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Abstract
We give very short and simple proofs of the following statements: Given a 2-colorable 4-uniform
hypergraph on n vertices,
1. It is NP-hard to color it with logδ n colors for some δ > 0.
2. It is quasi-NP-hard to color it with O

(
log1−o(1) n

)
colors.

In terms of NP-hardness, it improves the result of Guruswam, Håstad and Sudani [SIAM
Journal on Computing, 2002], combined with Moshkovitz-Raz [Journal of the ACM, 2010], by an
‘exponential’ factor. The second result improves the result of Saket [Conference on Computational
Complexity (CCC), 2014] which shows quasi-NP-hardness of coloring a 2-colorable 4-uniform
hypergraph with O (logγ n) colors for a sufficiently small constant 1� γ > 0.

Our result is the first to show the NP-hardness of coloring a c-colorable k-uniform hypergraph
with poly-logarithmically many colors, for any constants c ≥ 2 and k ≥ 3.
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1 Introduction

A k-uniform hypergraph H(V, E) is a collection of vertices V and a family E of subsets of size
k of the vertices. Let n denote the number of vertices |V|. A coloring of H with c colors is a
mapping χ : V → [c]. A coloring χ is said to be a valid c-coloring if for every e ∈ E , χ assigns
at least two different colors to the vertices in e. The chromatic number of a hypergraph is
the minimum c for which a valid c-coloring exists.

It is easy to find a 2-coloring of a 2-colorable graph. Deciding whether a graph is 3-
colorable or not is a well known NP-complete problem [7]. In an approximate graph (or
hypergraph) coloring problem, given a graph which is c colorable, the algorithm is allowed to
use more than c colors to properly color the given graph. The best known polynomial-time
algorithms to color a 3-colorable graph require nΩ(1) colors. However, the known NP-hardness
results can only rule out coloring a 3-colorable graph with 4 colors [11, 10]. This also implies
that coloring a t-colorable graph with t+ 2bt/3c − 1 colors is NP-hard. Garey and Johnson
[7] proved NP-hardness of (2t − 5)-coloring a t-colorable graph, for all t ≥ 6. Recently,
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15:2 Hypergraph Coloring

Brakensiek-Guruswami [4] showed that for all t ≥ 3, it is NP-hard to find a c-coloring when
c ≤ 2t− 2.

For hypergraphs with uniformity 3 and more, the situation is completely different when
the hypergraph is 2-colorable. The best known approximation algorithm for coloring a
2-colorable hypergraph is with nε color for some explicit ε ∈ (0, 1). It is easy to see that
if t-coloring of c-colorable k-uniform hypergraphs is hard, then it also implies a similar
hardness result for k′-uniform hypergraphs for any k′ > k up to polynomial-time reductions
i.e. coloring a c-colorable k′-uniform hypergraph with t colors is also hard. Therefore, the
wishful inapproximability result is to get nε coloring hardness for 2-colorable 3-uniform
hypergraphs for some ε > 0.

Two directions have been pursued in literature. One is getting better and better hardness
results in terms of colorability, where the uniformity of a hypergraph is any constant k
and the guarantee is that the hypergraph is colorable with constantly many colors. The
other is getting hardness results for smaller values of k . Both the directions are equally
interesting and have been looked into for several years. Table 1 summarizes the known
inapproximability results: For e.g. Guruswami et al. [9] (the first row) showed that given
a 2-colorable 4-uniform hypergraph, there is no polynomial-time algorithm to color it with
O
(

log logn
log log logn

)
many colors unless NP ⊆ DTIME

(
nO(log logn)). We would like to point out

that the condition NP ( DTIME
(
nO(log logn)) from [9] can be replaced with P 6= NP, if one

carries out the reduction of [9] starting with the PCP of [17].
We prove the following results:

I Theorem 1. Assuming NP * DTIME(nO(log logn)), there is no polynomial-time algorithm
that colors a 2-colorable 4-uniform hypergraph on n vertices with O

(
logn

log logn

)
colors.

Although an explicit constant in the exponent of logn was not mentioned in [19], it is
less than 0.01. Therefore, Theorem 1 improves the best known inapproximability result by
Saket [19] by a large polynomial factor, in terms of coloring with few colors. However, both
the results are incomparable (See Remark 1).

Our second result shows NP-hardness of coloring a 2-colorable 4-uniform hypergraph.

I Theorem 2. Assuming P 6= NP, there is no polynomial-time algorithm that colors a
2-colorable 4-uniform hypergraph on n vertices with logδ n colors for some δ > 0.

Theorem 2 improves the best known inapproximability result by Guruswami et al.[9] by
an‘exponential’ factor, in terms of coloring with few colors. In fact, our result is the first
to show the NP-hardness of coloring a c-colorable k-uniform hypergraph with poly(logn)
colors for any constants c ≥ 2 and k ≥ 3.

An independent set in a hypergraph is defined as a set of vertices such that no hyperedge
lies entirely within the set. In a valid coloring of a hypergraph, the vertices colored with the
same color form an independent set. Thus, saying that a hypergraph does not contain an
independent set of size n/c is stronger than saying that it cannot be colored with c colors.

In terms of approximating the size of the maximum independent set, Khot-Saket [15]
showed that given an almost 2-colorable 4-uniform hypergraph, it is quasi-NP-hard to find
an independent set of fractional size 2(logn)1−γ , for any γ > 0. More concretely, they show
that it is quasi-NP-hard to distinguish between cases when a 4-uniform hypergraph has
an independent set of size at least

(
n
2 − o(n)

)
vs. when it has no independent set of size

n/2(logn)1−γ , for any γ > 0.
I Remark. With the exception of results from this paper and Dinur et al.(denoted by ?? in
Table 1), all the remaining results give stronger inapproximability results than showing non
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Table 1 Known inapproximability results for hypergraph coloring (for ?? see Remark 1).

Completeness Soundness Assumption

Guruswami et
al. [9, 17]

2-colorable 4-uniform
hypergraph

Ω
( log logn

log log logn

)
P 6= NP

Khot [12] q-colorable 4-uniform hy-
pergraph, q ≥ 5

(logn)cq for
some c > 0

NP * DTIME
(
n(logn)O(1)

)
Khot [13] 3-colorable 3-uniform hy-

pergraph
(log logn)1/9

NP * DTIME
(
n(logn)O(1)

)
??Dinur et al. [5] 2-colorable 3-uniform hy-

pergraph
Ω( 3√log logn) NP * DTIME

(
n(logn)O(1)

)
Saket [19] 2-colorable 4-uniform

hypergraph
Ω(logδ n) for
0 < δ � 1

NP * DTIME
(
nO(log logn))

Guruswami et al. 2-colorable 8-uniform hy-
pergraph

[8] 4-colorable 4-uniform hy-
pergraph

22Ω(
√

log logn)
NP * DTIME

(
n2O(

√
log logn)

)
Guruswami et
al. [8]

3-colorable 3-uniform hy-
pergraph

2Ω( log logn
log log logn )

NP * DTIME
(
n2
O( log logn

log log logn )
)

Khot-Saket [14] 2-colorable 12-uniform hy-
pergraph

2(logn)Ω(1)

NP * DTIME
(
n(logn)O(1)

)
Varma [21] 2-colorable 8-uniform hy-

pergraph
4-colorable 4-uniform hy-
pergraph

2(logn)Ω(1)
NP * DTIME

(
n(logn)O(1)

)
??This paper 2-colorable 4-uniform

hypergraph
Ω
( logn

log logn

)
NP * DTIME

(
nO(log logn))

??This paper 2-colorable 4-uniform
hypergraph

Ω(logδ n) for
0 < δ � 1

P 6= NP

c-colorability in soundness. Namely, they show it is hard to distinguish between cases when
a hypergraph satisfies the property in the completeness column vs. when there does not exist
an independent set of size at least 1/s, where s is the quantity in the soundness column.

1.1 Proof Overview
Our inapproximability result is obtained by constructing a probabilistically checkable proof
where the locations are the vertices of a hypergraph and every check denotes a hyperedge of
the hypergraph. Typically, the PCP is constructed by composing the so-called outer verifier
with the inner verifier. Our starting point is a basic outer verifier that one gets from the
PCP Theorem [6, 1, 2], along with Raz’s parallel repetition theorem [18]. We can view
it as an instance of a Label Cover. A Label Cover instance consists of a bipartite graph
G(U, V,E) where every edge is associated with a projection constraint πe : [R]→ [L] (See
section 2.1). The inner verifier consists of encoding of labels of the vertices in a specific
format and performing a test on the encoding.

A typical hardness of approximation result uses the Long Code encoding where the
encoding of a k bit binary (or q-ary) string has an entry for every f : {0, 1}k → {0, 1} (or
f : [q]k → [q] for q ≥ 2). This blows up a string of length k into a string of length 22k . Such
an encoding is used in the construction of PCP by Guruswami et al. [9] and they managed to
show a ≈ log logn lower bound on the inapproximability of coloring a 2-colorable 4-uniform

ICALP 2018



15:4 Hypergraph Coloring

hypergraph. Khot [12] used a different encoding based on Split Code to get the hardness of
poly-logarithmic number of colors, but for q-colorable 4-uniform hypergraph where q ≥ 5 .
Saket [19] improved the result of Guruswami et al. [9] and showed the inapproximability of
coloring with O((logn)δ) colors for a very small constant 0 < δ � 1. Saket also used the
Long Code encoding, but the hypergraph is formed using a different inner verifier compared
to [9]. In a more recent series of works [8, 14, 21], efficient encodings were designed based
on so-called Short Code which was used to break the poly-logarithmic barrier. It is not
clear how to use this Short Code encoding to prove better inapproximability for 2-colorable
4-uniform hypergraphs. In all the previous constructions of PCPs based on Short Code,
either the alphabet size is at least 3 (the guarantee on the hypergraph colorability in the
completeness case) or the number of queries (the uniformity of the constructed hypergraph)
is at least 6 if the alphabet size is restricted to 2 (See Table 1).

Our reduction is along the lines of the reduction in [5] which showed that coloring a
2-colorable 3-uniform hypergraph with (log logn)1/3 colors is quasi-NP-hard. We give a very
brief outline of their reduction first: This reduction also encodes a label in the outer verifier
with a (rather large) subset of the Long Code encoding of size 22k−poly(k). They were able
to construct a PCP over a binary alphabet which only queries 3 bits, giving the hardness
for the above mentioned coloring problem. The encoding consists of all the locations in the
Long Code encoding which correspond to a slice of {0, 1}2k of hamming weight m, where m
is roughly 2k/2. The reduction crucially used two important properties of a specific graph,
known as Kneser graph, on these locations. The first is that the chromatic number of the
graph is large and the second is that in all the colorings of this graph with strictly fewer
colors than the chromatic number, there is a large color class containing a monochromatic
edge. The reduction also needed a multi-layered version of Label Cover, which gives the
hardness of (log logn)1/3 colors based on NP * DTIME(n(logn)O(1)).

In our construction of the PCP, we start with a basic outer verifier and use a very short
encoding of the labels of the outer verifier. More specifically, to get an inapproximability of
c-colorability, we use an encoding of size roughly 2kc, which is much shorter than the Long
Code encoding 22k or the encoding used in [5] for c� 2k. This short encoding is the reason
for improvement in the inapproximability. Of course, the whole analysis needs to work for
such a short encoding. For the analysis to work, we need to query one more bit from the
composed PCP, giving a hardness result for 4-uniform hypergraphs.

The subset of locations in the Long Code that we use corresponds to the vertex set of
the Schrijver graph (See section 2.2 for the definition). It has much fewer number of vertices
than the Kneser graph on the same slice. Moreover, the Schrijver graph also has a property
that its chromatic number is large. Unfortunately, it is known to be a vertex-critical graph
2. Thus, the property analogous to the second property of the Kneser graph mentioned
previously no longer holds for the Schrijver graph. However, if we are allowed to query one
more bit, then given an efficient coloring of the constructed 4-uniform hypergraph, it is
possible to list-decode, from the coloring, a small list of possible labelings to the vertices of
the outer verifier. The structure of the hyperedges in our 4-uniform hypergraph ensures that
the lists are consistent with each other i.e. there is a way to assign labels to the vertices of
the Label Cover instance from the list, which satisfies many constraints of the Label Cover
instance.

2 A vertex-critical graph is a graph G in which every vertex is a critical element, that is, if its deletion
decreases the chromatic number of G.
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logδ n NP-hardness
As highlighted earlier, the size of the encoding we use is 2kc and if we start with the NP-
hardness of the Label Cover given by [17], which has better parameters in the subconstant
soundness regime, we can run the whole reduction in polynomial-time if we set c = logδ n
for small enough δ > 0. Therefore, we get the required inapproximability result proving
Theorem 2.

Ω
(

logn
log logn

)
quasi-NP-hardness

The soundness parameter of the Label Cover instance given by [17] has an inverse exponential
dependence on the alphabet size of the instance (See Theorem 5). To get the improved
log1−o(1) n coloring hardness, we start with the usual Label Cover instance derived from
the combination of the PCP Theorem and the parallel repetition theorem. In this case,
there is an inverse polynomial dependence on the soundness parameter and the alphabet size
which enables us to prove a better hardness factor. One drawback of using this Label Cover
instance is that the instance size grows polynomially with the number of parallel repetitions.
More concretely, an instance of size n becomes an instance of size nO(r) with r repetitions.
Thus, it restricts us to assume NP * DTIME

(
nO(log logn)) instead of P 6= NP, as we need

r = Ω(log logn) repetitions.

1.2 logδ n NP-hardness via Independent set analysis?
We discuss here informally why the previous approaches could not reach poly(logn) factor
NP-hardness for approximating hypergraph coloring. Since all the previous approaches
(except [5]) get the inapproximability result by showing the hardness of approximating an
independent set, we focus on those works here. To get NP-hardness of poly(logn)-coloring
by showing the NP-hardness of approximating an independent set by 1/poly(logn) factor,
usually the soundness of the outer verifier (or the Label Cover instance) that one needs is at
most 1/poly(logn). The outer verifier of [17] has an exponential dependence on the label set
size and the inverse of the soundness parameter. Thus, the label set size which is required
for such reductions is at least 2poly(logn). The analysis of [8] uses the Short Code encoding
where the degree is ω(1). Therefore, the blowup in the reduction size is 2poly(logn)ω(1) , which
is super polynomial.

One can use a Short Code encoding where the degree is constant so that the blow-up
is limited to 2poly(logn)O(1) . [14] used a Quadratic Code where the degree is 2. One can
possibly use the Quadratic Code encoding or Short Code encoding of constant degree and
get a hypergraph of polynomial size starting with a Label Cover instance with 1/poly(logn)
soundness. Unfortunately, the analysis of [14] crucially needed an outer verifier with certain
properties. It is not yet known how to get a Label Cover instance by a polynomial-time
reduction starting from a 3SAT instance, with similar properties that were needed in [14]
and with 1/poly(logn) soundness (the latter was done in [17]).

2 Preliminaries

We denote a set {1, 2, . . . , n} by [n]. Bold face letters a,b, c . . . are used to denote strings
and subscripts are used to denote the elements at the respective locations in a string. By an
abuse of notation, we will use a ∈ {0, 1}n as a binary string of length n as well as a subset
of [n] given by {i ∈ [n] | ai = 1}. We will denote by 2[n] the set of all subsets of [n] and by([n]
k

)
the set of all subsets of [n] of size k. We denote the quantity O(nk), where k ∈ R+ by

poly(n).

ICALP 2018



15:6 Hypergraph Coloring

2.1 Label Cover
Now, we define a Label Cover instance which is the starting point of our reduction.

I Definition 3 (Label Cover). A Label Cover instance L = (U, V,E, [R], [L], φ) consists of
a bi-regular bipartite graph on two sets of variables U ∪ V . The range of variables in U is
denoted by [R] and that in V by [L]. Every (x, y) ∈ E, has a constraint φx→y : [R]→ [L].
Moreover, every constraint between a pair of variables is a projection constraint i.e. a labeling
to x uniquely defines a labeling to y that satisfies the constraint φx→y.

For brevity, we say x ∼ y, or ‘x is a neighbor of y’ if φx→y ∈ φ. We say that a Label
Cover instance is ε-satisfiable, if there exists a labeling to the variables which satisfies at
least ε fraction of the constraints between U and V .

We have the following NP-hardness result which follows from the PCP Theorem [6, 1, 2]
along with Raz’s parallel repetition theorem [18].

I Theorem 4. For any parameter l ∈ N, there exists a reduction from a 3-SAT instance of
size n to a Label Cover instance with nO(`) variables over a range of size 2O(`). The Label
Cover instance has the following completeness and soundness conditions:

If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.
If the 3-SAT instance is not satisfiable, then every assignment to the Label Cover instance
satisfies at most 2−Ω(`) fraction of the constraints.

Moreover, the reduction runs in time nO(`).

For our NP-hardness result, we need the following reduction from a 3-SAT instance to a
Label Cover instance by [17], which gives better parameters for subconstant soundness.

I Theorem 5. There exist absolute constants c′, c′′ > 1 such that for every n and ε > 0 (ε
can be any function of n), there exists a reduction from a 3-SAT instance of size n to a Label

Cover instance with n1+o(1) ·
( 1
ε

)c′
variables over a range of size 2( 1

ε )
c′′

. The Label Cover
instance has the following completeness and soundness conditions:

If the 3-SAT instance is satisfiable, then there exists an assignment to the Label Cover
instance that satisfies all the constraints.
If the 3-SAT instance is not satisfiable, then every assignment to the Label Cover instance
satisfies at most ε fraction of the constraints.

Moreover, the reduction runs in time poly(n, 1
ε ).

2.2 Schrijver Graphs
In this section, we define a Schrijver graph of order n, k, denoted by SG(n, k), where
n ≥ 3, k < n and n− k is even, which we use as a gadget in our reduction. The vertex set of
this Schrijver graph, denoted by VSG(n, k), is a subset of {0, 1}n. An element a ∈ {0, 1}n
belongs to VSG(n, k) iff
1. The hamming weight of a is n−k

2 .
2. There exists no i ∈ [n] such that both ai = 1 and a(i+1) mod (n+1) = 1.

In other words, if we denote a cycle graph on {1, 2, . . . , n} by Cn, then the vertex set
V (n, k) corresponds to all independent sets in Cn of size n−k

2 . The edge set of SG(n, k) is as
follows:

ESG(n, k) = {(a,b) | a ∩ b = ∅}.
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Vertices V. Each vertex x ∈ U in the Label Cover instance L is replaced by a cloud
of size |VSG(R, k)| denoted by C[x] := x× VSG(R, k). We refer to a vertex from the
cloud C[x] by a pair (x,a), where a ∈ VSG(R, k). The vertex set of the hypergraph
H is given by

V = ∪x∈UC[x].

Hyperedges E. The hyperedges of H are given by sets {(x,a), (x,b), (y, c), (y,d)}
such that the following conditions hold:
1. There exists a common neighbor z of x and y in V .
2. For every α, β ∈ [R] such that φx→z(α) = φy→z(β), {aα,bα, cβ ,dβ} are not all

the same i.e. |{aα,bα, cβ ,dβ}| = 2.

Figure 1 Reduction to a 4-uniform hypergraph H(V, E)

In other words, a ∼ b in SG(n, k) iff their supports are disjoint.
We need two properties of the Schrijver graph SG(n, k), first of which is easy to prove.

I Claim 6 ([5]). |VSG(n, k)| ≤
(
n
k

)
.

Proof. Map every vertex x ∈ VSG(n, k) to x̃ ∈ {0, 1}n by setting x̃i = x̃i+1 mod (n+1) = 1
iff xi = 1 and rest of the coordinates to 0. Clearly, this is an injective map from VSG(n, k)
to the set

( [n]
n−k
)
. J

The second property of SG(n, k) is its chromatic number. The following theorem from
[20] gives the exact chromatic number of SG(n, k) which builds on the beautiful proofs by
Lovász [16] and Bárány [3].

I Theorem 7 ([20]). The chromatic number of SG(n, k) is k + 2.

3 Main Reduction

We give a reduction from a Label Cover instance L = (U, V,E, [R], [L], φ) with a parameter
R > L and a parameter k, both of which we will set later, to a 4-uniform hypergraph H(V, E).
We also assume that R− k is even. The reduction is given in Figure 1.

The completeness is easy to prove:

I Lemma 8 (Completeness). If the Label Cover instance is satisfiable then the hypergraph H
is 2-colorable.

Proof. Let A : U ∪ V → [R] ∪ [L] be the perfectly satisfiable labeling to the Label Cover
instance L. The 2-coloring of the hypergraph H is given by assigning a vertex (x,a) ∈ C[x]
with a color aA(x). We show that this is a valid 2-coloring of H. Suppose not, in which case,
there exists a monochromatic hyperedge. Let that hyperedge be {(x,a), (x,b), (y, c), (y,d)}.
Let z be the common neighbor responsible for adding this edge. It must be that φx→z(A(x)) 6=
φy→z(A(y)) and hence A is not a perfectly satisfiable assignment, which is a contradiction. J

We now show the soundness of the reduction.

ICALP 2018



15:8 Hypergraph Coloring

I Lemma 9 (Soundness). If the Label Cover instance is not 1
(k+1)k2 satisfiable then the

hypergraph is not even k + 1-colorable.

Proof. In this case, we show that if the hypergraph is (k + 1)-colorable, then there exists a
labeling to the Label Cover instance that satisfies at least 1

(k+1)k2 fraction of the constraints
between the two layers U and V .

Suppose the hypergraph is (k + 1)-colorable. Fix a k + 1 coloring χ of the hypergraph.
Consider the Schrijver Graph SG(R, k) defined on the cloud C[x] where x ∈ U . By Theorem 7,
there exists a monochromatic edge i.e χ((x,a)) = χ((x,b)) where (a,b) ∈ ESG(R, k). Label
a cloud C[x] (and hence the vertex x) c ∈ [k + 1] if that edge is c-colored (breaking ties
arbitrarily). Out of |U | vertices, there exists at least 1/(k + 1) fraction of the vertices with
the same color. Let that color be c′.

From now on, we denote the c′ colored vertices of U by U ′. We know from the bi-regularity
of the Label Cover instance that the total number of constraints between U ′ and V is at
least 1

k+1 fraction of the constraints between layers U and V . Thus, if we show that we can
satisfy at least 1

k2 fraction of the constraints between U ′ and V , then we are done. This will
satisfy 1

(k+1)k2 fraction of the constraints between layers U and V .

List-Labeling

We define the list-labeling A to the vertices in U ′ as follows: For x ∈ U ′, in the induced
Schrijver Graph on C[x], there exists a monochromatic edge with color c′. Let that edge be
{(x,a), (x,b)}. Let A(x) = [R] \ (a ∪ b).

I Observation 10. For every x ∈ U ′, |A(x)| = k.

We need a simple fact as follows:

I Fact 11. For every pairwise intersecting family F ⊆
([n]
k

)
, there exists i ∈ [n] which is

present in at least 1/k fraction of the sets in F .

Proof. Suppose not. Consider A = {a1, a2, . . . , , ak} ∈ F and the sub-families Ai = {A′ ∈
F | ai ∈ A′} for i ∈ [k]. By assumption, we have |Ai| < |F|/k. By the union bound,
|∪iA| ≤

∑
i |Ai| < |F|. Thus, there exists B ∈ F\(∪iAi) and A∩B = ∅, a contradiction. J

The following two claims finish the proof.

I Claim 12. For every x, y ∈ U ′ that have a common neighbor z in V ,

φx→z(A(x)) ∩ φy→z(A(y)) 6= ∅.

Proof. For contradiction, suppose there exist x, y ∈ U ′ and a common neighbor z such that
φx→z(A(x))∩φy→z(A(y)) = ∅. Let {(x,a), (x,b)} and {(y, c), (y,d)} be the monochromatic
c′-colored edges that were used to define A on x and y respectively. Since, φx→z(A(x)) ∩
φy→z(A(y)) = ∅, we know that φx→z([R] \ (a∪b)) and φy→z([R] \ (c∪d)) are disjoint. This
means that for every α, β ∈ [R] such that φx→z(α) = φy→z(β), we have aα,bα, cβ ,dβ , not
all of which are 1 (this follows from aα,bα not both equal to 1 as they form an edge in the
Schrijver graph SG(R, k)). Also, not all of aα,bα, cβ ,dβ are 0, since otherwise α ∈ A(x)
and β ∈ A(y) and hence φx→y(A(x)) ∩ φy→z(A(y)) 6= ∅. Thus, {(x,a), (x,b), (y, c), (y,d)}
is a valid hyperedge in H, which is monochromatic with color c′. This contradicts the fact
that χ is a valid k + 1 coloring of H. J
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Now, consider the following randomized labeling B:

∀z ∈ V, B(z)← arg max
i∈[L]

|{x | (x ∈ U ′) ∧ (z ∼ x) ∧ i ∈ φx→z(A(x))}|

∀x ∈ U ′, B(x)← A uniformly random label from A(x).

In other words, B(z) for z ∈ V is a label i ∈ [L] which is the most common projection (w.r.t.
φx→z) of the labels A(x), where x ∼ z and x ∈ U ′.

I Claim 13. The randomized labeling B satisfies at least 1
k2 fraction of the constraints

between U ′ and V in expectation.

Proof. Fix z ∈ V and let X = {x1, x2, . . . , xt} be the neighbors of z in U ′ which satisfy
B(z) ∈ φxi→z(A(xi)). Thus, X constitutes at least 1/k fraction of z’s neighbors in U ′

using Claim 12 and Fact 11. The edge (xi, z) is satisfied by the labeling (B(xi), B(z)) with
probability 1/|A(xi)| = 1/k using Observation 10. Thus, in expectation, the randomized
labeling satisfies at least 1/k2 fraction of the constraints between z and U ′. Finally, by
linearity of expectation, B satisfies at least 1/k2 fraction of the constraints between U ′

and V . J

Thus, the partial labeling B satisfies at least 1
(k+1)k2 fraction of the constraints between

U and V in expectation. J

3.1 Setting of parameters
Proof of Theorem 1: Starting with a 3-SAT instance of size n, we first reduce it to a Label
Cover instance given by Theorem 4 with parameter ` = c0 log logn for a large constant c0 > 1,
so that the soundness of the Label Cover instance is 2−Ω(`) � Ω(log−3 n). We will set k =
logn. Thus, the number of vertices in the hypergraph H is N = nO(`) · 2O(`)·k = nO(log logn)

and the reduction runs in time nO(log logn). Therefore, assuming NP * DTIME(nO(log logn)),
there is no polynomial-time algorithm to color a 2-colorable 4-uniform hypergraph on N
vertices with O

(
logN

log logN

)
colors. J

Proof of Theorem 2: Starting with a 3-SAT instance of size n, we first reduce it to a Label
Cover instance given by Theorem 5 with parameter ε = (logn)−4δ for a sufficiently small
constant δ > 0. Thus, the soundness of the Label Cover instance is (logn)−4δ, the alphabet
size is |Σ| = 2(logn)c

′δ and the size of the Label Cover instance is n1+o(1) · (logn)c′′δ for some
absolute constants c′, c′′ > 1. We will set k = (logn)δ. Thus, the number of vertices in the
hypergraph H is N ≤ n1+o(1) · (logn)c′′δ · |Σ|k = n1+o(1) · (logn)c′′δ · 2(logn)4c′δ+δ = n1+o(1),
for small enough δ. Also, the overall reduction starting from an instance of 3-SAT of size n
runs in time poly(n). Therefore, it is NP-hard to color a 2-colorable 4-uniform hypergraph
on N vertices with logδ N colors for some δ > 0. J

4 Conclusion

Long Code has been used extensively to prove inapproximability results. Many inapprox-
imability results benefit from puncturing/derandomization of the Long Code constructions.
Most of them are algebraic in nature e.g. Hadamard code, Split code, Short code etc. We
made an attempt to find a puncturing of the Long Code which is more combinatorial in
nature. We believe that such combinatorial puncturings might find new applications in the
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hardness of approximation as well as in other areas which use the Long Code or similar
objects.

We conclude with a couple of obvious interesting open problems:
1. Can we show that coloring a 2-colorable 3-uniform hypergraph with ω(log logn) colors is

NP-hard, or even quasi-NP-hard?
2. Can we go beyond poly(logn) coloring NP-hardness factor for coloring a c-colorable

k-uniform hypergraph for some constants c ≥ 2 and k ≥ 3?
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