
Tight Bounds on Online Checkpointing Algorithms
Achiya Bar-On
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
abo1000@gmail.com

Itai Dinur1

Computer Science Department, Ben-Gurion University, Beer Sheva, Israel
dinuri@cs.bgu.ac.il

Orr Dunkelman
Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

https://orcid.org/0000-0001-5799-2635

Rani Hod
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
rani.hod@math.biu.ac.il

Nathan Keller2

Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
nkeller@math.biu.ac.il

Eyal Ronen
Computer Science Department, The Weizmann Institute, Rehovot, Israel
eyal.ronen@weizmann.ac.il

Adi Shamir
Computer Science Department, The Weizmann Institute, Rehovot, Israel
adi.shamir@weizmann.ac.il

Abstract
The problem of online checkpointing is a classical problem with numerous applications which had
been studied in various forms for almost 50 years. In the simplest version of this problem, a user
has to maintain k memorized checkpoints during a long computation, where the only allowed
operation is to move one of the checkpoints from its old time to the current time, and his goal is
to keep the checkpoints as evenly spread out as possible at all times.

At ICALP’13 Bringmann et al. studied this problem as a special case of an online/offline
optimization problem in which the deviation from uniformity is measured by the natural discrep-
ancy metric of the worst case ratio between real and ideal segment lengths. They showed this
discrepancy is smaller than 1.59−o(1) for all k, and smaller than ln 4−o(1) ≈ 1.39 for the sparse
subset of k’s which are powers of 2. In addition, they obtained upper bounds on the achievable
discrepancy for some small values of k.

In this paper we solve the main problems left open in the ICALP’13 paper by proving that ln 4
is a tight upper and lower bound on the asymptotic discrepancy for all large k, and by providing
tight upper and lower bounds (in the form of provably optimal checkpointing algorithms, some
of which are in fact better than those of Bringmann et al.) for all the small values of k ≤ 10.

2012 ACM Subject Classification Theory of computation → Online algorithms

1 Supported in part by the Israeli Science Foundation through grant No. 573/16.
2 The research of Achiya Bar-On, Nathan Keller, and Rani Hod was supported by the European Research

Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office.

EA
T

C
S

© Achiya Bar-On, Itai Dinur, Orr Dunkelman, Rani Hod, Nathan Keller, Eyal Ronen, and Adi
Shamir;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:abo1000@gmail.com
mailto:dinuri@cs.bgu.ac.il
mailto:orrd@cs.haifa.ac.il
https://orcid.org/0000-0001-5799-2635
mailto:rani.hod@math.biu.ac.il
mailto:nkeller@math.biu.ac.il
mailto:eyal.ronen@weizmann.ac.il
mailto:adi.shamir@weizmann.ac.il
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Tight Bounds on Online Checkpointing Algorithms

Keywords and phrases checkpoint, checkpointing algorithm, online algorithm, uniform distribu-
tion, discrepancy

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1704.
02659.

1 Introduction and Notation

Most programs perform some irreversible operations, and thus they can only be run in a
forward direction. However, in many cases we would like to roll back a computation to an
earlier point in time. When the computation is short, we can just rerun the computation
from the beginning, but when the computation requires many days, a better strategy is
to memorize several copies of the full state of the computation at various times. These
memorized states (called checkpoints) make it possible to roll the computation back from
time T to any earlier time T ′ < T by restarting the computation from the last available
checkpoint which was memorized before T ′. This checkpointing technique is extremely useful
in many real life applications: For example, when we want to interactively debug a new
program we may want to randomly access earlier points in the execution in order to find the
source of a problem; in fault tolerant computer systems we may want to undo the effect of
faulty hardware; and during lengthy simulations of physical systems we may want to explore
the effect of changing some parameter such as the temperature at some earlier point in time
without rerunning the simulation from the beginning.

In principle, we can try to memorize the full state of the computation after each step, but
for long computations this requires an unrealistic amount of memory. Instead, we assume
that we have some bounded amount of memory which suffices to keep k checkpoints. At
time T , these checkpoints are spread within the time interval [0, T], dividing it into k + 1
subintervals between consecutive checkpoints (where the endpoints 0 and T can be viewed as
virtual checkpoints which require no additional memory). As T increases, the last subinterval
gets longer, and at some point we may want to relocate one of the old checkpoints by reusing
its memory to store the current state of the computation. A checkpointing algorithm can
thus be viewed as an infinite pebbling game in which we place k pebbles on the positive
side of the time axis, and then repeatedly perform update operations which move one of the
pebbles to the right of all the other pebbles.

The first paper dealing with this problem seems to be “Rollback and Recovery Strategies
for Computer Programs” [5], published in 1972, while the first paper which tried to solve
it optimally was “On the Optimum Checkpoint Interval” [7], published in 1979. Over the
years, dozens of academic research papers were published in this area, most notably [8]
in 1984, [3] in 1994, and [1, 4] in 2013. However, many of these papers either dealt with
concrete applications of the problem in other areas (especially in distributed computing
where the notion of a timeline is different), or used other optimization criteria (which make
their optimal solutions incomparable with ours). The mathematical problem we are dealing
with in this paper was mentioned in [1] and studied in [4] which was published at ICALP’13,
and we closely follow their model and notation.

At any time T , we define a snapshot as the ordered sequence of current checkpoint
locations S = (T1, . . . , Tk). Within each snapshot, we refer to the checkpoints by their
freshness index p, where checkpoint 1 stores the oldest state and checkpoint k stores the
newest state. Starting from an initial snapshot Sk = (t1, t2, . . . , tk), we define for every

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.13
https://arxiv.org/abs/1704.02659
https://arxiv.org/abs/1704.02659

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:3

Old:

0 T1 T2 T3 Tk T = ti

New:

0 T1 T2 Tk−1 Tk

Figure 1 Transition from old to new snapshot for the update action (ti, 2).

i ≥ k + 1 the i-th update action as a pair (ti, pi) in which pi is the freshness index of the
checkpoint whose memory we want to reuse by moving it to time ti. A typical example of
how one snapshot is transformed into another snapshot by an update operation is described
in Fig. 1. The effect of the i-th update action is to unify the two consecutive subintervals
which were separated by the pi-th oldest active checkpoint at time T = ti, and to create a
new subinterval which ends at ti. Note that with this notation, each update action affects
multiple freshness indices within the snapshot; in particular, the freshness index of active
checkpoint Tj for 1 ≤ j < pi is left unchanged, and is decreased by one for pi < j ≤ k. To
demonstrate this point, consider a sequence of updates in which pi = 1 for all i ≥ k + 1: it
updates the k memory locations in a round robin way since it always updates the oldest
active checkpoint by overwriting it with the newest checkpoint, shifting all freshness indices
by one. On the other hand, a sequence of updates in which pi = k for all i ≥ k + 1 keeps
updating the same memory location, pushing its associated checkpoint further and further
to the right, with no change to the other checkpoints.

In this model, the time complexity of rolling back a computation from time T to time
T ′ is assumed to be proportional to the distance between T ′ and the last checkpoint that
precedes T ′ in the snapshot at time T , and thus its worst case happens when we decide to
roll back to just before the end of the longest subinterval. A checkpointing algorithm (t, p)
consists of a monotonically increasing and unbounded sequence of update times t = {ti}∞i=1
and a pattern sequence p = {pi}∞i=k+1, forming an initial snapshot and an infinite sequence of
update actions; its goal is to make the length of this longest subinterval as short as possible.
Clearly, no checkpointing algorithm can make this length shorter than the subinterval length
in a perfectly uniform partition of [0, T], which is T/(k + 1). We say that a snapshot
S = (T1, . . . , Tk) of a k-checkpoint algorithm Alg = (t, p) is q-compliant at time T if the
k+ 1 subintervals defined by S satisfy Tj −Tj−1 ≤ qT/ (k + 1) for j = 1, . . . , k+ 1,3 and that
Alg is q-efficient if its snapshots are q-compliant at all times T ≥ tk. Finally, the efficiency
of a checkpointing algorithm is defined as the smallest q for which it is q-efficient.

Notice that the problem of efficient checkpointing can be viewed as a special case of an
online/offline optimization problem: If we knew in advance the time T at which we would
like to roll back the computation, we could make each subinterval as small as T/(k + 1).
However, in the online version of the problem, we do not know T in advance, and thus we
have to position the checkpoints so that they will be roughly equally spaced at all times. The
efficiency of the solution is the ratio between what we can achieve in the online and offline
cases, respectively, and the goal of the online checkpointing problem is to find the smallest
possible efficiency qk achievable by the best k-checkpoint algorithm for any given k.

3 We write T0 = 0 and Tk+1 = T for convenience.

ICALP 2018

13:4 Tight Bounds on Online Checkpointing Algorithms

Clearly, qk ≥ 1 for all k ≥ 2, and cannot be too close to 1 since any snapshot in which all
subintervals have roughly the same length will be transformed by the next update operation
to a snapshot in which one of the subintervals will be the union of two previous subintervals,
and thus will be about twice as long as the other subintervals.4 On the other hand, there
is a very simple subinterval doubling algorithm from [1, Section 3.1] which is 2-efficient:
Assuming WLOG that k is even, the algorithm starts with the snapshot (1, 2, 3, . . . , k),
and performs the sequence of update actions (k + 2, 1), (k + 4, 2), . . . , (2k, k/2), yielding the
snapshot (2, 4, 6, . . . , 2k). Since this snapshot is the same as the original snapshot up to a
scaling factor of 2, we can continue with update actions (2k + 4, 1), (2k + 8, 2), . . . , (4k, k/2)
and so on. This is a cyclic algorithm, repeating the same sequence of freshness indices again
and again but with times which form a geometric progression. As in each snapshot there are
only two possible lengths for the subintervals of the form x and 2x, all the snapshots in this
algorithm are 2-compliant, and thus the algorithm is 2-efficient.

The best strategy for keeping the checkpoints as uniform as possible at all times is thus
to keep in each snapshot a variety of subinterval lengths, so that the algorithm will always
be able to join two relatively short adjacent subintervals into a single subinterval which is
not too long. This can be viewed as a generalization of the algorithm that creates Fibonacci
numbers: Whereas the standard algorithm is always adding the last two numbers and placing
their sum on the right, in our case we can add any two consecutive numbers in the sequence,
replacing them by their sum and adding any number we want on the right. Analyzing this
problem is surprisingly difficult, and so far there had been no tight bounds on the best
possible efficiencies qk of online checkpointing algorithms in this model.

The main results in [4] are two online checkpointing algorithms whose asymptotic effi-
ciencies are ln 4 + o(1) ≈ 1.39 for the sparse subset of k’s which are powers of 2, and 1.59
for general k. In addition, they proved in their model the first nontrivial asymptotic lower
bound of 2− ln 2− o(1) ≈ 1.30. However, since the upper and lower bounds did not match,
it was not clear whether the checkpointing algorithms they proposed were asymptotically
optimal. For small values of k < 60 they presented concrete checkpointing algorithms whose
efficiencies were all below 1.55, but again it was not clear whether they were optimal.

In this paper we solve the main open problems related to the mathematical formulation
of the problem which was defined and studied in [4]. In particular, we develop a new
checkpointing algorithm with an asymptotic efficiency of ln 4 for all values of k, and prove
its optimality by providing a matching asymptotic lower bound. For all the small values
of k < 10 we develop optimal checkpointing algorithms by proving tight upper and lower
bounds on the achievable efficiency for these k’s. This analysis enables us to show that for
some values of k (such as k = 8), the algorithms presented in [4] are in fact suboptimal.

The rest of this paper is organized as follows. In Section 2 we go over basic observations
about checkpointing algorithms (some from [4], some new). In Section 3 we focus on
moderately small values of k and provide optimal algorithms for k ≤ 10. In Section 4 we
construct a recursive algorithm of asymptotically optimal efficiency ln 4 + o(1). In Section 5
we prove a matching asymptotic lower bound of ln 4−o(1). In Section 6 we provide concluding
remarks.

Most proofs were omitted from this extended abstract due to space constraints.

4 Actually qk ≥ (k+1)/k since subinterval k+1 has zero length upon updating, as noted in [1, Theorem 3].

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:5

2 Basic Observations

By definition, a k-checkpoint Alg = (t, p) is q-efficient if and only if its snapshots at all
times T ≥ tk are q-compliant. However, as noted in [1, Lemma 2] (and also [4, Lemma 1]), it
suffices to verify compliance only at the discrete times T ∈ {ti}∞i=k. It makes sense thus to
only consider “standard” snapshots Si taken at time ti for i ≥ k. Moreover, as shown in [4,
Lemma 2], besides compliance of the initial snapshot Sk, it suffices to verify compliance of
just two subintervals of Si for every i > k — subinterval k, that ends in the new checkpoint ti,
and subinterval pi, created by merging two consecutive subintervals.

The following two observations about the sequence p = (pi)∞i=k+1 were mentioned in [4,
Section 6] without proof.

I Fact 1. Without loss of generality we can assume a k-checkpoint algorithm updates the
least recent checkpoint infinitely often (i.e., lim inf

i→∞
pi = 1).

I Remark 2. An important consequence of Fact 1 is that we can essentially ignore the
compliance of the initial snapshot Sk by rebasing, i.e., running the algorithm until all
checkpoints present in Sk are overwritten and treating the then-current snapshot as the new
initial (t1, . . . , tk).

I Fact 3. Without loss of generality we can assume a k-checkpoint algorithm never updates
the most recent checkpoint (i.e., pi < k for all i ≥ 1).

I Remark 4. Fact 3 means that the two last checkpoints in snapshot Si are ti−1 and ti, and
thus subinterval k is q-compliant if and only if ti−1 − ti ≤ qti/ (k + 1), that is, ti ≤ G · ti−1,
where G = G (q) := (k + 1) / (k + 1− q). We refer to this condition by saying that the
update times sequence t = (ti)∞i=1 should be G-subgeometric.

Next we introduce the notion of cyclic algorithms. Upper bounds on qk presented in
this paper, as well as in [1, 4], are all achieved by cyclic algorithms. Given a positive
integer n and a real number γ > 1, a k-checkpoint algorithm Alg = (t, p) is (n, γ)-cyclic
if tn+i = γ · ti for all i ≥ 1 and pi = pn+i for all i ≥ k + 1. It has been observed in [4,
Lemma 5] that any q-efficient (n, γ)-cyclic algorithm must satisfy γ ≤ Gn (to see this, apply
subgeometry n times). An (n, γ)-cyclic algorithm is called (n,G)-geometric when γ = Gn

(and thus ti+1 = G · ti for i ≥ k).

We finish this subsection with two observations about the exponential growth of update
times in efficient algorithms, relevant for upper and lower bounds on qk.

The first one is an improvement of [4, Lemma 8]:

I Fact 5. Any q-efficient k-checkpoint algorithm Alg = (t, p) satisfies, without loss of
generality, ti+2 > ti ·G for all i ≥ k.

An immediate corollary of Fact 5 is that ti+j > ti · Gbj/2c for j ≥ 0; in particular,
ti+j > ti ·G2 for j ≥ 4. Our next observation says when we can get ti+3 > ti ·G2.

I Fact 6. Let S = (T1, . . . , Tk) be a snapshot of some q-efficient k-checkpoint algorithm
Alg = (t, p) such that Tj = ti and Tj+1 = ti+3 for some j = 1, . . . , k− 1. Thus, without loss
of generality, ti+3 > ti ·G2.

ICALP 2018

13:6 Tight Bounds on Online Checkpointing Algorithms

3 Optimal Algorithms for Small Values of k

3.1 Round-robin and k ≤ 5
We now analyze the efficiency of the Round-Robin algorithm, which is geometric and
always updates the oldest checkpoint (i.e., pi = 1 for all i ≥ k + 1).5 Besides serving as a
first example, Round-Robin is optimal for k ≤ 3 and will make an appearance within the
asymptotically optimal algorithm Recursive of Section 4.

I Proposition 7. The efficiency of k-checkpoint Round-Robin is q = (k + 1) r, where r is
the smallest real root of x = (1− x)k−1.

I Remark. Round-Robin is pretty bad for large k; indeed, (k + 1) r ≈ ln k − ln ln k is
asymptotically inferior to the simple bound qk ≤ 2 from the introduction.

The case k = 2 is made obvious by Fact 3, since without loss of generality Round-Robin is
the only 2-checkpoint algorithm to consider. Thus q2 = 1.5.

I Proposition 8. For k = 3 we have q3 = 4r3 ≈ 1.52786, where r3 = 3−
√

5
2 ≈ 0.38197 is the

smaller root of x2 − 3x+ 1 = 0.

Proof. For the upper bound, Round-Robin is 4r3-efficient. For the lower bound, consider a
4r-efficient 3-checkpoint algorithm and a snapshot Si = (x, y, ti). By subgeometry we must
have ti ≤ y/ (1− r) ≤ x/ (1− r)2 and for subinterval 1 to be compliant we need x ≤ rti,
which together imply (1− r)2 ≤ r, i.e., r2 − 3r + 1 ≤ 0. Thus r ≥ r3. J

Round-Robin is no longer optimal for k > 3. Indeed, cyclic algorithms with better
efficiency were described in [4, Figure 3] for k = 4, 5, 6, 7, 8. These provide upper bounds on
q4, . . . , q8, respectively. Nevertheless, no formal proof of optimality was provided.

I Remark. These algorithms were found by the use of linear programming, which is thoroughly
discussed in the next subsection.

For k = 4, 5 the optimal algorithms are 2-cyclic; k = 5 is geometric while k = 4 is not.

I Proposition 9. For k = 4 we have q4 = 5r4 ≈ 1.53989, where r4 = (2 + 2 cos (2π/7))−1 ≈
0.307979 is the smallest root of x3 − 5x2 + 6x − 1 = 0. Moreover, the efficiency of any
geometric 4-checkpoint algorithm is at least 5r̃4 ≈ 1.58836, where r̃4 ≈ 0.31767 > r4 is the
real root of x3 − 3x2 + 4x− 1 = 0.

I Proposition 10. For k = 5 we have q5 = 6r5 ≈ 1.47073, where r5 ≈ 0.24512 is the (only)
real root of x3 − 4x2 + 5x− 1 = 0.

3.2 Casting the problem as a linear program
Fix λ ≥ 1 and an update pattern p = (pi)∞i=k+1. Can we choose a sequence t = (ti)∞i=1 of
update times such that the resulting k-checkpoint algorithm Alg = (t, p) is λ-efficient?

Each snapshot Si consists of a particular subset of the variables t, and using p we can
determine exactly which. Furthermore, all constraints (e.g., monotonicity, subgeometry,
compliance) can be expressed as linear inequalities. This gives rise to an infinite linear
program L = L (λ; p), which is feasible whenever a λ-efficient algorithm with the prescribed

5 The case k = 3 of Round-Robin was considered in [4, Theorem 1] under the name Simple.

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:7

pattern p exists. Note that all constraints are homogeneous, so to avoid the zero solution we
add the non-homogeneous condition tk = 1.

In addition, we are not interested in solutions where t is bounded. This can happen, for
instance, when pi = k − 1 for all i ≥ k + 1.6 Luckily, by using Fact 5 we can restrict our
attention to exponentially increasing sequences t, so we add to L the linear inequalities from
Facts 5 and 6. Now L is feasible if and only if a λ-efficient algorithm with the prescribed
pattern p exists; in other words, qk is the infimum7 over λ ≥ 1 for which there exists a
pattern p such that L (λ; p) is feasible.

As an infinite program, L is not too convenient to work with. We can thus limit our
attention to finite subprograms L (λ; (pk+1, . . . , pk+n)) for some n ∈ N, which only involve
the k + n variables t1, . . . , tk+n and the relevant 3k + 6n constraints. Finite subprograms
can no longer ensure the existence of a λ-efficient algorithm, but can be used to prove lower
bounds on qk in the following way. Write Σ = {1, . . . , k − 1} and consider the set Σ∗ of
strings, i.e, finite sequences over Σ.

I Definition. A string B ∈ Σ∗ is called a λ-witness if L (λ;B) is infeasible. A string set
B ⊂ Σ∗ is called blocking if any infinite sequence p over Σ contains some B ∈ B as a substring.

I Fact 11. If there exists a blocking set of λ-witnesses for some λ ≥ 1, then qk > λ.

I Remark. The lower bound of Fact 11 holds for all algorithms, cyclic or not.

We now describe a strategy to approximate qk to arbitrary precision. For the lower
bound we use Fact 11; for the upper bound, we limit our focus to cyclic algorithms. Given
γ > 1 and a string P ∈ Σ∗ of length n, we can augment L (λ;P) with k equality constraints
{ti+n = γ · ti}ki=1; call the resulting program L∗ (λ, γ;P). This is a finite linear program,
which we can computationally solve given λ, γ, and P . Although γ ≤ Gn is not known
to us, we can first compute an approximation γ̃ of γ by solving L10n

(
γ;P 10), and then

solve L∗ (λ, γ̃;P). Using binary search, we can compute a numerical approximation λ̃ of the
minimal λ for which L∗ (λ, γ̃;P) is feasible. Lastly, we can enumerate short strings P ∈ Σ∗
in a BFS/DFS-esque manner and take the best λ̃ obtained.

To demonstrate this strategy, we computed q2, . . . , q10 up to 7 decimal digits, using a
Python program employing GLPK [6] via CVXOPT [2] (see Table 1; starred values of k are
geometric algorithms).

At first it seems that Fact 11 cannot be used to pinpoint qk exactly, since any finite
blocking set B of (qk − ε)-witnesses for some ε > 0 leaves an interval of uncertainty of length ε.
The following proposition eliminates this uncertainly.

I Proposition 12. For every string B ∈ Σ∗ there is finite set ΛB ⊂ R such that the
feasibility of L (λ;B) for some λ ≥ 1 only depends on the relative order between λ and
members of ΛB. In particular, there exists some ε > 0 such that if L (λ;B) is feasible and B
is a (λ− ε)-witness, then B is also a λ′-witness for all λ− ε < λ′ < λ.

Proof. Fix B ∈ Σ∗. Treating λ as a parameter, note that the subprogram L (λ;B) is feasible
if and only if its feasible region, the convex polytope P (λ;B), is nonempty. Decreasing λ
shrinks P (λ;B) until some critical λB for which P (λB ;B) is reduced to a single vertex, at
which a subset of the linear constraints are satisfied with equality. Hence λB is a solution of

6 This may not seem a valid pattern to consider, given Fact 1; however, when solving a finite subprogram
we might have to consider an arbitrarily long prefix of the pattern with no occurrences of 1.

7 This infimum is actually a minimum, by [4, Theorem 8] and also by Proposition 12.

ICALP 2018

13:8 Tight Bounds on Online Checkpointing Algorithms

Table 1 Computationally-verified bounds on qk for 2 ≤ k ≤ 10.

k qk γ P n |B| maxB∈B |B|

2* 1.5 2 (1) 1 0 0
3* 1.5278641 1.618037 (1) 1 2 1
4 1.5398927 1.8019377 (1,3) 2 7 3
5* 1.4707341 1.7548777 (1,3) 2 36 13
6 1.5127400 3.627365 (1,2,3,1,3,5) 6 117 9
7 1.4974818 3.11201 (1,3,4,1,5,3) 6 559 10
8 1.4851548 10.712656 (1,2,4,7,5,3,1,7,5,3,7,1,4,2,4,5) 16 1698 14
9 1.4730721 3.2748095 (1,5,3,5,1,5,6,3) 8 5892 135
10 1.4678452 5.67943 (1,5,3,5,1,5,6,3,1,5,9,3,5,9) 14 32843 20

some polynomial equation determined by the relevant constraints. The set of constraints
is finite, thus there are finitely many polynomial equations that can define λB , and we can
take ΛB as the set of all their roots. Now take ε to be smaller than the distance between any
two distinct elements of ΛB . J

I Remark. Note that when ε is small enough, we can actually retrieve the polynomial equations
defining λ and γ from the polytope P∗

(
λ̃, γ̃;B

)
; using this method we get an algebraic

representation of qk rather than a rational approximation. To demonstrate, q9 = 10r9, where
r9 ≈ 0.1473072131 is the smallest real root of x8−7x7+22x6−40x5+39x4−17x3+10x2−8x+1.

4 Asymptotically Optimal Upper Bounds

In this section we describe a family of geometric k-checkpoint algorithms. Despite our
experience from Table 1—that only for k = 2, 3, 5 optimal algorithms are geometric—this
family is rich enough to be asymptotically optimal, i.e., (1 + o (1)) qk-efficient.

4.1 A recursive geometric algorithm
Fix a real number G > 1 and an integer m ≥ 0. We describe a k-checkpoint algorithm
Recursive(G,K), where K is an (m+ 2)-subset {0, . . . , k} whose elements are

k = k0 > k1 > k2 > · · · > km > km+1 = 0.

Recursive(G,K) is (2m, G)-geometric, and its update pattern p is defined as pk+i =
1 + kµ(i)+1, where µ (i) is the largest µ ≤ m for which 2µ divides i. It is easy to see that p is
2m-periodic, and we can just refer to P = (pk+i)2m

i=1. As per Remark 2, via rebasing there is
no need to define the initial snapshot Sk explicitly.

I Example. For K = {0, 2, 4, 9, 19} we get P = (10, 5, 10, 3, 10, 5, 10, 1).

True to its name, Recursive(G,K) can be viewed also as a recursive algorithm: the base case
m = 0 (i.e., K = {0, k}) is simply k-checkpoint Round-Robin; for m ≥ 1, Recursive(G,K)
alternates between updating the (k1 + 1)-st oldest checkpoint and between acting according
to the inner k1-checkpoint algorithm Recursive

(
G2,K \ {k}

)
.

Let us elaborate a bit more on the recursive step. In every snapshot Si = (T1, . . . , Tk)
we have Tj = Gi+j for k1 + 1 ≤ j ≤ k since we never update checkpoints younger than
k1 + 1. In every odd snapshot Si we have just updated the (k1 + 1)-st oldest checkpoint,

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:9

so Tk1 = Gi+k1−1 while Tk1+1 = Gi+k1+1. This means that logG Tj for j = 1, . . . , k1 all
have the same parity as i+ k1 − 1 in any snapshot Si. We thus treat S′ = (T1, . . . , Tk1) as
a snapshot of a k1-checkpoint algorithm, which operates at half speed and never sees half
of the checkpoints. The inner algorithm can rightfully be called Recursive

(
G2,K \ {k}

)
,

as the common ratio of the update times sequence for the checkpoints that do make it to
the inner algorithm is G2, and taking only the even locations of P yields a 2m−1 periodic
sequence p′ such that p′k+i = pk+2i = 1 + kµ(2i)+1 = 1 + kµ(i)+2.

4.2 Analyzing the recursive algorithm
First we determine exactly how efficient Recursive(G,K) can be for any G and K, and
then we work with a particular choice.

Denote by r (G,K) the maximum of

1−G−1; (1a)

max
{
G−e(`)

(
G2`

−G−2`
)}m−1

`=0
; and (1b)

G2m−e(m), (1c)

where e (`) =
∑̀
j=0

2j (kj − kj+1) for ` = 0, 1, . . . ,m.

I Theorem 13. Given G and K, the efficiency of Recursive(G,K) is (k + 1)r (G,K).

Given an integer k ≥ 2, let m = blog2 kc−1. Define K∗ = {k0, . . . , km+1} by kj =
⌊
2−jk

⌋
for j = 0, . . . ,m and km+1 = 0. Note that k0 = k and that km ∈ {2, 3}.

I Theorem 14. Recursive(G,K∗) is q-efficient for large enough k, where G = eq/(k+1)

and q =
(

1 + 3
log2 k

)
k + 1
k

ln 4 = (1 + o (1)) ln 4.

Proof. By Theorem 13, it suffices to verify that (k+1)r (G,K∗) < q, that is, r (G,K∗) ≤ lnG
for sufficiently large k. Clearly (1a) holds since 1−G−1 < lnG for all G > 1. It remains to
verify (1b) and (1c), handled by Propositions 15 and 16 respectively. J

I Proposition 15. For k ≥ 213 and G as above, G−e(`)
(
G2` −G−2`

)
< lnG for all

` = 0, . . . ,m− 1.

I Proposition 16. For k ≥ 5 and G as above, G2m−e(m) < lnG.

I Remark. Theorem 14 chooses G suboptimally. Empirical evidence shows that, for all k ≥ 2,
the optimal G = G∗ for Recursive(G,K∗) satisfies (1a) and one of (1b) and (1c). In other
words, it is the smallest root of either 1− x−1 = x2m−e(m) or 1− x−1 = x−e(`)

(
x2` − x−2`

)
for some ` = 0, . . . ,m− 1.
I Remark. With additional effort the constant 3 in Theorem 14 can be improved by a factor
of almost 6 to τ := − log2 ln 2 ≈ 0.53. The major obstacle is that cases ` = m − 2 and
` = m− 1 of (1b) need to be done separately since the appropriate f (x, z) in the proof of
Proposition 15 is negative for z < log2 (ln 4/ (1− ln 2)) ≈ 2.1756. No proof is possible for
τ ′ < τ since then (1c) would be violated for large enough k = 2m+2 − 1.
I Remark. We verified that the algorithm Recursive(G∗,K∗) is (1 + τ/ log2 k) k+1

k ln 4-
efficient for 2 ≤ k ≤ 213 as well.

ICALP 2018

13:10 Tight Bounds on Online Checkpointing Algorithms

5 Asymptotically Optimal Lower Bounds

In this section we prove lower bounds on qk, focusing on asymptotic lower bounds in which k
grows to infinity.

We start by reproving the simple asymptotic lower bound qk ≥ 2 − ln 2 − o (1) of [4,
Theorem 6], and then improve it to qk ≥ ln 4, which is asymptotically optimal via the
matching upper bound of Section 4.

5.1 Stability and bounding expressions
Obtaining lower bounds requires viewing the problem from a different perspective. It will
sometimes be more convenient to refer to a certain physical checkpoint, without considering
its temporary freshness index p in the checkpoint sequence at some snapshot S (which is
variable and depends on S).

Given a k-checkpoint algorithm, we define a function BE (s) and use it to bound its
efficiency from below. The parameter s is related to the notion of stability, which we now
define.

I Definition. Fix a k-checkpoint algorithm. A checkpoint updated at time T is called
s-stable, for some s = 1, . . . , k − 1, if at least s previous checkpoints are updated before the
next time it is updated.

By Fact 1 we can assume all checkpoints get updated eventually; this means that in a
snapshot S = (T1, . . . , Tk), where Tk is a time by which all checkpoints have been updated
from the initial snapshot, we have that the checkpoint updated at time Tk−s is s-stable for
s = 1, . . . , k − 1.

For convenience, the proofs in this section assume the update times sequence is normalized
by a constant. This is captured by the following definition.

I Definition. A k-checkpoint algorithm is called s-normalized if an s-stable checkpoint is
updated at time R0 = 1.

Given an s-normalized k-checkpoint algorithm, we define a sequence of times 1 = R0 <

R1 < · · · < Rs as follows: Ri for i ≥ 1 is the time at which the i-th checkpoint is removed
from (0, 1]. In other words, R1 is the time T > R0 at which some checkpoint is updated; R2
is the time T > R1 at which we update the next checkpoint that was previously updated in
(0, 1] (but not at T > 1), and so forth. Note that the checkpoint updated at time R0 is not
updated at any time Ri for i = 1, . . . , s by the definition of stability. Now we are ready to
define BE (s).

I Definition. The T -truncated bounding expression of an s-normalized k-checkpoint al-
gorithm is BET (s) =

∑s
i=1 Ui, where Ui = min {T,Ri}.

The bounding expression plays a crucial role in proving lower bounds, based on Pro-
position 17 below. We note that the truncated bounding expression only depends on the
algorithm’s behavior until time T , and hence the bounds that can be obtained from it are
not tight for k > 3. Nevertheless, the lower bound we obtain using BE2 in Corollary 22 is
asymptotically optimal, since the gap between it and the upper bound of Theorem 14 tends
to zero as k grows to infinity.
I Remark. It is possible to analyze BET beyond T = 2 and obtain tight lower bounds for
larger values of k. However, there is no asymptotic improvement and the analysis becomes
increasingly more technical as k grows.

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:11

5.2 Asymptotic lower bound of 2 − ln 2 ≈ 1.3068
To simplify the analysis, we assume k is even. It can be extended to cover odd values of k as
well, but this gives no asymptotic improvement since qk+1 ≤ qk · k+2

k+1 for all k, so we only
lose an error term of O (1/k), which is of the same order as the error terms in Corollaries 20
and 22.

To simplify our notation we write b = q/(k + 1) throughout this section.

I Proposition 17. Any (k/2)-normalized b(k + 1)-efficient k-checkpoint algorithm satisfies
BE2(k/2) ≥ 1/b.

Proof. At time R0 = 1, the time interval (0, 1] contains k subintervals of length ≤ b, giving
rise to the inequality b · k ≥ 1. At time R1, a checkpoint is removed from (0, 1] and it now
contains one subinterval of length ≤ b · R1 (two previous subintervals, each of length ≤ b,
were merged), and k − 2 subintervals of length ≤ b, giving b · (k − 2 +R1) ≥ 1.

At time R2, an additional checkpoint is removed from the time interval (0, 1], hence it
must contain an subinterval of length ≤ b ·R2 formed by merging two previous subintervals.
We obtain b · (k − 4 + R1 + R2) ≥ 1, since the remaining k − 3 subintervals must include
k − 4 subintervals of length ≤ b and one (additional) subinterval of length at most ≤ b ·R1.
Note that this claim holds regardless of which checkpoint is updated at R2, and it holds
in particular in case one of the subintervals merged at time R2 contains the subintervals
merged at R1 (in fact, this case gives the stronger inequality b · (k − 3 +R2) ≥ 1).

In general, for j = 1, 2, . . . , k/2, at time Rj the time interval (0, 1] must contain j distinct
subintervals of lengths ≤ b ·Ri for i = 1, 2, . . . , j, and k− 2j subintervals of length ≤ b. This
gives the inequality k − 2j +

∑j
i=1 Ri ≥ 1/b.

Let j ≤ k/2 be the largest index such that Rj ≤ 2, so Ui = Ri for all 1 ≤ i ≤ j and
Ui = 2 for all j < i ≤ k/2. Now at time Rj we have

1/b ≤ k − 2j +
j∑
i=1

Ri = (k/2− j) · 2 +
j∑
i=1

Ui =
k/2∑
i=j+1

Ui +
j∑
i=1

Ui = BE2(k/2). J

Now we need an upper bound on the bounding expression. For the simpler lower bound
of 2− ln 2 we use the following proposition.

I Proposition 18. Any (k/2)-normalized b(k + 1)-efficient k-checkpoint algorithm satisfies
Ri ≤ 1/ (1− bi) for i = 1, . . . , k/2.

Proof. At time T = 1/ (1− bi), all subintervals are of length at most bT = b/ (1− bi). Since
T − R0 = 1/ (1− bi) − 1 = bi/ (1− bi), for any ε > 0 the time interval (R0, T + ε] must
consist of at least i+ 1 subintervals, implying that the i-th checkpoint was removed from the
time interval (0, 1] by time T . J

I Proposition 19. Let b < 1
2 . Any (k/2)-normalized b(k+1)-efficient k-checkpoint algorithm

satisfies b ·BE2(k/2) ≤ ln 2 + b/(1− 2b) + bk − 1.

I Corollary 20. For all even k ≥ 4 we have qk ≥ 2− ln 2− o (1).

Proof. Fix a (k/2)-normalized qk-efficient k-checkpoint algorithm, and let b = qk/(k+1) < 1
2 .

By Propositions 17 and 19 we have

qk = bk + b ≥ 2− ln 2− b

1− 2b + b = 2− ln 2− 2b2

1− 2b ≥ 2− ln 2− 8
(k + 1)(k − 3) . J

ICALP 2018

13:12 Tight Bounds on Online Checkpointing Algorithms

5.3 Improved asymptotic lower bound of ln 4 ≈ 1.3863
We now improve the asymptotic lower bound to ln 4. This result is a simple corollary of the
following lemma, which gives a tighter upper bound on the bounding expression. Recall that
q = b(k + 1) and thus G = (k + 1)/(k + 1− q) = 1/(1− b).
I Lemma 21. For any s-normalized b(k + 1)-efficient k-checkpoint algorithm such that
1 ≤ s ≤ k/2 and Gk/2 ≤ 2 we have b ·BE2(s) ≤ Gs − 1.
I Corollary 22. For all even k ≥ 2 we have (1−qk/(k+1))−k/2 ≥ 2. In particular, qk > ln 4.
Proof. Write b = qk/(k + 1) and assume for the sake of contradiction that Gk/2 < 2. By
Lemma 21 and Proposition 17 we have 1 ≤ b · BE2(k/2) ≤ Gk/2 − 1 for a k/2-normalized
qk-efficient k-checkpoint algorithm, so Gk/2 ≥ 2, contradicting our assumption. Now

qk
k + 1 = b ≥ 1− 2−2/k = 1− e−(ln 4)/k ≥ ln 4

k
− 1

2

(
ln 4
k

)2
=
(

1− ln 2
k

)
ln 4
k
,

hence qk ≥
(
1 + (1− ln 2)/k − (ln 2)/k2) ln 4 > ln 4. The last inequality is true when

k > ln 2/(1− ln 2) ≈ 2.26, but we already know that q2 = 1.5 > ln 4. J

6 Concluding Remarks and Open Problems

In this paper we solved the main open problem in online checkpointing algorithms, which is to
find tight asymptotic upper and lower bounds on their achievable efficiency. In addition, we
developed efficient techniques for determining tight upper and lower bounds on qk for small
values of k, which enabled us to develop provably optimal concrete algorithms for all k ≤ 10.
However, determining the values of qk for larger values of k remains a computationally
challenging problem, and finding more efficient ways to compute these values remains an
interesting open problem.

References
1 Lauri Ahlroth, Olli Pottonen, and André Schumacher. Approximately Uniform Online

Checkpointing with Bounded Memory. Algorithmica, 67(2):234–246, 2013. doi:10.1007/
s00453-013-9772-5.

2 M.S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A Python package for convex
optimization, 2016. version 1.1.9. Available at http://cvxopt.org.

3 Marshall W. Bern, Daniel H. Greene, Arvind Raghunathan, and Madhu Sudan. On-Line
Algorithms for Locating Checkpoints. Algorithmica, 11(1):33–52, 1994. doi:10.1007/
BF01294262.

4 Karl Bringmann, Benjamin Doerr, Adrian Neumann, and Jakub Sliacan. Online Check-
pointing with Improved Worst-Case Guarantees. In Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 255–266, 2013.
doi:10.1007/978-3-642-39206-1_22.

5 K. Mani Chandy and Chittoor V. Ramamoorthy. Rollback and Recovery Strategies for
Computer Programs. IEEE Trans. Computers, 21(6):546–556, 1972. doi:10.1109/TC.
1972.5009007.

6 Free Software Foundation. Gnu linear programming kit, 2012. Version 4.61, http://www.
gnu.org/software/glpk/.

7 Erol Gelenbe. On the Optimum Checkpoint Interval. J. ACM, 26(2):259–270, 1979. doi:
10.1145/322123.322131.

8 Sam Toueg and Özalp Babaoglu. On the Optimum Checkpoint Selection Problem. SIAM
J. Comput., 13(3):630–649, 1984. doi:10.1137/0213039.

http://dx.doi.org/10.1007/s00453-013-9772-5
http://dx.doi.org/10.1007/s00453-013-9772-5
http://cvxopt.org
http://dx.doi.org/10.1007/BF01294262
http://dx.doi.org/10.1007/BF01294262
http://dx.doi.org/10.1007/978-3-642-39206-1_22
http://dx.doi.org/10.1109/TC.1972.5009007
http://dx.doi.org/10.1109/TC.1972.5009007
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://dx.doi.org/10.1145/322123.322131
http://dx.doi.org/10.1145/322123.322131
http://dx.doi.org/10.1137/0213039

A. Bar-On, I. Dinur, O. Dunkelman, R. Hod, N. Keller, E. Ronen, and A. Shamir 13:13

Table 2 Computationally-verified upper bounds on qk for 11 ≤ k ≤ 20.

k λ γ P n

11 1.4650841 8.190656 (1,3,5,6,1,6,2,10,6,3,6,1,6,2,6,3,9,6) 18
12 1.4668421 8.862576 (1,2,3,5,6,7,1,2,6,3,6,7,1,2,6,3,6,9,7) 19
13 1.4592320 2.94 (1,3,6,7,4,7,1,7,8,3) 10
14 1.4570046 58.6 (1,4,2,6,7,4,7,8,1,8,2,3,7,12,4,7,8,1,4,7,2,7,8,4,13,8,

1,8,4,2,7,4,7,8,1,8,4,2,7,12,4,7,13,8)
44

15 1.4487459 2.104027 (1,2,7,8,4,8,9,5) 8
16 1.4487597 8.46 (1,2,4,7,8,9,5,9,1,2,8,4,8,9,5,9,1,2,8,4,8,13,9,5,9) 25
17 1.4593611 1.694884 (1,9,5,3,14,8,9) 7
18 1.4575670 2.57 (1,8,9,5,9,10,2,5,9,10,3,5) 12
19 1.4592194 2.45 (1,9,5,9,10,2,5,9,10,11,3,5) 12
20 1.4696048 13.3 (1,5,9,10,2,5,9,10,11,3,5,10,1,5,9,10,11,2,5,10,11,3,5,10,

1,5,9,10,6,2,9,10,11,3,5,10)
36

A Tables

The best algorithms our LP approach of Section 3.2 found for k = 11, 12, . . . , 20 are described
in Table 2. These are (perhaps non-tight) upper bounds on q11, . . . , q20. Observe how some
of the patterns are reminiscent of the pattern used in the algorithm Recursive of Section 4.

ICALP 2018

	Introduction and Notation
	Basic Observations
	Optimal Algorithms for Small Values of k
	Round-robin and k<=5
	Casting the problem as a linear program

	Asymptotically Optimal Upper Bounds
	A recursive geometric algorithm
	Analyzing the recursive algorithm

	Asymptotically Optimal Lower Bounds
	Stability and bounding expressions
	Asymptotic lower bound of 2-ln2 ˜˜1.3068
	Improved asymptotic lower bound of ln4 ˜˜1.3863

	Concluding Remarks and Open Problems
	Tables

