then leads to a two-pass streaming algorithm for MaxCut and correlation clustering on
such graphs, that uses Õ(n1−δ) space and produces a 1 + ε approximation.

This dependence of the core-set size on δ is optimal up to logarithmic factors, by a result
of [15]. Specifically, [15] showed that any (1 + ε) approximation algorithm for MaxCut on
graphs of average degree nδ must have running time 2Ω(n1−δ), assuming the exponential time
hypothesis (ETH). Since a core-set of size o(n1−δ) would trivially allow such an algorithm
(we can perform exhaustive search over the core-set), our construction is optimal up to a
logarithmic factor, assuming ETH.

Our streaming algorithm for correlation clustering can be viewed as improving the semi-
streaming (space Õ(n)) result of Ahn et al. [4], while using an additional pass over the data.
Also, in the context of the lower bound of Andoni et al. [9], our result for MaxCut can be
interpreted as saying that while a sketch that approximately maintains all cuts in a graph
requires an Ω(n) size, one that preserves the MaxCut can be significantly smaller, when the
graph has a polynomial average degree.

At a technical level, we analyze the effect of sampling on the value of the MaxCut and
correlation clustering objectives. As outlined above, several techniques are known for such an
analysis, but we give a new and conceptually simple framework that (a) allows one to analyze
non-uniform sampling for the first time, and (b) gets over the assumptions of near-regularity
(crucial for [14, 12]) and density (as in [16, 6]). We expect the ideas from our analysis to be
applicable to other settings as well, especially ones for which the ‘linearization’ framework
of [10] is applicable.

The formal statement of results, an outline of our techniques and a comparison with
earlier works are presented in Section 3.

1.2 Related Work
MaxCut and correlation clustering are both extremely well-studied problems, and thus we
will only mention the results most relevant to our work.

Dense graphs. A graph is said to be dense if its average degree is Ω(n). Starting with the
work of Arora et al. [10], many NP hard optimization problems have been shown to admit a
PTAS when the instances are dense. Indeed, a small random induced subgraph is known to
be a core-set for problems such as MaxCut, and indeed all k-CSPs [20, 6, 16, 29]. The work
of [10] relies on an elegant linearization procedure, while [16, 6] give a different (and more
unified) approach based on “cut approximations” of a natural tensor associated with a CSP.

Polynomial density. The focus of our work is on graphs that are in between sparse (constant
average degree) and dense graphs. These are graphs whose density (i.e., average degree) is
nδ, for some 0 < δ < 1. Fotakis et al. [15] extended the approach of [10] to this setting,
and obtained (1 + ε) approximation algorithms with run-time exp(Õ(n1−δ)). They also
showed that it was the best possible, under the exponential time hypothesis (ETH). By
way of core-sets, in their celebrated work on the optimality of the Goemans-Williamson
rounding, Feige and Schechtman [14] showed that a random sample of Õ(n1−δ) is a core-set
for MaxCut, if the graphs are almost regular and have an average degree nδ. This was
extended to other CSPs by [12]. These arguments seem to use near-regularity in a crucial
way, and are based on restricting the number of possible ‘candidates’ for the maximum cut.

Streaming algorithms and lower bounds. In the streaming setting, there are several
algorithms [2, 27, 18, 3, 19, 26] that produce cut or spectral sparsifiers with O( nε2 ) edges
using Õ( nε2 ) space. Such algorithms preserve every cut within (1 + ε)-factor (and therefore

ICALP 2018



16:4 Sublinear MAXCUT and Correlation Clustering

also preserve the max cut). Andoni et al. [9] showed that such a space complexity is essential;
in fact, [9] show that any sketch for all the cuts in a graph must have bit complexity Ω( nε2 )
(not necessarily streaming ones). However, this does not rule out the possibility of being
able to find a maximum cut in much smaller space.

For MaxCut, Kapralov et al. [24] and independently Kogan et al. [28] proved that
any streaming algorithm that can approximate the MaxCut value to a factor better than
2 requires Ω̃(

√
n) space, even if the edges are presented in random order. For adversarial

orders, they showed that for any ε > 0, a one-pass (1 + ε)-approximation to the max cut
value must use n1−O(ε) space. Very recently, Kapralov et al. [25] went further, showing that
there exists an ε∗ > 0 such that every randomized single-pass streaming algorithm that yields
a (1 + ε∗)-approximation to the MAXCUT size must use Ω(n) space.

Correlation clustering. Correlation clustering was formulated by Bansal et al. [11] and
has been studied extensively. There are two common variants of the problem – maximizing
agreement and minimizing disagreement. While these are equivalent for exact optimization
(their sum is a constant), they look very different under an approximation lens. Maximizing
agreement typically admits constant factor approximations, but minimizing disagreement
is much harder. In this paper, we focus on the maximum-agreement variant of correlation
clustering and in particular we focus on (1 + ε)-approximations. Here, Ailon and Karnin [5]
presented an approximation scheme with sublinear query complexity (which also yields a
semi-streaming algorithm) for dense instances of correlation clustering. Giotis and Guruswami
[17] described a sampling based algorithm combined with a greedy strategy which guarantees
a solution within (εn2) additive error. (Their work is similar to the technique of Mathieu
and Schudy [29].) Most recently, Ahn et al. [4] gave a single-pass semi-streaming algorithm
for max-agreement. For bounded weights, they provide an (1 + ε)-approximation streaming
algorithm and for graphs with arbitrary weights, they present a 0.766(1− ε)-approximation
algorithm. Both algorithms require (nε−2) space. The key idea in their approach was to
adapt multiplicative-weight-update methods for solving the natural SDPs for correlation
clustering in a streaming setting using linear sketching techniques.

2 Definitions

I Definition 1 (MaxCut). Let G = (V,E,w) be a graph with weights w : E → R+. Let
(A,B) be a partition of V and let w(A,B) denote the sum of weights of edges between A
and B. Then MaxCut(G) = max(A,B) partition of V w(A,B).

For ease of exposition, we will assume that the input graph for MaxCut is unweighted.
Our techniques apply as long as all the weights are O(1). Also, we denote by ∆ the average
degree, i.e.,

∑
i,j wij/|V |.

Moving now to correlation clustering, let G = (V,E, c+, c−) be a graph with edge weights
c+ij and c−ij where for every edge ij we have c+ij , c

−
ij ≥ 0 and only one of them is nonzero. For

every edge ij ∈ E, we define ηij = c+ij − c
−
ij and for each vertex, di =

∑
i∈Γ(j) |ηij |. We will

also assume that all the weights are bounded by an absolute constant in magnitude (for
simplicity, we assume it is 1). We define the “average degree” ∆ (used in the statements
that follow) of a correlation clustering instance to be (

∑
i di)/n.

I Definition 2 (MAX-AGREE correlation clustering). Given G = (V,E, c+, c−) as above,
consider a partition of V into clusters C1, C2, . . . , Ck, and let χij be an indicator that is 1 if
i an j are in the same cluster and 0 otherwise. The MAX-AGREE score of this clustering is
given by

∑
ij c

+
ijχij +

∑
ij c
−
ij(1− χij). The goal is to find a partition maximizing this score.

The maximum value of the score over all partitions of V will be denoted by CC(G).
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Note that the objective value can be simplified to
∑
ij c
−
ij + ηijχij = C− +

∑
ij ηijχij , where

C− denotes the sum
∑
ij c
−
ij .

We will also frequently use concentration bounds; these are stated in full version of the
paper.

3 Technical overview

We now present an outline of our main ideas. Suppose we have a graph G = (V,E). First,
we define a procedure vertex sample. This takes as input probabilities pi for every vertex,
and produces a random weighted induced subgraph.

Procedure vertex sample ({pi}i∈V ). Sample a set S′ of vertices by selecting each vertex
vi with probability pi independently. Define H to be the induced subgraph of G on the
vertex set S′. For i, j ∈ S′, define wij = 1

pipj∆2 .2
Intuitively, the edge weights are chosen so that the total number of edges remains the

same, in expectation. Next, we define the notion of an importance score for vertices. Let di
denote the degree of vertex i.

I Definition 3. The importance score hi of a vertex i is defined as hi = min{1, max{di,ε∆}
∆2αε

},
where αε is an appropriately chosen parameter (for MaxCut, we set it to ε4

C logn , and for
correlation clustering, we set it to ε8

C logn , where C is an absolute constant).

The main result is now the following:

I Theorem 4 (Core-set). Let G = (V,E) have an average degree ∆. Suppose we apply
vertex sample with probabilities pi ∈ [hi, 2hi] to obtain a weighted graph H. Then H has
Õ( n∆ ) vertices and the quantities MaxCut(H) and CC(H) are within a (1 + ε) factor of
the corresponding quantities MaxCut(G) and CC(G), w.p. at least 1− 1

n2 .

While the number of vertices output by the vertex sample procedure is small, we would
like a core-set of small “total size”. This is ensured by the following.

Procedure edge sample (H). Given a weighted graph H with total edge weightW , sample
each edge e ∈ E(H) independently with probability pe := min(1, 8|S′|we

ε2W ), to obtain a graph
H ′. Now, assign a weight we/pe to the edge e in H ′.

The procedure samples roughly |S′|/ε2 edges, with probability proportional to the edge
weights. The graph is then re-weighted in order to preserve the total edge weight in
expectation, yielding:

I Theorem 5 (Sparse core-set). Let G be a graph with n vertices and average degree ∆ = nδ.
Let H ′ be the graph obtained by first applying vertex sample and then applying edge
sample. Then H ′ is a ε-core-set for MaxCut and CC, having size Õ( n∆ ) = Õ(n1−δ).

We then show how to implement the above procedures in a streaming setting. This gives:

I Theorem 6 (Streaming algorithm). Let G be a graph on n vertices and average degree
∆ = nδ, whose edges arrive in a streaming fashion in adversarial order. There is a two-
pass streaming algorithm with space complexity Õ( n∆ ) = Õ(n1−δ) for computing a (1 + ε)-
approximation to MaxCut(G) and CC(G).

2 In correlation clustering, we have edge weights to start with, so the weight in H will be wij · c+
ij (or c−ij).

ICALP 2018



16:6 Sublinear MAXCUT and Correlation Clustering

Of these, Theorem 4 is technically the most challenging. Theorem 5 follows via standard
edge sampling methods akin to those in [2] (which show that w.h.p., every cut size is
preserved). It is presented in full version of the paper, for completeness. The streaming
algorithm, and a proof of Theorem 6, are presented in Section 6. In the following section, we
give an outline of the proof of Theorem 4.

3.1 Proof of the sampling result (theorem 4): an outline
In this outline we will restrict ourselves to the case of MaxCut as it illustrates our main
ideas. Let G be a graph as in the statement of the theorem, and let H be the output of the
procedure vertex sample.

Showing that MaxCut(H) is at least MaxCut(G) up to an εn∆ additive term is easy.
We simply look at the projection of the maximum cut in G to H (see, for instance, [14]).
Thus, the challenge is to show that a sub-sample cannot have a significantly larger cut, w.h.p.
The natural approach of showing that every cut in G is preserved does not work as 2n cuts
is too many for the purposes of a union bound.

There are two known ways to overcome this. The first approach is the one used in [20, 14]
and [12]. These works essentially show that in a graph of average degree ∆, we need to
consider only roughly 2n/∆ cuts for the union bound. If all the degrees are roughly ∆, then
one can show that all these cuts are indeed preserved, w.h.p. There are two limitations of
this argument. First, for non-regular graphs, the variance (roughly

∑
i pd

2
i , where p is the

sampling probability) can be large, and we cannot take a union bound over exp(n/∆) cuts.
Second, the argument is combinatorial, and it seems difficult to generalize this to analyze
non-uniform sampling.

The second approach is via cut decompositions, developed in [16, 6]. Here, the adjacency
matrix A is decomposed into poly(1/ε) rank-1 matrices, plus a matrix that has a small
cut norm. It turns out that solving many quadratic optimization problems (including
MaxCut) on A is equivalent (up to an additive εn∆) to solving them over the sum of rank-1
terms (call this A′). Now, the adjacency matrix of H is an induced square sub-matrix of
A, and since we care only about A′ (which has a simple structure), [6] could show that
MaxCut(H) ≤MaxCut(G) + εn2, w.h.p. To the best of our knowledge, such a result is
not known in the “polynomial density” regime (though the cut decomposition still exists).

Our technique. We consider a new approach. While inspired by ideas from the works
above, it also allows us to reason about non-uniform sampling in the polynomial density
regime. Our starting point is the result of Arora et al. [10], which gives a method to estimate
the MaxCut using a collection of linear programs (which are, in turn, derived using a
sample of size n/∆). Now, by a double sampling trick (which is also used in the approaches
above), it turns out that showing a sharp concentration bound for the value of an induced
sub-program of an LP as above, implies Theorem 4. As it goes via a linear programming and
not a combinatorial argument, analyzing non-uniform sampling turns out to be quite direct.
Let us now elaborate on this high level plan.

Induced sub-programs. First, we point out that an analysis of induced sub-programs is
also an essential idea in the work of [6]. The main difference is that in their setting, only
the variables are sub-sampled (and the number of constraints remains the same). In our
LPs, the constraints correspond to the vertices, and thus there are fewer constraints in the
sampled LP. This makes it harder to control the value of the objective. At a technical level,
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while a duality-based argument using Chernoff bounds for linear forms suffices in the setting
of [6], we need the more recent machinery on concentration of quadratic functions.

We start by discussing the estimation technique of [10].

Estimation with Linear Programs. The rough idea is to start with the natural quadratic
program for MaxCut: max

∑
(i,j)∈E xi(1 − xj), subject to xi ∈ {0, 1}.3 This is then

“linearized” using a seed set of vertices sampled from G. We refer to Section 4 for details.
For now, Est(G) is a procedure that takes a graph G and a set of probabilities {γi}i∈V (G),
samples a seed set using γ, and produces an estimate of MaxCut (G).

Now, suppose we have a graph G and a sample H. We can imagine running Est(G) and
Est(H) to obtain good estimates of the respective MaxCut values. But now suppose that
in both cases, we could use precisely the same seed set. Then, it turns out that the LPs
used in Est(H) would be ‘induced’ sub-programs (in a sense we will detail in Section 5) of
those used in Est(G), and thus proving Theorem 4 reduces to showing a sufficiently strong
concentration inequality for sub-programs.

The key step above was the ability to use same seed set in the Est procedures. This can
be formalized as follows.

Double sampling. Consider the following two strategies for sampling a pair of subsets
(S, S′) of a universe [n] (here, qv ≤ pv for all v):

Strategy A: choose S′ ⊆ [n], by including every v w.p. pv, independently; then for v ∈ S′,
include them in S w.p. qv/pv, independently.
Strategy B: pick S ⊆ [n], by including every v w.p. qv; then iterate over [n] once again,
placing v ∈ S′ with a probability equal to 1 if v ∈ S, and p∗v if v 6∈ S.

I Lemma 7. Suppose p∗v = pv(1 − qv
pv

)/(1 − pv). Then the distribution on pairs (S, S′)
obtained by strategies A and B are identical.

The proof is by a direct calculation and the details can be found in full version.

Proof of Theorem 4. To show the theorem, we use pv as in the statement of the theorem,
and set q to be the uniform distribution qv = 16 logn

ε2∆ . The proof now proceeds as follows. Let
S′ be a set sampled using the probabilities pv. These form the vertex set of H. Now, the
procedure Est on H (with sampling probabilities qv/pv) samples the set S (as in strategy
A). By the guarantee of the estimation procedure (Corollary 5.1.2 in full version), we have
MaxCut(H) ≈ Est(H), w.h.p. Next, consider the procedure Est on G with sampling
probabilities qv. Again, by the guarantee of the estimation procedure (Corollary 5.1.1), we
have MaxCut(G) ≈ Est(G), w.h.p.

Now, we wish to show that Est(G) ≈ Est(H). By the equivalence of the sampling
strategies, we can now take the strategy B view above. This allows us to assume that the
Est procedures use the same S, and that we pick S′ after picking S. This reduces our goal to
one of analyzing the value of a random induced sub-program of an LP, as mentioned earlier.
The details of this step are technically the most involved, and are presented in Section 5.
This completes the proof of the theorem. (Note that the statement also includes a bound on
the number of vertices of H. This follows immediately from the choice of pv.) J

3 This is a valid formulation, because for every xi 6= xj that is an edge contributes 1 to the objective, and
xi = xj contribute 0.

ICALP 2018



16:8 Sublinear MAXCUT and Correlation Clustering

4 Estimation via linear programming

We now present the estimation procedure Est used in our proof. It is an extension of [10] to
the case of weighted graphs and non-uniform sampling probabilities.

Let H = (V,E,w) be a weighted, undirected graph with edge weights wij , and let
γ : V → [0, 1] denote sampling probabilities. The starting point is the quadratic program for
MaxCut: max

∑
ij∈E wijxi(1−xj), subject to xi ∈ {0, 1}. The objective can be re-written

as
∑
i∈V xi(di −

∑
j∈Γ(i) wijxj), where di is the weighted degree,

∑
j∈Γ(i) wij . The key idea

now is to “guess” the value of ρi :=
∑
j∈Γ(i) wijxj , by using a seed set of vertices. Given a

guess, the idea is to solve the following linear program, which we denote by LPρ(V ).

maximize
∑
i

xi(di − ρi)− si − ti

subject to ρi − ti ≤
∑
j∈Γ(i)

wijxj ≤ ρi + si

0 ≤ xi ≤ 1, si, ti ≥ 0.

The variables are xi, si, ti. Note that if we fix the xi, the optimal si, ti will satisfy
si + ti = |ρi −

∑
j∈Γ(i) wijxj |. Also, note that if we have a perfect guess for ρi’s (coming

from the MaxCut), the objective can be made ≥MaxCut(H).

Estimation procedure. The procedure Est is the following: first sample a set S ⊆ V where
each i ∈ V is included w.p. γi independently. For every partition (A,S \ A) of S, set
ρi =

∑
j∈Γ(i)∩A

wij
γj

, and solve LPρ(V ) (in what follows, we denote this LP by LP γA,S\A(V ),
as this makes the partition and the sampling probabilities clear). Return the maximum of
the objective values.

Our result here is a sufficient condition for having Est(H) ≈MaxCut(H).

I Theorem 8. Let H be a weighted graph on n vertices, with edge weights wij that add up
to W . Suppose the sampling probabilities γi satisfy the condition

wij ≤
Wε2

8 logn
γiγj∑
u γu

for all i, j. (1)

Then, we have Est(H, γ) ∈ MaxCut(H) ± εW , with probability at least 1 − 1/n2 (where
the probability is over the random choice of S).

The proof consists of claims showing the upper and lower bound separately. The technical
details are presented in full version. Finally, to show Theorem 4 (as outlined in Section 3.1),
we need to apply Theorem 8 with specific values for γ and wij . The related corollaries are
stated in full version of the paper.

5 Random induced linear programs

We will now show that the Est on H has approximately the same value as the estimate
on G (with appropriate γ values). First, note that Est(G) is maxA⊆S LP γA,S\A(G), where
γi = qi. To write the LP, we need the constants ρi, defined by the partition (A,S \ A) as
ρi :=

∑
j∈Γ(i)∩A

1
qj
. For the graph H, the estimation procedure uses an identical program,

but the sampling probabilities are now αi := qi/pi, and the estimates ρ, which we now denote
by ρ̃i, are defined by ρ̃i :=

∑
j∈Γ(i)∩A

pjwij
qj

. Also, by the way we defined wij , ρ̃i = ρi
pi∆2 .
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max
∑
i∈G

[xi(di − ρi)− (si + ti)]

s.t.
∑
j∈Γ(i)

xj ≤ ρi + si, ∀i ∈ [n]

−
∑
j∈Γ(i)

xj ≤ −ρi + ti, ∀i ∈ [n]

0 ≤ xi ≤ 1 ∀i ∈ [n]

(a) The LP on the full graph

max
∑
i∈S′

[xi(d̃i − ρ̃i)− (s̃i+t̃i)]

s.t.
∑

j∈Γ(i)∩S′
wijxj ≤ ρ̃i + s̃i, ∀i ∈ S′

−
∑

j∈Γ(i)∩S′
wijxj ≤ −ρ̃i + t̃i, ∀i ∈ S′

0 ≤ xi ≤ 1, s̃i, t̃i ≥ 0 ∀i ∈ S′

(b) The sampled LP

Figure 1 The two LPs.

minimize
∑
i∈G

ui + ρizi s.t.

ui +
∑
j∈Γ(i)

zj ≥ di − ρi ∀i ∈ V

ui ≥ 0, −1 ≤ zi ≤ 1 ∀i ∈ V

(a) The dual of LP γ
A,S\A(G)

minimize
∑
i∈S′

[ũi + ρ̃iz̃i] s.t.

ũi +
∑

j∈Γ(i)∩S′
wij z̃j ≥ d̃i − ρ̃i ∀i ∈ S′

ũi ≥ 0, −1 ≤ z̃i ≤ 1 ∀i ∈ S′.

(b) The dual of the induced program
LPαA,S\A(H).

Figure 2 The dual LPs.

The degrees are now d̃i :=
∑
j∈Γ(i)∩S′ wij =

∑
j∈Γ(i)∩S′

1
pipj∆2 . The two LPs are shown in

Figure 1. Our aim in this section is to show the following:

I Theorem 9. Let G be an input graph, and let (S, S′) be sampled as described in Section 3.1.
Then, with probability ≥ 1− 1

n2 , we have

max
A⊆S

LP γA,S\A(G) ≥ ∆2 ·max
A⊆S

LPαA,S\A(H)− εn∆.

Proof outline. To prove the theorem, the idea is to take the “strategy B” viewpoint of
sampling (S, S′), i.e., fix S, and sample S′ using the probabilities p∗. Then, we only need
to understand the behavior of an “induced sub-program” sampled with the probabilities p∗.
This is done by considering the duals of the LPs, and constructing a feasible solution to the
induced dual whose cost is not much larger than the dual of the full program, w.h.p. This
implies the result, by linear programming duality.

Let us thus start by understanding the dual of LP γA,S\A(G) given A, shown in Figure 2a.
We note that for any given z, the optimal choice of ui is max{0, di − ρi −

∑
j∈Γ(i) zj}; thus

we can think of the dual solution as being the vector z. The optimal ui may thus be bounded
by 2di, a fact that we will use later. Next, we write down the dual of the induced program,
LPαA,S\A(H), as shown in Figure 2b. Following the outline above, we will construct a feasible
solution to LP (2b), whose cost is close to the optimal dual solution to LP (2a). The
construction we consider is very simple: if z is the optimal dual solution to (2a), we set
z̃i = zi for i ∈ S′ as the candidate solution to (2b). This is clearly feasible, and thus we only
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need to compare the solution costs. The dual objective values are as follows

DualG =
∑
i∈V

ρizi + max{0, di − ρi −
∑
j∈Γ(i)

zj} (2)

DualH ≤
∑
i∈S′

ρ̃izi + max{0, d̃i − ρ̃i −
∑

j∈Γ(i)∩S′
wijzj} (3)

Note that there is a ≤ in (3), as z̃i = zi is simply one feasible solution to the dual (which is
a minimization program). Next, our goal is to prove that w.p. at least 1− 1

n2 ,

max
A⊆S

DualH ≤
1

∆2 ·max
A⊆S

DualG + εn

∆ .

Note that here, the probability is over the choice of S′ given S (as we are taking view-B
of the sampling). The first step in proving the above is to move to a slight variant of the
quantity DualH , which is motivated by the fact that Pr[Yi = 1] is not quite pi, but p∗i (as we
have conditioned on S). Let us define ρ̃∗i := ρi

p∗
i
∆2 (recall that ρ̃i is ρi

pi∆2 ), and w∗ij := 1
p∗
i
p∗
j
∆2 .

So also, let d∗i :=
∑
j∈Γ(i) Yjw

∗
ij . Then, define

Dual∗H :=
∑
i∈S′

ρ̃∗i zi + max{0, d̃∗i − ρ̃∗i −
∑

j∈Γ(i)∩S′
w∗ijzj}. (4)

A straightforward lemma is as follows. The proof is presented in full version of the paper.

I Lemma 10. Let (S, S′) be sampled as in Section 3.1. Then w.p. at least 1− 1
n4 , we have

that for all z ∈ [−1, 1]n and for all partitions (A,S \A) of S,4 |DualH − Dual∗H | ≤ εn
2∆ .

Thus our goal is to show the following (where condition (b) on S is a technical one needed to
bound ρi).

I Lemma 11. Let S satisfy the conditions (a) |S| ≤ 20n logn
ε2∆ , and (b) for all i ∈ V ,∑

j∈Γ(i)∩S
1
qj
≤ 2(di + ε∆). Then, w.p. ≥ 1− 1

n4 over the choice of S′ given S, we have

max
A⊆S

Dual∗H ≤
1

∆2 ·max
A⊆S

DualG + εn

2∆ .

Proof of Theorem 9. The conditions we assumed on S in Lemma 11 hold w.p. at least
1− 1

n4 (via a simple application of Bernstein’s inequality). Thus the conclusion of the lemma
holds w.p. at least 1 − 2

n4 . Combining this with Lemma 10, we have that maxA DualH ≤
1

∆2 maxA DualG + εn
∆ w.p. at least 1− 3

n4 . The theorem then follows via LP duality. J

It thus suffices to prove Lemma 11 via a concentration bound on a quadratic function
that is not quite a quadratic form. Details can be found in full version of the paper.

6 A 2-pass streaming algorithm

We now show how our main core set result can be used to design a streaming algorithm
for MaxCut. The algorithm works in two passes: the first pass builds a core-set S of size
Õ(n/∆) as prescribed by Theorem 4 and the second pass builds the induced weighted graph
G[S] and computes its max cut. This algorithm works under edge insertion/deletion.

4 Note that the partition defines the ρi.
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6.1 Pass 1: Building a core set
To construct S, Theorem 4 states that each vertex must be sampled with probability pi,
where pi ≥ hi and hi = min(1, max(di,ε∆)

∆2αε
) is the importance score of a vertex. As the goal

is to only choose a small number of vertices, we will also make sure that pi ≤ 2hi. The
challenge here is two-fold: we need to sample (roughly) proportional to the degree di, which
can only be computed after the stream has passed, and we also need the actual value of pi
(or a close enough estimate of it) in order to correctly reweight edges in the second pass.

The degree di of a vertex i is the “count” of the number of times i appears in the edge
stream. To sample with probability proportional to di we will therefore make use of streaming
algorithms for `1-sampling [30, 8, 21]. We borrow some notation from [8].

I Definition 12. Let ρ > 0, f ∈ [1, 2]. A (ρ, f)-approximator to τ > 0 is a quantity τ̂ such
that τ/f − ρ ≤ τ̂ ≤ fτ + ρ

I Lemma 13 ([21] (rephrased from [8])). Given a vector x ∈ Rn and parameters ε, δ > 0, c > 0
there exists an algorithm A that uses space O(log(1/ε)ε−1 log2 n log(1/δ)) and generates a
pair (i, v) from a distribution Dx on [1 . . . n] such that with probability 1− δ

Dx(i) is a ( 1
nc , 1 + ε)-approximator to |xi|/‖x‖1

v is a (0, 1 + ε)-approximator to xi
where c is a fixed constant.

We will also need to maintain heavy hitters: all vertices of degree at least ∆2 (up to
constants). To do this, we will make use of the standard CountMin sketch [13]. For
completeness, we state its properties here.

I Lemma 14 ([13]). Fix parameters k, δ > 0. Then given a stream of m updates to a vector
x ∈ Rn there is a sketch CM of size O(k log δ−1(logm+logn)) and a reconstruction procedure
f : [n]→ R such that with probability 1− δ, for any xi, |xi − f(i)| ≤ ‖x‖1/k

Outline. We will have a collection of r, roughly n/∆ `1-samplers. These samplers will
together give a good estimate ((1+ε)-approximation) of the importance hi for all the vertices
that have a small degree (which we define to be < αε∆2). Then, we use the CM sketch to
maintain the degrees of all the ‘high degree’ vertices, i.e., those with degrees ≥ αε∆2. Taken
together, we obtain the desired sampling in the first pass.

I Definition 15. Given two sets of pairs of numbers S, S′, let

S ∪max S
′ = {(x, max

(x′,y)∈S∪S′,x′=x
y)}.

I Lemma 16. Let S = {(i, vi)} be the set returned by Algorithm 1. Then
S has size Õ

(
n
∆
)
.

Each i ∈ [n] is sampled with probability pi that is (0, 1 + ε) approximated by vi and that
(n−c, 1 + ε)-approximates hi.

Proof sketch. Consider any vertex i with di ≥ ∆2αε. By Lemma 14, such a vertex will
report a count of at least f(i) = (1− ζ)∆2αε and thus is guaranteed to be included in Sh.
Its reported score vi = 1 satisfies the requirement of the Lemma. Secondly, consider any
vertex with degree di < ε∆. For such a vertex, hi = ε/∆αε and thus it is included in Sl with
the desired probability and vi.

Finally, consider a vertex i with ε∆ ≤ di < ∆2αε. The probability that none of the
`1-samplers yield i is (1 − di/n∆)r, and since di/n∆ � 1, this can be approximated as
(1− rdi/n∆). Thus, the probability of seeing i is rdi/n∆ = di/∆2αε as desired. J
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16:12 Sublinear MAXCUT and Correlation Clustering

Algorithm 1 Given n and average degree ∆
Initialize Sl, Sm, Sh ← ∅, and ζ = αε.
Sample elements from [1 . . . n] each with probability ε/∆αε. For each sampled i add
(i, ε/∆αε) to Sl.
Fix ζ > 0. Initialize a CountMin sketch CM with size parameter k = n/∆ζ2. Let f be
the associated reconstruction procedure.
Initialize r = O(n/∆αε) copies A1 . . . Ar of the algorithm A from Lemma 13.
for each stream update (i, w) (a vertex to which current edge is incident, and weight) do
Update each Aj , 1 ≤ j ≤ r. Update CM.

for j = 1 to r do
Sample (i, v) from Aj . Sm = Sm ∪max {(i, v)}

Sh = {(i, 1) | f(i) ≥ (1− ζ)∆2αε}
return Sl ∪max Sm ∪max Sh

I Corollary 17. For each (i, vi) ∈ S, hi ≤ vi ≤ 2hi.

6.2 Pass 2: Building the induced weighted graph
The first pass produces a set S of Õ(n/∆) vertices together with estimates vi for their
importance score hi. If we weight each edge ij in G[S] by wij = 1/vivj∆2, Theorem 4,
along with Corollary 17 guarantee that a MaxCut in the resulting weighted graph is a good
approximation of the true max cut. Thus, knowing S, constructing the re-weighted G[S]
in the second pass is trivial if we had space proportional to the number of edges in G[S].
Unfortunately this can be quadratic in |S|, so our goal is to implement the edge sampling of
Theorem 5 in the second pass. This is done as follows: we maintain a set of edges E′. Every
time we encounter an edge ij with i, j ∈ S, we check to see if it is already in E′. If not, we
toss a coin and with probability pij = min(1, wij logn/ε2) we insert (i, j, wij/pij) into E′.
By Lemma 7.1 in full version of the paper, the size of E′ is Õ(n/∆), and the resulting graph
yields a (1 + ε) approximation to the MaxCut.

7 Correlation Clustering

Our argument for correlation clustering parallels the one for MaxCut. The MAX-AGREE
variant of correlation clustering, while not a CSP (as the number of clusters is arbitrary),
almost behaves as one. We start with two simple observations. The first is that we can
restrict the number of clusters to 1/ε, for the purposes of a (1 + ε) approximation (See
full version of the paper). Next, observe that the optimum objective value is at least
max{C+, C−} ≥ n∆/2. This is simply because placing all the vertices in a single cluster
gives a value C+, while placing them all in different clusters gives C−. Thus, it suffices
to focus on additive approximation of εn∆. Once we fix the number of clusters k, we can
write correlation clustering as a quadratic program in a natural way: for each vertex i, have
k variables xi`, which is supposed to indicate if i is given the label `. We then have the
constraint that

∑
` xi` = 1 for all i. The objective function then has a clean form:

∑
ij

[
k∑
`=1

xi`(1− xj`)c−ij + xi`xj`c
+
ij ] =

∑
ij

∑
`

xi`c
−
ij + xi`xj`ηij =

∑
i,`

xi`(ρi` + d−i ),

where xi` = 1 iff vertex i ∈ C`, and ρi` =
∑
j∈Γ(i) xj`ηij and d

−
i =

∑
j c
−
ij .
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Note the similarity with the program for MaxCut. We will show that the framework
from Section 3.1 carries over with minor changes. The details of the new Est procedure can
be found in full version of the paper (it requires one key change: we now need to consider
k-partitions of the seed set in order to find ρ). The duality based proof is slightly more
involved; however we can use the same rough outline. The proof is presented in full version
of the paper.
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