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Abstract
In multicore architectures, there is potential for contention between cores when accessing shared
resources, such as system memory. Such contention scenarios are challenging to accurately ana-
lyse, from a worst-case timing perspective. One way of making memory contention in multicores
more amenable to timing analysis is the use of memory regulation mechanisms. It restricts the
number of accesses performed by any given core over time by using periodically replenished per-
core budgets. Typically, this assumes that all cores access memory via a single shared memory
controller. However, ever-increasing bandwidth requirements have brought about architectures
with multiple memory controllers. These control accesses to different memory regions and are
potentially shared among all cores. While this presents an opportunity to satisfy bandwidth
requirements, existing analysis designed for a single memory controller are no longer safe.

This work formulates a worst-case memory stall analysis for a memory-regulated multicore
with two memory controllers. This stall analysis can be integrated into the schedulability analysis
of systems under fixed-priority partitioned scheduling. Five heuristics for assigning tasks and
memory budgets to cores in a stall-cognisant manner are also proposed. We experimentally
quantify the cost in terms of extra stall for letting all cores benefit from the memory space offered
by both controllers, and also evaluate the five heuristics for different system characteristics.
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1 Introduction

The strong trend towards increasing integration in hardware for embedded real-time systems
has led to multicores becoming mainstream platforms of choice for such systems. Multicores
have significant advantages in terms of computing power, energy usage and weight over
single-cores. Yet, one issue with multicores is that worst-case timing analysis becomes more
complicated. In particular, the fact that multiple cores contend for the same shared system
resources (buses, caches, memory) must be accounted for [8].

Focusing specifically on the problem of main memory contention, we note various research
efforts [21, 22, 15, 10, 5, 11, 13, 20, 14, 3] that employ memory regulation to make the memory
access patterns of the different cores more amenable to worst-case timing analysis. Under
memory regulation schemes, each core gets an associated periodically-replenished memory
access budget. When a core attempts to issue more memory accesses than its budget, it gets
temporarily stalled, until the next replenishment.

However, engineering practice forges ahead and analysis has to catch up. In recent years,
in response to memory bandwidth often becoming a performance bottleneck, multicore chips
that integrate, not one, but two memory controllers, have become commercially available.
In such platforms, both controllers are accessible by all cores, with little to no difference
in latency. Examples include various multicore processors from the NXP QorIQ series [16],
ranging from the P5020 with 2 cores to the P4080 with 8 cores. For existing approaches
to apply to systems with multiple controllers, one could statically map cores to memory
controllers and apply the analyses to each partition independently. This simple approach
efficiently reduces contention between cores. Still, it may be hard to find a partition such
that no tasks depend on data from the memory space of the other memory controller. Core-
to-controller partitioning also reduces flexibility in bandwidth allocation, as a partition’s
bandwidth requirements must be met by just the associated memory controller. In cases
when no such partitions can be found, there are currently no good solutions, because existing
approaches can be unsafe when applied to platforms with two controllers. The reason is that
the worst-case memory access pattern for each controller in isolation will not necessarily lead
to the worst-case stall, as we demonstrate in Section 5. This reality motivated the present
work, whose main contributions are the following:

First, we show via counter-examples that existing techniques for upper-bounding the
memory stall, conceived for memory-regulated architectures with a single memory controller,
are not necessarily safe in the presence of multiple controllers. Our second and more important
contribution is new worst-case memory stall analysis for architectures with two memory
controllers, shared by all cores. This analysis, which presumes fixed task-to-core partitioning
and fixed-priority scheduling, can then be integrated to the schedulability analysis for the
system. Finally, we explore five different stall-cognisant heuristics for combined memory-
bandwidth-to-core assignment and task-to-core assignment and evaluate their performance
in terms of schedulability via experiments with synthetic task sets capturing different system
characteristics. These experiments also highlight the performance implications of having
fully shared memory controllers vs. partitioning the controllers to different cores, in cases
when the latter arrangement would be viable from the application perspective (i.e., no data
sharing across memory domains).

https://dx.doi.org/10.4230/DARTS.4.2.5
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Next, in Section 2, we discuss related work. Section 3 defines our system model and
Section 4 discusses some relevant existing results from the single-controller case. Section 5
contains our analysis. Section 6 describes five proposed stall-cognisant task-to-core assignment
heuristics. Section 7 provides an experimental evaluation of our analysis and heuristics in
terms of theoretical schedulability using synthetic task sets. Section 8 concludes the paper.

2 Related work

Several software-based approaches for mitigating memory interference in multi-core plat-
forms [21, 22, 15, 10, 5, 11, 3] have been proposed in recent years. These approaches consider
a periodic server implemented in software that manages the memory budgets of the cores.
This is combined with run-time monitoring through performance counters that keep track of
the number of memory accesses and with an enforcement mechanism that suspends tasks
whenever they exhaust their budget. Our work is similar to these, as it exploits such a
memory throttling mechanism to enforce budgets on memory requests.

The memory regulation techniques used to mitigate the interference on shared memory
controllers introduce new stalls and the existing analyses are unsafe unless adapted to
account for them. Some efforts in this direction exist for partitioned fixed-priority schedul-
ing [21, 13] and hierarchical scheduling in [5]. Mancuso et al. [13], under their Single-Core
Equivalence framework [18], addressed the problem of fixed-priority partitioned schedulability
on a multicore. They employ the periodic software-based memory regulation mechanism
MemGuard [22] to ensure that each core gets an equal share of memory bandwidth in each
regulation interval (or period) and stalls until the end of the regulation period once the
budget has been depleted. Such stalls, resulting from the memory regulation together with
contention stalls are integrated into the schedulability analysis in [13].

Even if equal sharing of memory bandwidth is simple and facilitates porting applications
from a single-core to multi-core platforms (by making the analysis akin to that for a single-
core), it is inefficient when the memory requirements of the applications on different cores are
diverse. Yao et al. [20], and Pellizzoni and Yun [17] generalise the arrangement along with
the analysis to uneven memory budgets per core. The former approach considers round-robin
memory arbitration, whereas the latter proposes a new analysis for First-Ready First Come
First Served memory scheduling. Recently, Mancuso et al. [14] improved their memory stall
analysis by considering the exact memory bandwidth distribution on other cores. However,
all these approaches are designed to work with a single memory controller and are unsafe
with more than one memory controller. The reason is that the worst-case memory access
pattern for each controller in isolation no longer necessarily leads to the worst-case stall, as
we show in Section 5. In contrast, our work provides a worst-case memory stall analysis for a
memory-regulated multicore platform with two memory controllers and incorporates this stall
analysis in the schedulability analysis for fixed-priority partitioned preemptive scheduling.
We also present five memory bandwidth allocation and task-to-core assignment heuristics.

To summarise, existing works on memory regulation rely on an assumption of a single
memory controller. Here, we expand the state-of-the-art by proposing memory stall analysis,
when each core can access two controllers, facilitating data sharing among applications
and allowing more flexible use of bandwidth. We allow uneven distribution of the memory
bandwidth of each controller to available cores. Each core is scheduled under fixed-priority
preemptive scheduling, assuming a round-robin memory arbitration policy on both controllers.

ECRTS 2018
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3 System Model

We consider a platform with m identical cores (P1 to Pm) and 2 memory controllers on the
same chip, both uniformly accessible by all cores. The sets of memory regions accessible by
the two controllers are non-overlapping. Examples of platforms with 2-8 identical cores and
two memory controllers include NXP QorIQ P-series P4040, P4080, P5020 and P5040 [16].

Assume a set of n sporadic tasks, τ1 to τn. Each task has a minimum interarrival time
Ti, a deadline Di ≤ Ti, and a worst-case execution time (WCET) of Ci. Like Yao et al. [20],
we assume that CPU computation and memory access do not overlap in time. Each task
can access memory via both controllers. Therefore, Ci = Cei + Cm1

i + Cm2
i , where Cei is the

worst-case CPU computation time and Cm1
i and Cm2

i are the worst-case total memory access
times of a task via each respective controller in isolation.

The tasks are partitioned to the cores (no migration) and fixed-priority scheduling is used.
For the memory controllers and their interconnects, we assume a round-robin policy [22, 20].
The last-level cache (furthest from the cores) is either private or partitioned to each core. Like
Yao et al. [20], we assume that access to main memory is regulated, e.g., by Memguard [22]
or in hardware. We also require performance monitoring counters to count the number
of memory accesses issued to each controller from each core. As in [20], we assume each
memory access takes a constant time L. This allows us to specify P and Cei , Cm1

i and Cm2
i

as multiples of L. Our model is agnostic w.r.t. the points in time when memory accesses may
occur within the activation of a task and hence imposes no particular programming model.

Memory accesses are regulated as follows. Each core i has a memory access budget Q1i
for memory controller 1, which is the maximum allowed memory access time (measured in
multiples of L) via that controller, within a regulation period of length P . Likewise, it has
a budget Q2i for controller 2. These budgets are set at design time and may be different.
A core i that consumes its memory access budget for a given memory controller within a
regulation period is stalled until the start of the next regulation period1. Regulation periods
on all cores are synchronised. The memory bandwidth share of core i on controller 1 is
b1i = Q1i

P . Similarly for b2i and controller 2. By design,
∑
i b1i ≤ 1 and

∑
i b2i ≤ 1, i.e., the

bandwidth of any controller is not overcommitted.

4 Relevant existing results from the single-controller case

We now summarise some existing results from [20], for a similar, albeit single-controller,
system, in order to later show why those do not apply, and new analysis is needed.

The technique in [20] calculates a worst-case stall term for each task, which is added to
the right hand side of the standard worst-case response time (WCRT) recurrence relation
for fixed priorities. For ease of presentation, the authors assume that there is a single task
running on the core under consideration. Later on, for the case when many tasks are assigned
to a core, they explain how to equivalently model the considered task τi and all higher-priority
tasks as a single synthetic task, in order to apply their stall analysis and derive the worst-case
stall term for τi. Below, we similarly assume a single task per core.

A memory request may stall either (i) because of requests from other cores, contending
for the memory controller simultaneously (a case of contention stall) or (ii) because the
issuing core has exhausted its budget for the current regulation period (a regulation stall).

1 On practical grounds, we assume that a core is stalled immediately after the Qth memory access in a
regulation period via the respective controller is served. Yao et al [20], more generously, assume that it
is stalled immediately before attempting a (Q+ 1)th access within the same regulation period.
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Yao et al. identify worst-case patterns for memory accesses and computation within a
single regulation period, characterised by maximum stall with the fewest memory accesses.
Next, they use these patterns as main “building blocks” for the worst-case pattern for the
entire task activation, over multiple regulation periods. In more detail:

Case bi ≤ 1/m (regulation dominant). If bi ≤ 1/m, i.e., if the task’s bandwidth share
is “fair” at most, then a task incurs worst-case stall when all its memory accesses are
clustered at the start of its activation, before any computation. Another pessimistic
assumption is that the task is released just after a regulation stall, so it waits for (P −Qi)
until the next regulation period. The task will incur a stall of (P −Qi) within each of the
next bC

m
i

Q c regulation periods; whether this is entirely due to a regulation stall or partially
also due to contention from other cores is irrelevant. Afterwards, any remaining memory
accesses (which are too few to trigger a regulation stall), can each incur a worst-case
contention stall of (m-1), i.e., one contending access from each other core due to round
robin arbitration.

Case bi > 1/m (contention dominant). In this case, the smallest number of memory ac-
cesses per period a core must issue to get the maximum stall is RBS def= Pi−Qi

m−1 , and
occurs when the remaining budget is shared evenly among the other cores. From the
assumption of the case, bi>1/m, it follows that RBS < Qi. Therefore, the worst-case
pattern for one regulation period involves cmi = RBS accesses, each suffering a maximum
contention stall of (m− 1), for a total stall of P −Qi. This leaves Qi −RBS time units
not filled by memory accesses or respective stalls. These are filled with computation;
if memory accesses were added instead, they would incur no stall. To bound the stall
for the entire task activation, this pattern is applied to as many regulation periods as
possible. Two subcases exist: either memory accesses or computation will run out first.

Due to space constraints, we refer to [20] for details. Meanwhile, some insights driving
Yao’s analysis, for single-controller systems, are codified via the following lemmas from [20]:

I Lemma 1. Considering the stall of a core due to memory regulation alone, the worst-case
memory access pattern of one task is when all accesses within the task are clustered, and the
stall is upper bounded by P −Qi for each regulation period P .

I Lemma 2. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qi is upper-bounded by P −Qi for every regulation period P .

I Lemma 3. Considering the contention stall alone, the maximum stall for core i with
budget Qi is obtained when the remaining budget P −Qi is evenly distributed among all other
cores and they generate the maximum amount of accesses.

5 Analysis

In this section, we formulate the main contribution of this paper: a stall analysis for multicores
with two memory controllers, which leverages on Yao et al [20] stall and schedulability analysis
for multicores with a single memory controller. First, we look at Lemmas 1 to 3 and Yao’s
analysis in general, and examine what holds over from [20] and what does not. For readability,
we omit the core (task) index, since it is implied. Table 1 summarizes the symbols used.

ECRTS 2018



2:6 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Table 1 Symbols used in the analysis.

Q1, Q2 memory budget on controllers 1 and 2, respectively
Cm1, Cm2 maximum number of memory accesses via controllers 1 and 2, respectively
Ce worst-case computation time
P regulation period
m number of cores
b1, b2 core memory bandwidth shared on controllers 1 and 2, respectively
RBS1, RBS2 remaining budget share on controllers 1 and 2, respectively
cm1∗, cm2∗ worst-case number of accesses per period in contention-dominant case
K1∗ number of regulation periods of phase 1 in contention-dominant case
Ĉe, Ĉm1, Ĉm2 task computation parameters after phase 1 (in contention-dominant case)
∆ρ∗ worst-case reduction in regulation stalls w.r.t. maximum regulation stalls

in the third case (regulation is dominant only for one controller)
∆Ce additional “computation” added to contention-only phase by reducing the

number of regulation stalls by 1
∆Cm2∗

c additional number of contention stalls required when moving ∆Ce to en-
sure that the total stall is larger with one less regulation stall on controller 1

∆Cm2
c (max) maximum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase
∆Cm2

c (min) minimum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase
rm = Cm2

Cm1 ratio of memory accesses to each controller
Cm2

c̄ number of memory accesses via controller 2 without contention
single() worst-case single controller stall according to Yao’s analysis, ignoring the

regulation stall at the beginning of the execution

5.1 What holds over from Yao’s analysis and what does not
When we have multiple controllers, with an assigned memory budget Qj for each, Lemma 1
can be generalized as follows:

I Lemma 4. Considering the stall of a core due to memory regulation alone on controller
j, with budget Qj, the worst-case memory access pattern of one task is when all accesses
via controller j within the task are clustered, and the stall is upper bounded by P −Qj for
each regulation period P .

A corollary of this lemma is that the regulation stall on controller j is maximum when there
are no memory accesses to a second controller in that period. Note also that a core can only
regulation-stall on at most one memory controller in a given regulation period.

With multiple controllers Lemmas 2 and 3 apply to each controller separately. Furthermore,
because a core may access memory via multiple controllers in a single regulation period, a
consequence of Lemma 2 is the following:

I Lemma 5. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qji on controller j is upper-bounded by min

(∑
j(P −Qji),

P
m · (m− 1)

)
for every

regulation period P .

When there are multiple memory controllers, the maximum contention stall may occur when
there are accesses via more than one controller. The first argument to the min operator in
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Cm1 = Cm2 = 12 Q1 = 6 (RBS1 = 2) Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36 48
Stall = 24

24 36 48
Stall = 72

96

contention stall access via controller 1 access via controller 2

Figure 1 As shown in this example, the worst-case total stall is when there are memory accesses
via more than one controller in the same regulation period.

the above expression sums up the contention stall from each controller according to Lemma 2.
The second argument expresses the fact that no more than P/m accesses (irrespective via
which controller) can all suffer the worst-case per-access contention stall of (m− 1) because
of round robin arbitration. Both terms independently bound the contention stall.

When there are multiple shared controllers and we try to upper-bound the stall over
multiple regulation periods, Yao’s analysis may not be safe, i.e., it may underestimate the
worst-case stall, as illustrated by the example of Figure 1. Execution i) has the worst-case
stall, according to Yao’s stall analysis, when in a regulation period all memory accesses are
via the same controller. In each period, the first two memory accesses suffer the maximum
stall. However the remaining 4 memory accesses suffer no stall, because the maximum stall
in every regulation period is 6, P −Qi, and it occurs in the first two memory accesses of the
respective regulation period. Execution ii) shows the worst-case stall when there are accesses
via both controllers in the same period. In each period, we have 2 memory accesses via each
controller and each of these accesses suffers the maximum contention stall, m− 1. This is
because the contention stall on accesses via one controller does not affect the contention stall
on accesses via the other controller. Thus, in execution ii) all memory accesses suffer the
maximum contention stall, whereas in execution i) only a third does.

5.2 Two-controller Task Stall Analysis

Having shown the need for a new analysis, we consider several cases depending on the values
of b1 and b2. Some entail sub-cases. More specifically, we consider 3 cases:
1. b1 ≤ 1

m ∧ b2 ≤
1
m

2. b1 > 1
m ∧ b2 >

1
m

3. remaining cases, i.e. (b1 ≤ 1
m ∧ b2 >

1
m ) ∨ (b1 > 1

m ∧ b2 ≤
1
m )

5.2.1 Case 1: b1 ≤ 1
m
∧ b2 ≤ 1

m

In this case, for each controller, the worst case occurs when there is a regulation stall, as
shown in [20]. By Lemma 4, the following execution suffers the worst-case stall. In a first
phase, there is the longest sequence of consecutive periods with regulation stalls on controller
1, followed by a second phase consisting of the longest sequence of consecutive periods with
regulation stalls on controller 2. Finally, there is a third phase with the remaining memory
accesses via each controller, Cmi mod Qi, that suffer the maximum contention stall per
memory access, m − 1, and any computation. Because in each of the two first phases all
memory accesses are via a single controller, we can use Yao’s stall analysis to compute an
upper bound on the stall in each of these phases. The upper bound of the total stall can

ECRTS 2018



2:8 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

then be computed by adding the upper bounds for each phase. I.e.:

Stall =single(Cm =
⌊
Cm1

Q1

⌋
·Q1, Ce = 0, Q = Q1, P = P,m = m)

+ single(Cm =
⌊
Cm2

Q2

⌋
·Q2, Ce = 0, Q = Q2, P = P,m = m)

+ (Cm1 mod Q1 + Cm2 mod Q2) · (m− 1) (1)

where single() is the stall based on Yao’s (single controller) stall analysis for the respective
set of parameter values [20].

5.2.2 Case 2: b1 > 1
m
∧ b2 > 1

m

In this case, according to Yao’s analysis, for each controller, the worst case occurs when there
is maximum contention stall in a regulation period with the minimum number of memory
accesses. However, as shown in Figure 1, in this case the worst-case stall may occur when
a task accesses memory via different controllers in the same regulation period. Therefore,
the worst-case memory access pattern of a task in this case has 3 phases, as illustrated in
Figure 2 i):
Phase 1. In this phase, every regulation period incurs the maximum contention stall. This

phase terminates when the task runs out of memory accesses via some controller, and
therefore cannot sustain the maximum contention stall any more. In Figure 2 i), this
phase spans the two first periods, and, in each period, there are RBS1 and RBS2 memory
accesses via the respective controller.

Phase 3. In this phase, all accesses are via a single controller. This phase may not exist,
if the task runs out of memory accesses via both controllers in the same regulation
period. In Figure 2 i), this is the 4th and last period and has memory accesses only via
controller 1.

Phase 2. This “middle” phase may also not exist, but if it exists, it has only one regulation
period. In this phase, we have memory accesses via both controllers, but either there are
not enough memory accesses via at least one of the controllers to ensure the maximum
contention stall in that period, or there is not enough execution to fill the complete period.
In Figure 2 i), this is the 3rd period, and has only one memory access via controller 2.

According to Lemma 5, there are two main cases for the maximum contention stall in a
regulation period. We analyse each of these cases separately.

5.2.2.1 Sub-case 1: (P −Q1) + (P −Q2) < P
m
· (m− 1)

In this case, the maximum contention stall in a regulation period occurs when a task
performs RBS1 memory accesses via controller 1 and RBS2 memory accesses via controller
2. Therefore, the maximum stall per period is (RBS1+RBS2)·(m−1) = (P−Q1)+(P−Q2).
Because the task is non preemptive and (P −Q1) + (P −Q2) < P

m · (m− 1), by the definition
of the sub-case, there is a “hole” of size P − (RBS1 +RBS2) ·m that must be filled with
execution, i.e. either computation or memory accesses. An execution in which computation
fills as many of these holes as possible suffers the maximum stall, because any additional
memory accesses in these periods suffer no contention stall. This will minimize the number of
memory accesses without contention in Phase 1, increasing the number of memory accesses
in latter phases, and possibly their stall. Similar reasoning can be applied to Phase 2, as well.
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Cm1 = 12 Cm2 = 5 Q1 = 18 (RBS1 = 2) Q2 = 18 (RBS2 = 2) m = 4 P = 24

48
i)

ii)

0 24 72 96
Ce = 36

contention stall access via controller 1 access via controller 2 computation

iii)

480 24 72 96
Ce = 20

iv)
480 24 72 96

Ce = 4

480 24 72 96
Ce = 8

Figure 2 Example execution patterns with worst case stall, for the contention-dominant case
when (P −Q1) + (P −Q2) < P

m
· (m− 1).

Figure 2 illustrates an execution pattern that leads to the worst-case stall, based on the
above observations. In execution i) there is enough computation to fill in the holes in Phases
1 (the first two periods) and 2. However, there is not enough computation to ensure that all
memory accesses suffer contention: in the 4th and last period, which belongs to Phase 3,
there are 4 memory accesses via controller 1 that do not suffer any contention. In execution
ii) there is not enough computation to fill the holes in Phase 2, and therefore, we have 6
memory accesses via controller 1 in Phase 2, the 3rd period, that do not suffer any contention,
and there is no 3rd Phase. In execution iii) there is no Phase 2, because all memory accesses
via controller 2 are used to fill the holes in Phase 1. Phase 3 consists only of a single memory
access via controller 1. Finally, in execution iv) there is not enough computation, and Phase
1, like Phase 2, has only one period, and there is no Phase 3.

It can be shown, by case analysis, that in any of these executions swapping any com-
putation or memory access in one regulation period with computation or memory accesses
in later regulation periods does not lead to an increase in the total stall, and therefore the
execution pattern shown suffers the maximum stall. The following stall analysis is based on
the execution pattern shown in Figure 2.

In order to reuse the analysis in other cases below, let cm1∗ and cm2∗ be the minimum
values of cm1 and cm2, respectively, that maximize the contention stall in a regulation period,
assuming that any holes are filled with computation. Note that by Lemma 5, it must be
cm1∗ ≤ RBS1 and cm2∗ ≤ RBS2. In this sub-case, they are RBS1 and RBS2, respectively.

In our analysis, we consider Phase 1 separately from the remaining phases, if any.

Phase 1 stall. In Phase 1, the contention stall in every regulation period is maximum and
equal to (cm1∗ + cm2∗) · (m− 1). The total stall in this phase is:

Stall1 = K1∗ · (cm1∗
+ cm2∗

) · (m− 1) (2)

where: K1∗ = min

(⌊
Cm1

cm1∗

⌋
,

⌊
Cm2

cm2∗

⌋
,

⌊
Ce + Cm1 + Cm2

P − (cm1∗ + cm2∗) · (m− 1)

⌋)
(3)

is the number of regulation periods in Phase 1. Indeed, to sustain maximum contention stall
in every regulation period of Phase 1, the task must have both:
1. Enough memory accesses via controller 1, i.e. K1∗ ≤

⌊
Cm1

cm1∗

⌋
.

2. Enough memory accesses via controller 2, i.e. K1∗ ≤
⌊
Cm2

cm2∗

⌋
.

3. Enough execution, since when a core is not stalled it must be either computing or accessing
memory, i.e. in every Phase 1 period a task must execute for P − (cm1∗ + cm2∗) · (m− 1).
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Therefore, K1∗ ≤
⌊

Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
.

We use the minimum of these 3 values, because this is the largest possible number of periods
in Phase 1 and, as argued above, this leads to the worst-case stall.

Remaining stall. Without loss of generality, let
⌊
Cm1

cm1∗

⌋
≥
⌊
Cm2

cm2∗

⌋
, i.e. controller 2 runs out

of memory accesses entirely in Phase 2 the latest. (The other case is symmetric.)
To analyse the stall in Phases 2 and 3, if any, we consider the stall of each controller

separately. Since memory accesses via controller 2 occur only in Phase 2 (which has at most
one regulation period) and not in Phase 3, the contention stall on controller 2 can be upper
bounded by min(Ĉm2, RBS2) · (m− 1), where Ĉm2 is the number of memory accesses via
controller 2 in Phase 2, if any. Observe that these memory accesses and respective stall
can be taken into account as computation in the analysis of the stall of memory accesses
via controller 1, in Phase 2. Furthermore, in Phase 3, if any, all memory accesses are via
controller 1, only. Therefore, we apply Yao’s stall analysis to compute the stall of memory
accesses via controller 1 in Phases 2 and 3, if they exist.

So, to complete analysis of this case, we compute Ĉm2, as well as parameters for Yao’s
single controller stall analysis. Since in the latter we consider the remaining memory accesses
via controller 2, Ĉm2, and respective stall, if any, as computation, Ce is obtained by adding to
that value the remaining computation, Ĉe, i.e. the task computation that was not performed
in Phase 1. Finally, the value of Cm to use in the single controller analysis is the number of
memory accesses via controller 1 that were not performed in Phase 1, Ĉm1, if any. Thus,

Stall =Stall1 +min(Ĉm2, RBS2) · (m− 1)

+ single(Ce = Ĉm2 +min(Ĉm2, RBS2) · (m− 1) + Ĉe,

Cm = Ĉm1, Q = Q1, P = P,m = m) (4)

where Stall1 is given by (2). Next, we derive the expressions for Ĉe, Ĉm1 and Ĉm2.
In every Phase 1 period a task must execute, i.e. either compute or access memory, when

it is not stalled. Thus, in addition to the cm1∗ + cm2∗ memory accesses that lead to the
maximum stall in a regulation period, a task may have to execute for the remaining time:
P − (cm1∗ + cm2∗) ·m. As we have argued, the total stall will be maximum in executions
where computation fills as many of these “holes” as possible. Thus:

Ĉe = max
(
0, Ce −K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

))
(5)

If there is enough computation to fill all these holes, Ce ≥ K1∗ ·
(
P − (cm1∗ + cm2∗) ·m

)
,

then Ĉm1 = Cm1 −K1∗ · cm1∗ and Ĉm2 = Cm2 −K1∗ · cm2∗.
If there is not enough computation to fill all these holes, then the remaining holes,

K1∗ · (P − (cm1∗ + cm2∗) ·m) − Ce, will be filled with memory accesses. Thus, the total
number of memory accesses that will occur in the remaining phases, if any, is:

Ĉm = Cm1 + Cm2 −K1∗ · (cm1∗ + cm2)− (K1∗ · (P − (cm1∗ + cm2∗) ·m)− Ce)
= Cm1 + Cm2 − (K1∗ · (P − (cm1∗ + cm2∗) · (m− 1))− Ce) (6)

To determine Ĉm1 and Ĉm2, we distinguish two cases, depending on the value of K1∗.
If K1∗ =

⌊
Cm2

cm2∗

⌋(
≤
⌊
Cm1

cm1∗

⌋)
, then an execution that has at least min(Cm1 − K1∗ ·

cm1∗, RBS1, Ĉm) controller 1 memory accesses in the first period of the remaining phases,
will suffer maximum stall, because all these memory accesses suffer maximum contention
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stall. The first bound is the number of memory accesses not used to ensure maximum stall in
Phase 1, the second bound is the maximum number of accesses via controller 1 that can suffer
maximum stall in a regulation period, and the third bound is the number of memory accesses
in the remaining phases. This ensures that controller 2 runs out of memory accesses before
controller 1, as shown in Figure 2 iii). Thus the number of memory accesses via controller
2 in Phase 2 is Ĉm2 = min

(
Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗

)
i.e. the number of memory accesses via controller 2 in Phase 2 is the number of memory
accesses not used to fill the holes in Phase 1, discounted by the minimum number of memory
accesses via controller 1 that suffer maximum contention in Phase 2, and upper-bounded
by the maximum number of controller 2 memory accesses that are not necessary to ensure
maximum stall in Phase 1. Finally, Ĉm1 = Ĉm − Ĉm2.

If K1∗ =
⌊

Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
, there is not enough execution to complete the K1∗+1st

regulation period, if any – the execution has at most one regulation period after Phase 1.
In this case, the total stall is maximum in executions where the number of contention

stalls in the last period is maximum. However, there cannot be more than RBS1 (RBS2)
contention stalls on controller 1 (2, respectively) in this period. Like in the previous sub-case,
an execution with at least min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm) controller 1 memory accesses
in Phase 2, guarantees that controller 2 runs out of memory accesses no later than controller
1, and suffers maximum stall, because all these memory accesses suffer maximum contention
stall. Thus, the expressions we derived for Ĉm1 and Ĉm2 in the previous sub-case, are also
valid for this one. Summarizing, we get the following expressions:

Ĉm2 =
{
Cm2 −K1∗ · cm2∗, if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
min(Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗), o.w

(7)

Ĉm1 =
{
Cm1 −K1∗ · cm1∗ if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
Ĉm − Ĉm2 otherwise

(8)

5.2.2.2 Sub-case 2: (P −Q1) + (P −Q2) ≥ P
m
· (m− 1)

In this case (by the definition of RBS), RBS1 + RBS2 ≥ P
m , and therefore it is possible

to guarantee maximum contention stall in a period, without any computation or memory
accesses without contention. To ensure the maximum stall, the memory accesses should be
distributed in a “balanced” way so that both controllers run out of memory access at more
or less the same time, thus ensuring that all Cm memory access suffers the maximum stall.

Let cm1∗ and cm2∗ be the number of memory accesses via controllers 1 and 2 per regulation
period that maximize the contention stall in a period. The goal is then to ensure:

Cm1

cm1∗ = Cm2

cm2∗ ⇒ cm2∗ = Cm2

Cm1 · c
m1∗ ⇒ cm2∗ = rmcm1∗,where: rm def= Cm2

Cm1 (9)

Without loss of generality, assume rm < 1; the other case is symmetrical. Then it must be:

cm1∗ + cm2∗ = P

m
⇒ (1 + rm) · cm1∗ = P

m
⇒ cm1∗ = P

m · (1 + rm) (10)

cm2∗ = rm · cm1∗ ⇒ cm2∗ = rm · P

m · (1 + rm) (11)

We now consider three sub-cases:
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Sub-case cm1∗ ≤ RBS1∧ cm2∗ ≥ 1. In this case it is possible to ensure that all memory
accesses suffer the maximum contention stall, even without any computation. Thus:

Stall = (Cm1 + Cm2) · (m− 1) (12)

Note that even though cm1∗ or cm2∗ may be fractional, these are average values. This means
that in an execution with worst-case stall, the number of memory accesses via any controller
may not be the same across all the regulation periods. However, there is an execution such
that cm1 + cm2 = P

m , in all but possibly the last regulation period, and cm1 ≤ RBS1 and
cm2 ≤ RBS2 in every regulation period.

Sub-case cm1∗ > RBS1. In this case, both controllers would run out of computation at
the same time only if the number of memory accesses via controller 1 exceeded RBS1, and
therefore there would be memory accesses without any contention. An execution following
the pattern illustrated in Figure 2, with cm1∗ = RBS1 and cm2∗ = min( Pm −RBS1, RBS2)
will have the worst-case stall, and therefore we can apply the analysis in Section 5.2.2.1.

Sub-case cm2∗ < 1. In this case, both controllers would run out of computation at the same
time only if there are some periods without memory accesses via controller 2. An execution
following the pattern illustrated in Figure 2, with cm2∗ = 1 and cm1∗ = min( Pm − 1, RBS1)
will have the worst-case stall, and therefore we can apply the analysis in Section 5.2.2.1.

5.2.3 Case 3: (b1 ≤ 1
m
∧ b2 > 1

m
) ∨ (b1 > 1

m
∧ b2 ≤ 1

m
)

In this case, executions with the maximum number of regulation stalls do not always lead
to the worst-case stall. This is shown in Figure 3. In execution i), all memory accesses
via controller 1 are clustered, causing two regulation stalls on controller 1, in the first two
regulation periods. All the memory accesses via controller 2, occur in the third regulation
period. Of these, only the first two suffer the maximum contention stall. The remainder suffer
no contention, because the memory budget of the remaining cores, P−Qi, is exhausted by the
stalls of the first 2 memory accesses. In execution ii), there is one memory access via controller
1 in each period, and thus there is no regulation stall on controller 1, but each of these
accesses suffers the maximum contention stall. Furthermore, in each of the first 3 periods,
there are 2 memory accesses via controller 2, each of which suffers the maximum contention
stall. Thus all memory accesses via both controllers suffer the maximum contention stall,
and the total stall for execution ii) exceeds that of execution i). This is counter-intuitive,
because the contention stall by accesses via controller 1 in execution ii), 12, is smaller than
the regulation stall, 20, caused by the same number of accesses via controller 1 in execution
i). However, this loss is more than compensated by the contention stall in execution ii) of
the 4 memory accesses via controller 2 that suffer no contention stall in execution i). I.e.,
although we are trading off a regulation stall, P −Qi, for contention stalls, presumably with
maximum contention stall, Qi · (m− 1) < P −Qi, we may also be adding stall to memory
accesses via the second controller that previously suffered no stall.

Depending on whether b1 ≤ 1
m ∧ b2 >

1
m or b1 > 1

m ∧ b2 ≤
1
m , there are two sub-cases.

Because they are symmetrical, we analyse only the former.

5.2.3.1 Sub-case 3.1: b1 ≤ 1
m
∧ b2 > 1

m

Figure 3 shows that the maximum number of regulation stalls does not always lead to the
worst-case stall. Furthermore, it can be shown that the total stall is maximum if there are
no memory accesses via the second controller in periods with a regulation stall. Thus, the
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Cm1 = 4 Cm2 = 6 Q1 = 2 Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36
Stall = 26

24 36
Stall = 30

contention stall access via controller 1 access via controller 2

Figure 3 Maximizing the number of regulation stalls may not lead to the worst-case stall.

Algorithm 1 Compute stall for each task.
Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index for simplicity)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: if (b1 ≤ 1
m
∧ b2 ≤ 1

m
) then . Regulation stall is dominant for both controllers

3: Stall = Equation (1)
4: else if (b1 > 1

m
∧ b2 > 1

m
) then . Contention stall is dominant for both controllers

5: if ((P −Q1) + (P −Q2) < P
m
· (m− 1)) then

6: cm1∗ = RBS1, cm2∗ = RBS2
7: Compute Stall with Algorithm 2
8: else . (P −Q1) + (P −Q2) ≥ P

m
· (m− 1)

9: rm = Cm2

Cm1 , cm1∗ = Equation 10, cm2∗ = Equation 11
10: if (rm < 1) then
11: if (cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1) then
12: Stall = Equation 12
13: else if (cm1∗ > RBS1) then
14: cm1∗ = RBS1, cm2∗ = min(RBS2, P

m
−RBS1)

15: Compute Stall with Algorithm 2
16: else . cm2∗ < 1
17: cm1∗ = min(RBS1, P

m
− 1) cm2∗ = 1

18: Compute Stall with Algorithm 2
19: end if
20: else . rm ≥ 1: symmetric of previous case, swap indices
21: end if
22: end if
23: else . Regulation stall is dominant for only one controller
24: if (b1 ≤ 1

m
∧ b2 > 1

m
) then

25: Compute ∆ρ∗ using Algorithm 3
26: Stall = Equation 13
27: else . b2 ≤ 1

m
∧ b1 > 1

m
: symmetric of previous case

28: end if
29: end if
30: return Stall + = (P −min(Q1, Q2)) . This adds the stall when the task arrives.

Algorithm 2 Compute stall for contention dominant case.
Input: Parameters: cm1∗, cm2∗, Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: K1∗ = Equation 3 ,
3: Stall1 = Equation 2
4: Ĉe = Equation 5, Ĉm1 = Equation 8, Ĉm2 = Equation 7
5: Stall23 = single(Ce = Ĉm2 ·m+ Ĉe, Cm = Ĉm1, Q = Q1, P = P,m = m)
6: return Stall = Stall1 + min(Ĉm2, RBS2) · (m− 1) + Stall23 . Equation 41
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following memory access pattern with two phases leads to the worst-case stall: in the first
phase, there is a number, possibly 0, of consecutive periods with regulation stalls; in the
second phase, the contention-only phase, there is a number of consecutive periods, possibly
only 1, with contention stalls only. Thus, the problem of finding the worst-case stall reduces
to that of determining the number of regulation stalls that maximizes that stall. Actually, to
simplify the mathematical expressions, we use the difference, ∆ρ∗, between this number and
the maximum number of regulation stalls,

⌊
Cm1

Q1

⌋
. The total stall can then be determined

using Yao’s stall analysis:

Stall = single(Q = Q1, Cm = Cm1 − Cm1 mod Q1−∆ρ∗Q1, Ce = 0)
+ ((Cm1 mod Q1) + ∆ρ∗ ·Q1) · (m− 1)

+ single(Q = Q2, Cm = Cm2, Ce = Ce + ((Cm1 mod Q1) + ∆ρ∗ ·Q1) ·m) (13)

where, for computing the stall on the memory accesses via controller 2 in the second phase, we
account the memory accesses via controller 1 in the second phase and respective contention
stalls as computation, assuming that each of them suffers the maximum contention stall
under round-robin, m−1. Algorithms 1 and 2 detail the case analysis that we have described
so far in this section. In the following, we determine the value of ∆ρ∗.

We consider two main sub-cases depending on whether there is enough computation,
including residual memory accesses via controller 1, to ensure that every memory access via
controller 2 suffers maximum contention.

5.2.3.2 Sub-case 1: Enough computation

If Ce ≥
⌊
Cm2

RBS2

⌋
· (P −m · RBS2) − (Cm1 mod Q1) ·m, then every memory access in the

contention-only phase suffers maximum contention, and therefore the total stall is maximum
when the number of regulation stalls is maximum, i.e. ∆ρ∗ = 0.

5.2.3.3 Sub-case 2: Not enough computation

In this case, as illustrated in Figure 3, if there are memory accesses in the contention-only
phase that suffer no contention, the worst-case stall may occur when the number of regulation
stalls is not maximum.

When the number of regulation stalls is decremented by one, the regulation stall reduction
by P −Q1 is partially compensated by an increase of the contention stall via controller 1 by
Q1 · (m− 1). If the increase in contention stall via controller 2, ∆stall2c is such that:

∆stall2c > ∆stall2
∗

c
def= P −Q1 −Q1 · (m− 1) = P −Q1 ·m (14)

then reducing the number of regulation stall leads to a larger total stall. In other words, the
total stall will be worse if the increase in the number of memory accesses with maximum
stall, ∆Cm2

c , satisfies the following inequality:

∆Cm2
c > ∆Cm2∗

c
def= ∆stall2∗

c

m− 1 = P −Q1 ·m
m− 1 (15)

Like in the analysis in Section 5.2.2, to compute the stall on memory accesses via
controller 2, we can view the memory accesses via controller 1 and respective contention
stall as computation. Thus, we need to determine ∆Cm2

c when the computation in the
contention-only phase increases by ∆Ce = Q1 ·m. The challenge is that this value, ∆Cm2

c ,
may not be constant. I.e., when we increase the computation by ∆Ce = Q1 ·m, ∆Cm2

c may
have different values depending on other parameter values.
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0
i)

RBS2

P

ΔCe + st

0
ii)

P

ΔCe + st

P − RBS2 ·m Maximum number of memory accesses in each interval

Increase in execution time, including stall

Figure 4 Upper (i) and lower (ii) bounds on ∆Cm2
c .

Our solution is to compute the maximum and minimum values of ∆Cm2
c , ∆Cm2

c (max)
and ∆Cm2

c (min), respectively, and then finding ∆ρ∗ by case analysis, as described below.
When we increase the computation of the contention-only phase by ∆Ce, the total

execution of that phase, including any contention, will increase at least by that much. This
execution can replace memory accesses via controller 2 that did not have any contention, i.e
memory accesses in excess of RBS2 accesses per period, which can then be shifted towards
the end of the execution. ∆Cm2

c will be maximum if the shifted memory accesses are added
to a regulation period with no memory accesses via controller 2, up to a limit of RBS2
memory accesses per regulation period, as shown in Figure 4 i). Thus, in this case, as a
result of adding ∆Ce memory accesses we get:

∆Cm2
c (max) = RBS2 ·

⌊
∆Ce

RBS2 + P −RBS2 ·m

⌋
+min(RBS2,∆Ce mod (RBS2 + P −RBS2 ·m))

= RBS2 ·
⌊

∆Ce

Q2

⌋
+min(RBS2,∆Ce mod Q2) (16)

The first term corresponds to the number of additional periods with RBS2 memory accesses.
(Note that ∆Ce is used both to shift memory accesses via controller 2, and to fill the “hole”
in the remaining of the period, P −RBS2 ·m.) The second term corresponds to the number
of memory accesses in the last incomplete regulation period, if any: essentially, the memory
accesses that can be replaced with the remaining of ∆Ce that was not used for the additional
full periods, upper-bounded by RBS2.

On the other hand, ∆Cm2
c will be minimum, if, before adding ∆Ce, the execution ended

immediately after the RBS2 accesses with contention. This is shown in Figure 4 ii). In this
case, the analysis is similar to the one above, and therefore we can also use (16), except
that rather than using ∆Ce, we need to use max(∆Ce − (P −RBS2 ·m), 0), because the
remainder of the period at which the execution ended needs to be filled with “computation”
before an earlier memory access via controller 2 without contention stall can experience the
maximum contention stall by shifting it towards the end of the execution.

We can now distinguish there sub-cases, depending on the relative values of ∆Cm2∗
c ,

∆Cm2
c (max) and ∆Cm2

c (min).

Sub-case ∆Cm2∗
c ≥ Cm2

c (max). In this case, the increase in the number of memory
accesses with contention cannot make up for the eliminated regulation stall, so ∆ρ∗ = 0.

Sub-case ∆Cm2∗
c < Cm2

c (min). In this case, the increase in the number of memory
accesses with contention suffices to make up for the eliminated regulation stall. Therefore, the
worst-case stall increases as we reduce the number of regulation stalls until one of the following
3 cases occurs: 1) there are no more regulation stalls; 2) there are not enough memory
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Algorithm 3 Compute ∆ρ∗.
Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task index for simplicity)
Output: ∆ρ∗

1: RBS1 = P −Q1
m−1 , RBS2 = P −Q2

m−1 and C = Ce + Cm1 + Cm2

2: ∆Ce = m ·Q1
3: ∆Cm2

c (max) = Equation 16
4: ∆Cm2

c (min) = Equation 16, but replacing ∆Ce with max(∆Ce − (P −m ·RBS2), 0)
5: ∆Cm2∗

c =
⌊

P −m·Q1
m−1

⌋
6: if (Ce ≥

⌊
Cm2

RBS2

⌋
· (P −m ·RBS2)− (Cm1 mod Q1) ·m) then

7: ∆ρ∗ = 0 . There is enough “computation”
8: else if ( ∆Cm2

c (max) ≤ ∆Cm2∗
c ) then . Which implies ∆Cm2

c (min) ≤ ∆Cm2∗
c

9: ∆ρ∗ = 0 . Maximize regulation stalls on Controller one
10: else if ( ∆Cm2

c (min) > ∆Cm2∗
c ) then . Which implies ∆Cm2

c (max) > ∆Cm2∗
c

11: ∆ρ∗ = 0
12: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + (Cm1 mod Q1) ·m)
13: R = Cm2 + Ce + (Cm1 mod Q1) ·m+ stall

14: Cm2
c̄ = Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
15: while

(
Cm2

c̄ > ∆Cm2∗
c ∧∆ρ∗ <

⌊
Cm1

Q1

⌋ )
do

16: ∆ρ∗
t = ∆ρ∗ + 1

17: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1 . Accesses via controller 1 in second phase

18: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m)
19: R = Cm2 + Ce + Ĉm1 ·m+ stall

20: Cm2
c̄t = max

(
Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
, 0
)

21: if
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) · R

P

)
then . Enough

reg. periods to ensure that there is no reg. stall in periods with accesses via both controllers.
22: ∆ρ∗ = ∆ρ∗

t , C
m2
c̄ = Cm2

c̄t

23: else break
24: end if
25: end while
26: else . ∆n2

c(min) ≤ ∆n2∗
c < ∆n2

c(max)
27: ∆ρ(max) = 0, stall(max) = 0 . Variables for maximum stall
28: for ∆ρ∗ = 0 to

⌊
Cm1

Q1

⌋
do . Do exhaustive search

29: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1

30: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m) . Cont. stall on both controllers
31: R = Cm2 + Ce + Ĉm1 ·m+ stall . Duration of contention-only phase
32: if stall +

(⌊
Cm1

Q1

⌋
−∆ρ∗

)
· (P − Q1) > stall(max)

∧
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) ·

⌊
R
P

⌋)
then

33: stall(max) = stall +
(⌊

Cm1

Q1

⌋
−∆ρ∗

)
· (P −Q1)

34: ∆ρ∗(max) = ∆ρ∗

35: end if
36: end for
37: ∆ρ∗ = ∆ρ∗(max)
38: end if
39: return ∆ρ∗

accesses via controller 2, ∆Cm2∗
c , without the maximum contention stall, to compensate

for the loss in the regulation stall; or 3) the number of memory accesses via controller 1
in at least one period of the second phase exceeds Q1− 1, in which case we would have a
regulation stall, and therefore there would be no reduction in the number of regulation stalls.
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Algorithm 4 Sensitivity analysis to reclaim memory bandwidth from both controllers.
Input: b1, b2, m, ∆ (threshold to stop the algorithm)) and τ
Output: Minimum required memory bandwidth of both controllers
1: b1min = 0, b1max = b1, b2min = 0, b2max = b2
2: while (b1max − b1min > ∆ ∨ b2max − b2min > ∆) do
3: for each controller j ∈ {1, 2} do
4: if (bj

max − bj
min > ∆) then

5: Xj = b b
j
min

+b
j
max

2 c
6: if (j == 1) then
7: Schedulability = MultiControllerSchedulabilityAnalysis(Xj , b2max, m, τ)
8: else
9: Schedulability = MultiControllerSchedulabilityAnalysis(b1max, X

j , m, τ)
10: end if
11: if (Schedulability == true) then bj

max = Xj

12: else bj
min = Xj

13: end if
14: end if
15: end for
16: end while
17: return {b1max and b2max}

Because ∆Cm2 varies, we do not know a closed form expression for the number of
regulation periods to reduce. Thus, we use the iterative procedure shown in Algorithm 3.
We hence start with ∆ρ∗ = 0 and keep increasing it by one until one of the above 3 stop
conditions is satisfied. Specifically, while there are still enough memory accesses via controller
2 without maximum contention stall, Cm2

c̄ , and there is still one regulation stall (line 15),
∆ρ∗ is tentatively increased by one. In each iteration, we tentatively compute the total stall
using Yao’s analysis with the appropriate parameters (line 18) and the number of memory
accesses via controller 2 that suffer no contention (line 20), for the tentative value of ∆ρ∗. If
the number of memory accesses via controller 1 in all periods of the contention-only phase
(line 21) does not exceed Q1− 1, then the tentative values become definitive (line 22), and
the algorithm loops again, otherwise it exits the loop and terminates.

All other cases, i.e. Cm2
c (min) ≤ ∆Cm2∗

c < Cm2
c (max). In this case, the total stall

sometimes increases when the number of regulations stalls decreases by one and sometimes it
does not. Thus in this case, our approach to find the value of ∆ρ∗ is to compute the stall for
every possible value of ∆ρ∗ and pick the one that leads to the maximum stall. Algorithm 3,
lines 27-37, details the computation of ∆ρ∗ in this case.

5.3 Schedulability analysis
Until now, we assumed one task per core. When many tasks are assigned to a core, the task
in consideration and those of higher priority can be modelled by one synthetic task, using the
approach in [20], and schedulability analysis can be performed as summarized in Section 4.

6 Bandwidth Allocation and Task-to-core Assignment Heuristics

We propose 5 heuristics for allocating tasks and memory bandwidth of both controllers to the
cores. They are evaluated in terms of system schedulability. We use Audsley’s algorithm [1]
to assign task priorities, even if it is no longer necessarily optimal in the presence of stalls.
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Even. The total memory bandwidth of both controllers is equally distributed among all
cores. Subject to this even share, the task-to-core assignment is performed using first-fit.

Uneven. Initially, this heuristic also distributes both controller’s bandwidth evenly among
cores and employs the first-fit for task-to-core assignment. However, instead of declaring
failure whenever a task does not fit on any core, it sets that task aside, and moves on
to consider the next task. Any tasks that remain unassigned after considering all tasks,
are handled in-order as follows. Each core’s memory bandwidth from both controllers is
“trimmed” to the minimum value that preserves schedulability, via the sensitivity analysis
of Algorithm 4, explained later in this section. Let the total reclaimed bandwidth from
all cores be B1 and B2 from controllers 1 and 2, respectively. A second round of first-fit
tries to assign the remaining tasks, assuming that the bandwidth of the target core i is
increased by B1 and B2 for controllers 1 and 2, respectively. Upon successfully assigning
such a task, we trim anew the target cores’s memory budgets via sensitivity analysis,
adjust the available reclaimed budgets and move on to the next task in a similar manner.

Greedy-fit. Initially, the total memory bandwidth of both controllers is assigned to the first
core and the task-set is iterated over once (in a given order) to assign the maximum
number of tasks to this core; if a task does not fit, we try the next one. Afterwards, the
spare bandwidth from each controllers on this core is reclaimed via sensitivity analysis,
and is fully assigned to next core. And so on, until all tasks are assigned or the cores run
out.

Humble-fit. Similar to greedy-fit, except that when a task assignment fails, we move to the
next core (attempting no more task assignments on the current one).

Memory-fit. Initially, b1i = b2i = 0, for every core i, where bxi is the allocated memory
bandwidth of controller x on core i. Each task is assigned to the core i that requires the
least increase to b1i + b2i to accommodate it, subject to existing task assignments.

“Uneven” explores a larger solution space than “Even. “Greedy-fit” and “Humble-
fit” aggressively optimise for processing capacity use foremost. Conversely, “Memory-fit”
optimises for bandwidth instead. Hence, all heuristics sample the solution space in different
ways.

Sensitivity analysis. Algorithm 4 presents the sensitivity analysis that trims the unused
memory bandwidth from both controllers and outputs the least required memory bandwidth
from each controller. This sensitivity analysis, used for bandwidth optimisation, is an
adaptation of binary interval search ([19, 2]). It gives both controllers an equal chance to
preserve their bandwidth in a round-robin fashion. By comparison, completely optimizing one
controller followed by the second one, may lead to an imbalanced approach, hence avoided.

7 Evaluation

Experimental Setup. We developed a Java tool for our experiments. Its first module
generates the synthetic task sets and sets up a platform with the given input parameters. A
second module performs task-to-core allocation and feasibility analysis with two controllers.

We generate the task-set with a given target U = x ·m : x ∈ (0, 1] using UUnifast-discard
algorithm [6, 9] for unbiased distribution of task utilisations. The task-set size is given as
input. Task periods are log-uniform-distributed, in the range 10-100 ms. We assume implicit
deadlines, even if our analysis also holds for constrained deadlines. The WCET of a task is
derived as Ci = Ui · Ti. The total memory accesses of each task are randomly selected in
the range [0,Γ · Ci], with memory intensity factor Γ ∈ (0, 1] user-defined. The total memory
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Table 2 Overview of Parameters.

Parameters Values Default

Number of cores (m) {4, 8, 12, 16} 4
Task-set size (n) {8, 16, 24, 32, 40, 48} 16

Regulation period (P ) {1us, 10us, 100us, 1ms} 100us
Inter-arrival time (Ti) 10ms to 100ms N/A

Nominal utilisation (Ū = U
m
) {0.1 : 0.01 : 1} N/A

Memory intensity (Γ) {0.1 : 0.1 : 1} 0.5

accesses are randomly divided between the two memory controllers. By default the task-set
is sorted in descending order of utilisation. For each set of input parameters, we generate
1000 task-sets. We use independent pseudo-random number generators for the utilisations,
minimum inter-arrival times/deadlines, memory accesses and reuse their seeds [12]. Table 2
summarises all parameters, with default values underlined. We observed that size of the
regulation period has no effect on the schedulability ratio.

To avoid having hundreds of plots, in each experiment we vary only one parameter, with
others conforming to the defaults from Table 2 and present the results as plots of weighted
schedulability. This performance metric, adopted from [4], condenses what would have been
three-dimensional plots into two dimensions. It is a weighted average that gives more weight to
task-sets with higher utilisation, which are supposedly harder to schedule. Specifically, using
notation from [7], let Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a
given task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that
test y as a function p, is Wy(p) =

∑
∀τ
(
Ū(τ) · Sy(τ, p)

)
/
∑
∀τ Ū(τ). Here, Ū(τ) def= U(τ)/m

is the system utilisation, normalised by the number of cores m.
No other stall analysis with two controllers exists in the literature to compare with. We

therefore compare our approach against a system where the two controllers are partitioned
among cores that can only make requests to their assigned controller. The benefit of such
partitioning is that it roughly cuts contention in half. On the other hand, tasks assigned to
one controller cannot access data addressable by the other controller.

For the comparison, half the cores are assigned to each controller. Since each core
accesses only one controller, the feasibility of the tasks assigned to it can be tested with Yao’s
analysis [20]. We adapt the task-to-core assignment heuristics and bandwidth allocation
schemes presented in Section 6 for the partitioned case: The even heuristic equally divides a
controller’s bandwidth among its associated cores. Similarly, in the uneven heuristic, the
readjustment of the controllers bandwidth is performed only among the controller’s associated
cores. In the greedy-fit/humble-fit, all bandwidth of a given controller is only assigned to its
first associated core with an objective to maximise the number of tasks assigned to it. The
trimmed-off bandwidth from this controller is assigned to its remaining associated cores. If
the task is not feasible on the cores associated to the first controller, its feasibility is next
checked on the set of cores associated with the second controller. In the memory-fit, a task
is assigned to the core with the lowest bandwidth requirement of its controller. We use Yao-
and MC- prefixes to denote the partitioned and our approach, respectively, followed by the
name of the heuristic (even, uneven, greedy-fit, humble-fit and memory-fit).

Results. Figure 5 presents the weighted schedulability for different number of cores for
both systems with partitioned and shared controllers (our approach) using the proposed
heuristics. The first important result is that all heuristics under partitioning perform better

ECRTS 2018



2:20 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

Number of cores

W
ei

gh
te

d 
S

ch
ed

ul
ab

ili
ty

 

 
Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Memory intensity

W
ei

gh
te

d 
S

ch
ed

ul
ab

ili
ty

 

 
Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 6

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Task−set sorting

W
ei

gh
te

d 
S

ch
ed

ul
ab

ili
ty

 

 
Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 7

8 16 24 32 40 48
0

0.1

0.2

0.3

0.4

0.5

Task−set size

W
ei

gh
te

d 
S

ch
ed

ul
ab

ili
ty

 

 
Yao−Even
Yao−Uneven
Yao−Greedyfit
Yao−Humblefit
Yao−Memoryfit
MC−Even
MC−Uneven
MC−Greedyfit
MC−Humblefit
MC−Memoryfit

Figure 8

than their corresponding heuristic under shared controllers, which is due to the stall being
roughly cut in half in the former approach. This difference ranges around 10% − 30% in
absolute terms of weighted schedulability. Of course, this expected result applies only when
there are no dependencies across partitions. However, in many systems, there is always
some sharing/communication of data among tasks and this might make such partitioning
impossible. In other cases, a single controller cannot deliver enough bandwidth. This may
become more frequent in the future, as applications getting more demanding. Therefore safe
analysis for predictable access to both controllers, like the one proposed here, is needed.

In terms of heuristics, memory-fit, uneven, even, humble-fit and greedy-fit is the descending
ordered list w.r.t. weighted schedulability ratio. The memory-fit heuristic, which optimises
the use of memory bandwidth, performing best, implies that memory bandwidth is typically
the scarce resource for the given set of parameters. The uneven and even heuristics are more
balanced in terms of bandwidth and processing capacity distribution and hence, perform
close to memory-fit. Humble-fit and greedy-fit are too aggressive in construction to optimise
the use of processing capacity at the cost of memory resources and hence underperform
the other heuristics in a memory-scarce setup. Greedy-fit manages the memory resources
comparatively better than humble-fit and hence, outperforms it. Yet, if the applications are
compute-intensive and the system is not scarce w.r.t. memory resource, the heuristics that
optimise for processing resources may become handy and outperform their counterparts.

With more cores, the contention from other cores increases and hence, the schedulability
of the system decreases. Figure 6 presents the effect of memory intensity over the proposed
heuristics. Obviously, higher memory intensity increases the contention on the shared
controllers, consequently decreasing the schedulability. We also compared the effect of
the task indexing over the different heuristics as shown in Figure 7. The numbers 0, 1, 2
and 3 on the X-axis correspond to task-set ordering w.r.t. descending order of deadlines,
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utilisation, total memory requests and memory density (i.e. total memory requests divided
by the Ti), respectively. Task-set indexing w.r.t. utilisation benefits the memory-fit, even
and uneven heuristics. Figure 8 shows that task-set size has very limited effect on the
memory-fit, uneven and even approaches and they scale well when that increases. Conversely,
the performance of humble-fit and greedy-fit degrade with greater task-set sizes due to their
aggressive optimisation of processor usage at the expense of memory bandwidth.

8 Conclusion

This paper demonstrated that worst-case memory stall analyses for single-memory-controller
multicores with memory regulation are unsafe if applied to multicores with multiple memory
controllers. We overcome this limitation by proposing a new memory stall analysis for
multicore platforms with two memory controllers that captures the cases where all cores can
access both controllers. We also proposed five memory allocation heuristics, each specialising
in optimising processing capacity and/or memory bandwidth. The experimentally quantified
cost of allowing all cores to flexibly access the memory space of two controllers is 10− 30%
in terms of weighted schedulability. Results further show that the proposed memory-fit
heuristic performs well if bandwidth is scarce. The even and uneven heuristics are suitable for
balanced systems, while greedy-fit and humble-fit are handy for compute-intensive systems.
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