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Abstract
In seeking to develop mixed-criticality scheduling algorithms, one encounters challenges arising
from two sources. First, mixed-criticality scheduling is an inherently an on-line problem in
that scheduling decisions must be made without access to all the information that is needed
to make such decisions optimally – such information is only revealed over time. Second, many
fundamental mixed-criticality schedulability analysis problems are computationally intractable
– NP-hard in the strong sense – but we desire to solve these problems using algorithms with
polynomial or pseudo-polynomial running time. While these two aspects of intractability are
traditionally studied separately in the theoretical computer science literature, they have been
considered in an integrated fashion in mixed-criticality scheduling theory. In this work we seek
to separate out the effects of being inherently on-line, and being computationally intractable, on
the overall intractability of mixed-criticality scheduling problems. Speedup factor is widely used
as quantitative metric of the effectiveness of mixed-criticality scheduling algorithms; there has
recently been a bit of a debate regarding the appropriateness of doing so. We provide here some
additional perspective on this matter: we seek to better understand its appropriateness as well
as its limitations in this regard by examining separately how the on-line nature of some mixed-
criticality problems, and their computational complexity, contribute to the speedup factors of
two widely-studied mixed-criticality scheduling algorithms.
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1 Introduction

In the decade or so since it was first proposed as a formal model for representing mixed-
criticality workloads, the Vestal model [15] has been the focus of a large body of scheduling-
theoretic research (see [6] for a survey). One reasonable high-level “meta” conclusion that
may be drawn from this research is that it is remarkably challenging to come up with general
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11:2 Intractability Issues in Mixed-Criticality Scheduling

algorithms for mixed-criticality scheduling that are efficient in terms of both running time
and resource utilization; although impossibility and intractability results abound, relatively
few efficient algorithms have been derived.

In this paper we report some of the findings of our ongoing efforts at obtaining a
comprehensive understanding of the phenomenon of mixed-criticality scheduling, and seeking
to explain why it is so difficult to schedule mixed-criticality systems efficiently. We separate
out two distinct sources of intractability in mixed-criticality scheduling: (i) mixed-criticality
scheduling is inherently an on-line problem, in which information needed to make good
scheduling decisions is only revealed gradually during run-time; and (2) even ignoring this on-
line nature, some basic mixed-criticality scheduling problems are computationally intractable.
(For instance, it is known [5, Theorem 1] that determining whether a given collection of
independent mixed-criticality jobs is schedulable is NP-hard in the strong sense.)

Now these two sources of intractability – being an on-line problem and being computation-
ally intractable – have traditionally been considered separately in the theoretical computer
science community:
1. The competitive ratio/ factor metric is used to quantify the sub-optimality of an on-line

algorithm vis-à-vis an optimal clairvoyant one that is assumed to have complete knowledge
about run-time behavior prior to making any scheduling decisions.
For example, it is known that given a cache memory of k pages, the Least-Recently Used
(LRU) paging algorithm is k-competitive [12] – upon some sequences of page requests it
may experience up to k times as many page-faults as on optimal clairvoyant algorithm
would.

2. In contrast, the approximation ratio/ factor metric quantifies the performance degrada-
tion resulting from using a polynomial-time algorithm for solving an NP-hard problem
approximately.
It is known, for example, that while the problem of scheduling a directed acyclic graph on a
multiprocessor platform to minimize the makespan is NP-hard in the strong sense [14], List
Scheduling [8] is a 2-approximation algorithm for this problem that runs in polynomial
time: if a given directed acyclic graph can be scheduled optimally upon a specified
multiprocessor platform to have makespan M , then List Scheduling will schedule it to
have a makespan < 2M .

It is widely recognized in the theoretical computer science community that these two sources
of intractability are fundamentally different from one another; however in the mixed-criticality
scheduling theory literature a single metric – the speedup factor – tends to be used to quantify
the effectiveness of mixed-criticality scheduling algorithms in dealing with both sources of
intractability. As used in the mixed-criticality scheduling literature, the speedup factor metric
of an algorithm A is the minimum multiplicative factor by which the speed of a computing
platform must be increased in order that A be able to schedule any problem instance that is
schedulable by some optimal clairvoyant scheduler. Used in this manner, it is particularly
appropriate for quantifying the penalty arising from the on-line nature of mixed-criticality
scheduling, but what about the penalty that may arise from computational intractability
issues? This fundamental question motivated some lively discussions during a 2017 Dagstuhl
Seminar on mixed-criticality systems,3 regarding the benefits and drawbacks of using speedup
factor as a quantitative metric to evaluate mixed-criticality scheduling algorithms. The
opinion was expressed that since it compares algorithm A to an optimal clairvoyant scheduler,

3 Dagstuhl Seminar 17131: Mixed Criticality on Multicore/ Manycore Platforms, March 26–31, 2017.
http://www.dagstuhl.de/17131.
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speedup factor is not very useful in comparing different on-line (non-clairvoyant) algorithms;
a meaningful metric would not empower the adversary against whom each algorithm is being
compared with as extreme a power as clairvoyance. The opposing opinion was that speedup
factors as used in the mixed-criticality scheduling literature are merely an instantiation of the
concept of the competitive factor metric [12], that has long been considered the gold standard
for quantifying on-line algorithms – as a specific example, competitive factors continue to
be widely used for justifying the choice of paging algorithms, despite the non-existence of
clairvoyant paging algorithms. (Some other limitations of speedup factor as a metric for
scheduling algorithms have been elaborated upon in [7]; rather than elaborate upon these
limitations here we encourage the interested reader to peruse [7] since a discussion of these
limitations is somewhat orthogonal to our prime objective here of niggling out the different
effects of non-clairvoyance and computational complexity.)

This research. In this research, we attempt to obtain a better understanding of the role that
speedup factor plays in characterizing mixed-criticality scheduling algorithms. We focus upon
three widely-studied uniprocessor mixed-criticality scheduling problems that have previously
been quantified with speedup factors: (i) scheduling of collections of independent dual-
criticality jobs; (ii) scheduling of collections of independent dual-criticality implicit-deadline
periodic tasks; and (iii) scheduling of collections of independent dual-criticality implicit-
deadline sporadic tasks. For each problem, we consider three forms of schedulability:
1. Clairvoyant schedulability: Given a dual-criticality instance I, can I be scheduled

correctly4 by a clairvoyant scheduling algorithm?
2. MC schedulability: Given a dual-criticality instance I, can I be scheduled correctly

by an on-line (non-clairvoyant) scheduling algorithm?
3. A-schedulability (for some specified scheduling algorithm A): Given a dual-criticality

instance I, can I be scheduled correctly by the scheduling algorithm A?
In this work, the specific algorithms A that we consider are OCBP [4] for the job-scheduling
problem, and EDF-VD [3] for the periodic and sporadic task-scheduling problems.

Computational complexity. The computational (in)tractability status of each of these
schedulability problems is known to be as follows

For each of the three problems that we study it is known (or can be easily deduced from
prior results) that clairvoyant schedulability, as well as the respective A-schedulabilities
(i.e., OCBP-schedulability for jobs; EDF-VD-schedulability for periodic and sporadic
tasks) can be determined efficiently in polynomial time.
What about MC-schedulability? The state of knowledge here is rather more sparse:

It has previously [5] been shown that determining MC-schedulability for a collection
of independent dual-criticality jobs is NP-hard in the strong sense.
To our knowledge, no non-trivial prior results are known regarding MC-scedulability
of dual-criticality periodic or sporadic implicit-deadline task systems. As one of the
major contributions of this paper, we show that determining MC-schedulability for
collections of independent dual-criticality periodic and sporadic implicit-deadline tasks
is also NP-hard in the strong sense.
The significance of this result for our purposes cannot be over-stated: as is the case for
OCBP and the scheduling of independent jobs, it follows that EDF-VD, too, is dealing

4 Precise definitions of what it means to schedule a dual-criticality system correctly are provided in
Section 2.
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Figure 1 Summarizing the current state of our knowledge regarding speedup bounds for MC-
scheduling of dual-criticality independent jobs (left figure) and dual-criticality implicit-deadline
periodic & sporadic tasks (right figure). Each figure depicts previously-known lower and upper
speedup bounds on the two sources of intractability: the on-line nature of MC-scheduling (given
by speedup ratio), and the computational tractability of MC-schedulability analysis (given by
approximation ratio).

with both the intractability arising from its non-clairvoyance and the intractability
arising from having to solve an NP-complete problem in polynomial time. Hence its
sub-optimality (as quantified by its speedup factor), too, can be attributed to two
distinct sources.

Non-clairvoyance. The inherent intractability arising from the on-line nature of mixed-
criticality scheduling problems has also been studied, and is fairly well understood for our
three problems of interest:

For collections of independent dual-criticality jobs, it was shown [4] that there are
clairvoyant-schedulable instances that are not MC-schedulable without speedup < Φ,
where Φ = (

√
5 + 1)/2 ≈ 1.618 denotes the Golden Ratio:

Φ =
√

5 + 1
2 ≈ 1.618 (1)

For collections of independent dual-criticality implicit-deadline sporadic tasks, it was
shown [3] that there are clairvoyant-schedulable instances that are not MC-schedulable
without speedup < 4/3.
The proof in [3] is easily adapted from sporadic to periodic tasks, to show that there are
clairvoyant-schedulable instances of independent dual-criticality implicit-deadline periodic
tasks that are not MC-schedulable without speedup < 4/3.

The intractability results described above – computational intractability and loss of
performance vis-à-vis clairvoyant schedulability – unfortunately do not fit in neatly with
known results concerning specific scheduling algorithms. It is known, for instance, that
the polynomial-time algorithm OCBP [4] is able to schedule any clairvoyant-schedulable
collection of independent dual-criticality jobs with a speedup Φ. This implies that the
speedup ratio Φ that is so widely used to characterize the effectiveness of OCBP as a mixed-
criticality scheduling algorithm, is accounted for entirely by the fact that OCBP is solving a
problem for which there is a lower bound of Φ on the speedup factor of any non-clairvoyant
scheduling algorithm. This result is somewhat paradoxical: the approximation ratio of OCBP
vis-à-vis MC-schedulability, arising from the fact that OCBP is only solving this problem
approximately (which it inevitably is, since OCBP is a polynomial-time algorithm while
determining MC-schedulability for collections of independent dual-criticality jobs is NP-hard
in the strong sense) is not accounted for at all – see the left diagram in Figure 1. Similarly,
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it is known that EDF-VD can schedule any clairvoyant-schedulable collection of independent
dual-criticality implicit-deadline periodic or sporadic tasks with a speedup 4/3’rds – this
is depicted in the right diagram in Figure 1; this again fails to account for the fact that
EDF-VD is solving, in polynomial time, the MC-schedulablity problem for implicit-deadline
periodic and sporadic tasks despite our showing, in this paper, that this problem is NP-hard
in the strong sense.

One of our major results here is a proof that the approximation ratio of OCBP – i.e., its
degradation in performance vis-à-vis MC-schedulability – is also quantified by a speedup
factor equal to Φ. We show this by synthesizing an independent dual-criticality job instance
that is MC-schedulable, but that can only be scheduled by OCBP upon a platform that is Φ
times as fast. This immediately yields the interesting conclusion that the speedup factors
quantifying (i) the intractability arising from the on-line nature of mixed-criticality scheduling
, and (ii) the intractability arising from the computational complexity (NP-hardness) of
recognizing MC-schedulability, do not “compose” in any meaningful sense: while each is
equal to Φ in this case, the speedup factor of OCBP-schedulability vis-à-vis clairvoyant
schedulability is also equal to Φ:

Clairvoyant 
Schedulability

MC 
Schedulability

OCBP 
Schedulability

Competitive ratio
speedup ≥ 	Φ (lower bound)

This paper: 
approximation ratio = 	Φ

Competitive ratio 
speedup = 	Φ

Organization. The remainder of this paper is organized as follows. In Section 2 we briefly
describe the mixed-criticality workload models we will be using, and define some relevant
concepts. In Section 3 we study the problem of scheduling collections of independent dual-
criticality jobs. In Section 4 we present our results concerning the scheduling of collections of
dual-criticality implicit-deadline recurrent (periodic and sporadic) task systems. We conclude
in Section 5 with an enumeration of some interesting open issues and questions.

2 Model and Background

A mixed-criticality (MC) implicit-deadline recurrent (i.e., periodic or sporadic) task system τ

consists of a finite specified collection of MC implicit-deadline recurrent tasks, each of which
may generate an unbounded number of MC jobs.

MC jobs. As stated in Section 1 above, we will, for the most part, restrict our attention
here to dual-criticality systems: systems with two distinct criticality levels. A dual-criticality
job Ji is characterized by a tuple of parameters: Ji = (χi, ai, [cLi , cHi ], di), where

χi ∈ {L,H} denotes the criticality of the job;
ai ∈ R+ is the release time;
cLi and cHi denote low-criticality and high-criticality estimates of the job’s worst-case
execution time (WCET) parameter; and
di ∈ R+ is the deadline.

ECRTS 2018



11:6 Intractability Issues in Mixed-Criticality Scheduling

System behavior. The MC job model has the following semantics. Job Ji is released at
time ai, has a deadline at di, and needs to execute for some amount of time γi. The value of
γi is not known beforehand, but only becomes revealed by actually executing the job until it
signals that it has completed execution. These values of γi for a given run of the system
defines the kind of behavior exhibited by the system during that run. If each Ji signals
completion without exceeding cLi units of execution, we say that the system has exhibited
lo-criticality behavior ; if even one job Ji signals completion after executing for more than cLi
but no more than cHi units of execution, we say that the system has exhibited hi-criticality
behavior. If any job Ji does not signal completion despite having executed for cHi units, we
say that the system has exhibited erroneous behavior.

Clairvoyance. Before scheduling a collection of jobs, a clairvoyant scheduling algorithm
knows, for each job Ji in the collection, the precise duration γi for which the job will need to
execute prior to signaling completion. (Note that clairvoyant scheduling algorithms represent
a hypothetical ideal that are not in general implementable in actual systems.). By contrast,
an on-line scheduling algorithm does not know the values of γi beforehand; the value of γi is
only revealed by executing Ji for a duration γi, at which instant it signals completion.

The notions of clairvoyant and on-line scheduling algorithms extend in the obvious manner
to the scheduling of recurrent tasks (discussed next).

MC implicit-deadline recurrent tasks. Analogously to traditional (non-MC) implicit-
deadline recurrent tasks, an MC implicit-deadline recurrent (periodic or sporadic) task
τk is characterized by a four-tuple (χk, CLk , CHk , Tk), with the following interpretation. Task
τk generates an unbounded sequence of jobs, with successive jobs being released exactly Tk
time units apart if the task is periodic, and at least Tk time units apart if it is sporadic.
Each such job has a deadline that is Tk time units after its release. The criticality of each
such job is χk, and it has lo-criticality and hi-criticality WCET’s of CLk and CHk respectively;
we assume that CLk ≤ CHk for all tasks τk.

An MC implicit-deadline periodic/ sporadic task system is specified by specifying a
finite number of such periodic/ sporadic tasks. As with traditional (non-MC) systems, a
MC sporadic task system can potentially generate infinitely many different MC instances
(collections of jobs), each instance being obtained by taking the union of one sequence of
jobs generated by each task.

Correctness criteria. We define an MC scheduling algorithm to be correct if it is able to
schedule any system such that

During all lo-criticality behaviors of the system, all jobs receive enough execution between
their release time and deadline to be able to signal completion; and

During all hi-criticality behaviors of the system, all hi-criticality jobs receive enough
execution between their release time and deadline to be able to signal completion.

As defined in Section 1, a dual-criticality instance is said to be clairvoyant schedulable if it
can be scheduled correctly by some clairvoyant scheduling algorithm, MC-schedulable if it
can be scheduled correctly by some (non-clairvoyant) on-line algorithm; and A-schedulable
for some specified scheduling algorithm A if it can be scheduled correctly by the algorithm A.
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3 Scheduling Mixed-Criticality Jobs

In this section we look at a very simple mixed-criticality scheduling problem: that of
scheduling instances that are collections of independent dual-criticality jobs upon a single
preemptive processor. To our knowledge, this problem was first studied in [4], where an
algorithm called OCBP was proposed for solving it; OCBP were further studied in [5, 10].
Recall that an instance is defined to be clairvoyant-schedulable if it is scheduled correctly
by an optimal clairvoyant algorithm; MC-schedulable if it is scheduled correctly by some
(non-clairvoyant) on-line algorithm; and OCBP-schedulable if it is scheduled correctly by
OCBP. The following results were proved in [5, 10] (again, Φ denotes the golden ratio).

R1 There are clairvoyant-schedulable instances that are not MC-schedulable with speedup
< Φ.

R2 Determining MC-schedulability is NP-hard in the strong sense (even if all jobs in the
instance have equal release dates).

R3 If an instance is clairvoyant schedulable, then it is OCBP-schedulable with speedup Φ.

Results R1 and R2 above reveal that the “difficulty” in the problem being solved by
OCBP arises from two sources: R1 tells us that no on-line algorithm, regardless of its run-
time computational complexity, can solve it optimally, while from R2 it appears unlikely that
the polynomial-time OCBP is able to even solve the on-line problem exactly. Result R1 above
tells us that no (non-clairvoyant) on-line algorithm can have a competitive factor smaller
than Φ. Analogously to the competitive factor metric for quantifying on-line algorithms,
the effectiveness of polynomial-time algorithms for solving NP-hard problems approximately
is commonly quantified using the approximation ratio metric. The result R3 is therefore
somewhat paradoxical, and reveals one of the shortcomings of speedup factor as a metric for
mixed-criticality scheduling algorithms: the fact that OCBP is only approximately solving
an NP-hard problem is not revealed in its speedup factor (which takes on the optimal value
of Φ).

In this section we consider OCBP from the perspectives of comparing its performance
to both a clairvoyant algorithm (here we look at its competitive factor) and an optimal
non-clairvoyant algorithm (here, we examine its approximation ratio). Both metrics provide
different perspectives on its “distance” from optimal behavior – its competitive factor is a
measure of its distance from optimality due to its non-clairvoyance (its not knowing the
future) while its approximation ratio is due to its computational limitations – it is solving an
NP-hard problem in polynomial time.

3.1 Current State of the Art
The OCBP algorithm is known to be speedup-optimal for scheduling dual-criticality collections
of independent jobs. Given such a dual-criticality instance I, OCBP aims to derive offline
(i.e., prior to run-time) a total priority ordering of the jobs of I such that scheduling the jobs
according to this priority ordering guarantees a correct schedule, where scheduling according
to priority means that at each moment in time the highest-priority available job is executed.

The priority list is constructed recursively using the approach commonly referred to in
the real-time scheduling literature as the “Audsley approach” [1, 2]. OCBP first identifies a
lowest priority job: Job Ji may be assigned lowest priority if

it is a low-criticality job (i.e., χi = L) and there is at least cLi time between its release
time and its deadline available if every other job Jj has higher priority and is executed
for CLj time units; or

ECRTS 2018



11:8 Intractability Issues in Mixed-Criticality Scheduling

it is a high-criticality job (i.e., χi = H) and there is at least cHi time between its release
time and its deadline available if every other job Jj has higher priority and is executed
for CHj time units.

The above procedure is repeated on the set of jobs excluding the lowest priority job, until
all jobs are ordered, or at some iteration no lowest priority job is identified (if this happens
OCBP declares failure and exits: it is unable to schedule this instance).

The results R1–R3 listed above permit us to draw the following conclusions about the
effectiveness of OCBP:
1. From R1 and R3, we conclude that OCBP has the optimal competitive ratio from the

perspective of speedup-versus-clairvoyance.
2. But that leaves unanswered the question of how far OCBP is from on-line optimal-

ity (as indicated by MC-schedulability). In contrast to R2, OCBP-schedulability can
be determined in polynomial time – what is the approximation ratio of OCBP in
comparison to an optimal on-line scheduler?

3.2 Additional Insights
We now describe some of our new findings that allow us to better characterize the effectiveness
with which the polynomial-time OCBP algorithm approximates solutions to the NP-hard
problem of MC-schedulability. We first show, in Section 3.2.1, that OCBP is in fact optimal
for scheduling MC-schedulable instances comprising just two jobs. (Although this result
may at first seem trivial, we point out that the proof of result R1 was obtained using 2-job
instances; hence the result proving optimality of OCBP vis-à-vis MC-schedulability serves to
separate the intractability arising from non-clairvoyance from the intractability arising from
computational intractability issues). This positive result contrasts with a negative result in
Section 3.2.2, where we show that in general, however, OCBP’s approximation ratio is at
least Φ: there exist MC-schedulable instances that are not OCBP-schedulable with speedup
< Φ.

3.2.1 Instances with at most two jobs
We now show that OCBP is able to optimally schedule any instance comprising at most two
jobs. The cases when the instance comprises zero or one jobs is trivial; let us therefore focus
on two-job instances. Consider first the case when both jobs have the same release date
(without loss of generality, assumed equal to zero). If both jobs have the same criticality, or
if the high-criticality job has an earlier deadline, OCBP will find the EDF-schedule for the
jobs, and this is the optimal schedule. Consider, therefore, the case when the earlier-deadline
job has lower criticality. Consider the following instance:

{J1 = (L, 0, [cL1 ,−], d1), J2 = (H, 0, [cL2 , cH2 ], d2)}

with d1 < d2.
We claim that this instance is MC-schedulable if and only if (in addition to each job being

“well-formed” – i.e., cLi ≤ cHi – and individually feasible) the following condition is satisfied:((
cL1 + cL2 ≤ d1

)∨(
cL1 + cH2 ≤ d2

))
(2)

The reason why this is a necessary and sufficient condition for MC-schedulability is as follows:
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Table 1 Example job instance depicting the non-optimality of OCBP vis-à-vis MC-schedulability.
(Here ε denotes a positive constant < 1, and y > 1.)

criticality release date wcets deadline
J1 high 0 [ε, 1] 1
J2 low 0 [1 − ε, 1 − ε] 1
J3 high 0 [y − 1, y − 1] y

If the first disjunct is satisfied, we start out executing J2.
This is clearly a correct scheduling strategy, since in any lo-criticality behavior both
jobs will complete before the earlier deadline d1 while in any hi-criticality behavior the
hi-criticality job gets to execute to completion and hence (since each job is assumed to
be individually feasible) meets its deadline.
If the second disjunct is satisfied, we start out executing J1.
This, too, is clearly correct: the lo-criticality job executes first and therefore (since it is
assumed individually feasible) receives up to cL1 units of execution by its deadline. It does
not receive more than cL1 units of execution regardless of whether it signals completion or
not; hence, the disjunct ensures that the hi-criticality job always gets up to cH@ units of
execution prior to its deadline.
If neither disjunct is satisfied, then consider any schedule over the interval [0, d1]:

If job J1 has executed for < cL1 units, then the instance reveals low-criticality behavior
Else job J1 has executed for cL1 units (in which case job J2 could not have executed for
cL2 units to reveal high-criticality behavior), and the instance reveals high-criticality
behavior.

Now observe that if Condition 2 is satisfied, then OCBP would successfully schedule the
system – if the first disjunct is true then J1 can be assigned lower priority while if the second
disjunct is true then J2 could be assigned lower priority, by OCBP.

Now to generalize to the case where the two jobs may not have equal release dates, observe
that any work-conserving algorithm would schedule the job that is released throughout the
interval between its release and the release date of the second job (or to completion –
whichever occurs first). And once the second job arrives, we are back to the case of two jobs
with equal release dates, with the WCETs of the job that was released first appropriately
modified to reflect the execution that has already occurred.

3.2.2 General Instances
We have seen that OCBP is optimal vis-à-vis MC-schedulability for dual-criticality instances
with two or fewer jobs. Unfortunately, this optimality property does not hold for > 2 jobs;
we show this by constructing a 3-job instance shown in Table 1. It is easy to show that this
instance is MC-schedulable: an optimal on-line algorithm would execute J1 to completion. If
this occurs within ε time-units, then the optimal algorithm executes J2 and then J3; if not,
it simply discards J2 and executes J3 to completion.

However, this instance is not OCBP-schedulable; we prove this by showing that none of
the three jobs can be assigned lowest priority by OCBP (and hence OCBP would report
failure at the very beginning – it is unable to assign any job lowest priority):
1. For J1 to be lowest-priority, we would need(

1 + (1− ε) + (y − 1) ≤ 1
)
⇔
(

1 + y − ε ≤ 1
)

which is impossible since ε < 1 and y > 1.

ECRTS 2018



11:10 Intractability Issues in Mixed-Criticality Scheduling

2. For J2 to be lowest-priority, we would need(
ε+ (1− ε) + (y − 1) ≤ 1

)
⇔
(
y ≤ 1

)
which is impossible since y > 1.

3. For J3 to be lowest-priority, we would need(
1 + (1− ε) + (y − 1) ≤ y

)
⇔
(

1− ε+ y ≤ y
)

which is impossible since ε < 1.

We saw above that the 3-job instance depicted in Table 1 is not OCBP-schedulable; we
now compute the minimum speedup needed in order that this instance be OCBP-schedulable
upon the faster platform. Since the instance is MC-schedulable this speedup value would
represent a lower bound on the approximation ratio of OCBP (vis-à-vis MC-schedulability).

Note that OCBP must assign some job lowest priority. We consider each of the three
jobs as potential candidate lowest-priority jobs:
1. For J1 to get lowest priority, the processor would to complete (1 + y− ε) units of work by

time-instant 1, in order that J1 complete by its deadline at time-instant 1. The needed
speedup is therefore

(1 + y − ε) (3)

2. For J2 to get lowest priority, the processor would to complete y units of work by time-
instant 1, in order that J2 complete by its deadline, also at time-instant 1. The needed
speedup is therefore

y (4)

3. For J3 to get lowest priority, the processor would to complete (1 + y− ε) units of work by
time-instant y, in order that J3 complete by its deadline at time-instant y. The needed
speedup is therefore

1 + y − ε
y

= 1 + 1− ε
y

(5)

Since y > ε, Expression (4) < Expression (3) and hence J2 requires a lower speedup than J1
to be a viable lowest-priority job. Which of J2 or J3 needs a lower speedup to be a viable
lowest-priority job depends upon the exact values of ε and y. Since the speedup needed for
J2 to be a viable lowest-priority job increases, while the speedup needed for J3 to be a viable
lowest-priority job decreases, with increasing y, the largest speedup needed occurs when the
two values are equal:

y = 1 + 1− ε
y

⇔ y2 − y − (1− ε) = 0

As ε → 0, the solution to the quadratic equation above approaches the golden ratio Φ =
(
√

5 + 1)/2, and the speedup needed is equal to this value of y.
We have therefore just shown that this is at least one MC-schedulable instance – the one

depicted in Table 1 – for which OCBP needs a speedup of Φ. It has previously been shown
that any clairvoyant-schedulable instance is OCBP schedulable with speedup Φ (this is the
result R3 referenced above), from which it follows that any MC-schedulable instance is also
OCBP schedulable with speedup at most Φ. We therefore conclude that the approximation
ratio of OCBP is equal to Φ, yielding the situation depicted in Section 1.
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4 Sporadic Task Schedulability

We focus our attention in this section on dual-criticality implicit-deadline recurrent – sporadic
and periodic – task systems. Our main contribution here is a proof that the mixed-criticality
scheduling problem is NP-hard for such systems; this stands in sharp contrast to the
analogous problem for single-criticality systems, where a simple linear-time utilization-based
schedulability test is known [11]. This computational complexity result serves to establish that
determining MC-schedulability is computationally intractable for dual-criticality recurrent
task systems, and hence demonstrates that EDF-VD (like OCBP) is dealing with two sources
of intractability: non-clairvoyance and computational complexity. This opens up the need for
separating out the effects of the two sources of intractability, and also highlights the need for
metrics that are able to separately quantify the approximation-ratio effect (i.e., comparison
with MC-optimality) and the competitive-ratio effect (i.e., the sub-optimality arising from
the lack of clairvoyance) of EDF-VD in scheduling recurrent sysems..

4.1 Task Set Construction
Recall that, dual criticality mixed criticality job scheduling is NP-complete in the strong
sense [5, Theorem 1]. We will use that proof as a starting point for our proof to show how
a similar reduction can also be used for both periodic and sporadic tasks. The reduction
in [5, Theorem 1] is from an instance I of 3-PARTITION. The 3-PARTITION problem is
the following: we are given a set S of 3m positive integers s0, s1, s2, ..., s3m−1 and a positive
integer B such that B/4 < si < B for each i, and

∑3m−1
i=0 si = mB. Instance I is said to

have a feasible solution if S can be partitioned into m disjoint sets, S0, S1, ..., Sm−1 each of
which sum to B.

Hardness construction for mixed-criticality jobs from [5, Theorem 1]. In [5, Theorem 1],
the authors showed that dual-criticality job schedulability is solvable in polynomial time iff
3-PARTITION is solvable in polynomial time. Given an instance I of 3-PARTITION, they
defined a polynomial-time procedure for generating a set XI of dual-criticality jobs such that
XI can be scheduled correctly by an online scheduler iff I has a feasible solution.5

From I, the dual-criticality jobs set XI is generated as follows:
3m hi-criticality jobs (χi = H) each with release time 0, deadline 2mB, CLi = si and
CHi = 2si.
m lo-criticality jobs (χi = L) each with release time iB for 0 ≤ i ≤ (m− 1) and deadline
2B after its release and CLi = CHi = B.

The derivation in [5, Theorem 1] shows that this job system XI is schedulable in an
MC-correct manner iff I has a valid 3-partition. We will not recall the details of the proof
that shows that if Xi is schedulable, then I is feasible since those details are not important
for our proof here. We will briefly recall the direction that shows that if I is feasible then XI

is schedulable. To do so, given a feasible 3-PARTITION for I, we must provide a schedule
for XI such that all jobs are scheduled correctly.

Given a feasible partition S0, S1, S2, ..., Sm−1, the feasible scheduling policy is as follows.
Look at m chunks of time, each of size (i.e., duration) 2B. In the first B time of chunk j, we
execute the tasks in Sj – since the lo-criticality execution time of all jobs in Sj sums to B,

5 To prove NP-completeness, one must also reduce from a set of jobs to an instance of 3-PARTITION;
however, we are only concerned with NP-hardness in this paper.
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11:12 Intractability Issues in Mixed-Criticality Scheduling

this interval is sufficient to finish these jobs if the system stays in lo-criticality mode. In the
second chuck of time, we execute the lo-criticality job. Therefore, all jobs are schedulable in
lo-criticality behavior.

We now argue about hi-criticality behavior. Consider a job τi in set Sj . Say this job
exceeds its lo-criticality execution time. Then the system will discover this by time (2j+1)B
since all jobs of set Sj will have completed their lo-criticality execution by then. At this
point, the system will transition to hi-criticality mode and all lo-criticality jobs will be
discarded. Therefore, the schedule has (2m− 2j − 1)B time to finish the hi-criticality jobs’
remaining computation before their deadline. At this point, all jobs in sets S0, S1, ..., Sj−1
have already signalled completion and the jobs in set Sj have completed B units of work.
Therefore, even if all jobs in sets Sj+1, ..., Sm−1 execute for their hi-criticality execution time
of 2si, we have total of (2m − 2j − 1)B total remaining hi-criticality work which can be
completed by the deadline.

Translating the construction to dual-criticality tasks. The construction in [5, Theorem 1]
described above applies to dual-criticality jobs; now we will show how we can use a similar
construction for dual-criticality tasks. Given a feasible instance of 3-PARTITION I, we
construct a mixed-criticality job system YI as follows:

3m hi-criticality tasks (χi = H) each with period 2mB, CLi = si and CHi = 2si.
1 lo-criticality task (χi = L) with period 2B and CLi = CHi = B.

Note that if the system is periodic with the first release of all jobs at time 0, then YI
generates an instance of dual-criticality jobs XI in each hyper-period of 2mB. Therefore,
the following lemma about periodic jobs is obvious.

I Lemma 1. If tasks are periodic, then this task set YI is schedulable iff the job system XI was
schedulable. Therefore, determining schedulability of periodic implicit deadline dual-criticality
task systems is NP-hard in the strong sense.6

It is not so straightforward, however, to argue that sporadic schedulability is NP-hard in
the strong sense. We will now prove the following theorem in the rest of this section.

I Theorem 2. A sporadic task system generated by YI is schedulable iff I has a feasible solu-
tion, that is, if the corresponding periodic task system is schedulable. Therefore, determining
schedulability of sporadic implicit deadline dual-criticality task systems is NP-hard in the
strong sense.

It is clear that if the sporadic task system is schedulable, then the periodic one is also
schedulable since periodic releases are just an instance of sporadic releases. The rest of this
section will show that if the periodic task system is schedulable, then the sporadic one is
also schedulable.

Note that we are not making a general claim about all task systems. It is sufficient
to show the following: If an instance I of 3-PARTITION (set S of 3m positive integers
s0, s1, s2, ..., s3m−1 and a positive integer B such that B/4 < si < B) is feasible (we can find
m sets S0, S1, ..., Sm−1 where each set sums to B), then the corresponding dual-criticality
sporadic task system YI is schedulable. We will do so by designing a particular scheduler for
this type of task set.

6 Again, we are concerned only with NP-hardness; therefore, we needn’t show a reduction from periodic
task instances to 3-PARTITION instances.
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4.2 Scheduling a Sporadic Instance of YI

Here, we wish to design a schedule that can correctly schedule the sporadic task set if the
periodic task set is schedulable. In other words, given a feasible instance of I, this scheduler
will always meet all deadlines if no job exceeds its lo-criticality WCET and will meet all
hi-criticality deadlines if some job exceeds its lo-criticality WCET, but does not exceed its
hi-criticality WCET. Intuitively, this scheduler tries to mimic the periodic schedule.

LO-criticality mode scheduling algorithm. The run-time scheduling algorithm is an almost-
fixed-priority scheduler when in lo-criticality mode. In particular, each high-criticality task
is assigned a priority and higher-priority high-criticality tasks take precedence over lower-
priority high-criticality tasks. Priority assignment to the 3m hi-criticality tasks is determined
according to the set they are in for the solution of I. Tasks in set S0 have priority 0, tasks in
S1 have priority 1 and so on – here, lower numbers denote greater scheduling priority.

However, scheduling decisions for low-criticality jobs are a little different. Each hi-
criticality task τi in set Sj maintains an auxiliary variable called slack `i ← jB – this is
the amount of time the lo-criticality task is allowed to execute after τi is released before τi
becomes “higher priority” than the lo-criticality task.

The schedule is a work-conserving schedule with the following properties. A hi-criticality
job always yields to all higher priority hi-criticality jobs. That is, a job generated by task
τi in set Sj will yield to all jobs generated by tasks in sets S0, S1, .., Sj−1. There are three
tasks at each priority level and the scheduler can arbitrarily pick between jobs of these tasks.
In addition, each job of hi-criticality task τi keeps track of how much lo-criticality work has
executed since its release. While this work is smaller than `i, it yields to lo-criticality jobs.
After this work is equal to `i, it never yields to lo-criticality jobs.

HI-criticality mode scheduling algorithm. The system transitions to hi-criticality mode
at time Tr if any hi-criticality job executes for CLi time without signalling completion. After
Tr, the jobs generated by lo-criticality task are never given any execution time and the
hi-criticality jobs just run with earliest deadline first scheduling.

4.3 Proof of Schedulability
We must now show that this task system is always schedulable using the scheduling algorithm
described above. The basic idea is that the scheduler tries to mimic the periodic schedule.

Recall that, in the periodic schedule in lo-criticality mode, jobs generated by tasks in S0
never experience any interference since they are executed as soon as they are released. In
general, jobs of tasks of sets S0, S1, ..., Sj−1 execute before jobs of tasks in Sj ; in addition
jB jobs of the lo-criticality task can execute before tasks in Sj . Therefore, tasks in Sj are
guaranteed to complete by time (2j + 1)B in the periodic schedule. The scheduler described
above is specifically designed to ensure that a job of τi in set Sj never experiences more
interference in the sporadic schedule than it experiences in the periodic schedule; therefore,
the response time of each hi-criticality task in lo-criticality behavior is at most its response
time in the strictly periodic scheduler. This leads to two good properties. First, and more
obviously, all hi-criticality tasks meet their deadlines in lo-criticality mode. Second, and less
obviously, since the response time of all hi-criticality jobs in lo-criticality mode is bounded
by their response time in the periodic schedule, the transition point occurs “early enough.”
That is, if a hi-criticality job exceeds its lo-criticality WCET and the system transitions
into hi-criticality behavior, then all pending jobs still have enough time to complete their
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hi-criticality work CLi . In addition, we must argue that while the system remains in lo-
criticality mode, all lo-criticality tasks also meet their deadlines. This is possibly the most
counter-intuitive part of the argument; here we argue that the slack condition ensure that at
most a total of B hi-criticality work reaches slack 0 and preempts any single lo-criticality
job during its execution.

We will first argue that all jobs (from both hi-criticality and lo-criticality tasks) meet
their deadlines while the system remains in lo-criticality behavior and then we will argue
that hi-criticality jobs meet their deadlines if the system transitions to hi-criticality behavior.

4.3.1 Correctness Proof for LO-Criticality Behavior
We will first argue that all hi-criticality tasks meet their deadlines in lo-criticality behavior.
This is relatively straightforward. We first prove a simple lemma about idle instant – that is,
an instant such that all pending work has completed. In particular, at the idle instant, all
the jobs that were released before this instant has completed.

I Lemma 3. While the system remains in lo-criticality behavior, in any interval of size
2mB, there is at least one idle instant.

Proof. We start at an idle instant t and argue that the next idle instant is within 2mB time.
Look at the interval from t to t+ 2mB. During this interval, at most mB lo-criticality work
is released and at most mB hi-criticality work is released. If this interval stays busy, then
all this work is done by the end of this interval; therefore, there is an idle instant at time
t+ 2mB if there is not one before. J

The following corollary follows from Lemma 3 and the fact that the inter-arrival time
between consecutive jobs of the same hi-criticality task in our task system is at least 2mB.

I Corollary 4. While the system remains in lo-criticality mode, between any two consecutive
job releases of the same hi-criticality task, there is an idle instant.

We can now use this corollary to show that all hi-criticality tasks meet their deadlines in
lo-criticality mode.

I Lemma 5. The response time of a job of task τi in set Sj is bounded by (2j + 1)B in
lo-criticality mode. Therefore, all hi-criticality tasks meet their deadlines in lo-criticality
mode.

Proof. Due to Corollary 4, no job can suffer interference from two jobs of the same task
since there is an idle instant between consecutive releases. A hi-criticality task τi in set Sj
has priority j and only tasks in sets S0, S1, ..., Sj can interfere with it. Therefore, the total
lo-criticality WCET of higher priority tasks including its own priority, is exactly (j + 1)B.
In addition, the total interference it can experience from lo-criticality tasks is at most jB
(by enforcement of the slack scheduling policy). Therefore, the job has a response time of at
most (2j + 1)B. J

We now prove the more interesting result that all jobs generated by the lo-criticality task
also meet their deadlines in the lo-criticality mode. This argument depends on the slacks.
In general, one might worry that if there are many hi-criticality jobs with small remaining
slack, then a lo-criticality job may starve and not be able to get enough computation time
by its deadline. We will now argue that this cannot happen.

Intuitively, this is easiest to see in a strictly periodic schedule starting at time 0. The
jobs of tasks in S0 have no slack since for all these tasks `i = 0 – therefore, they execute
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first taking up the first B time steps. After this, however, the first lo-criticality job gets
to execute and meets its deadline. At this point, jobs in S1 have exhausted their slack and
they execute next. The jobs in S2 started with slack of 2B and have B slack remaining, so
the second lo-criticality job executes before them. Therefore, the lo-criticality job gets B
execution in the interval from its release time to its deadline every time and meets all its
deadlines. We will do an induction argument to see this. In order to do this induction, we
need two additional definitions.

We define w(τi, t) as the remaining work of task τi at time t. At an idle instant,
w(τi, t) = CLi . If no job of a task τi has been released since the last idle instant or a job
has been released, but has not yet done any execution, then w(τi, t) = CLi . As a job of a
task executes, its w decreases. In particular, if a job of the task τi has done work w since
the last idle instant, then w(τi, t) = CLi − w. If the job (released since last idle period) has
completed, then w(τ, t) = 0.

We will define a quantity running slack r`i for each task τi. At the beginning of the
execution and at any idle instant, the running slack r`i is set to the task slack `i – that
is, tasks in set Sj get a slack of jB. This running slack remains unchanged until a job of
this task τi is released. Once a job Ji of a task τi is released, r`i decreases every time step
that a job of the lo-criticality task executes – this corresponds to keeping track of how
much lo-criticality work has executed since job Ji arrived. By the scheduler definition, once
r`i = 0 the job Ji stops yielding to lo-criticality jobs and no lo-criticality job can execute
until Ji finishes executing. Note that it is sufficient to reset r`i values at each idle instant
since by Corollary 4, there is an idle instant between consecutive arrivals of any hi-criticality
task; therefore, the running slack r`i is always reset to `i between consecutive job arrivals of
the same task. (Note that since we have a work-conserving scheduler, hi-criticality jobs with
slack larger than 0 can run if there is no lo-criticality pending job.)

Recall that we must argue that if a lo-criticality job arrives at time t, at most B hi-
criticality work can preempt it – this would ensure that the lo-criticality job gets enough
execution time within its release time to deadline scheduling window of [t, t+2B] to complete
its own execution requirement of B. We define a quantity that generalizes this notion: we
define Ł(K, t) as the total work with slack at most K after time step t. In other words,
Ł(K, t) =

∑
r`i≤K w(τi, t). If Ł(K, t) = W , then W hi-criticality work has slack smaller than

K at time t. At any time instant t, some hi-criticality job can preempt a lo-criticality job
only if its work is in Ł(0, t).

At a high level, the function Ł(K, t) can be looked upon as a measure of how much work
is urgent (and to what extent). Consider the platform at time rJ when a lo-criticality job J
arrives. All the work in Ł(0, rJ ) has no slack (its r`i value is 0) and will execute before this
lo-criticality job J can start execution. After this the lo-criticality job J can start, but all
tasks that have pending jobs in the system will reduce their r`i values – therefore, when J
has completed 1 unit of work at time rJ + t1, the pending work that was in Ł(1, rJ) (had
running slack r`i smaller than 1 at time t ) will now be in Ł(0, rJ + t1) and will preempt
this lo-criticality job. In general, if J has completed b work by time rJ + tb, then the work
that was in Ł(b, rJ) may now be in Ł(0, Jr + tb) and can preempt this lo-criticality job at
time rJ + tb. However, note that any work that was not in Ł(B − 1, rJ) cannot become
urgent before J completes since its slack can only reduce by B and therefore, cannot become
0 before J completes.

We can divide this Ł function into two components: Łf and Łp. Łf contains the work
of all the tasks where no job of this task has yet arrived into the system since the last idle
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instant. Therefore,

Łf (K, t) =
∑

r`i≤K,τinot pending
w(τi, t) =

∑
r`i≤K,τinot pending

CLi .

Łp contains the work of all the jobs that are pending. For all tasks whose jobs have finished
executing since the previous idle instant, their corresponding w is 0. Therefore, for all
parameters, Łf and Łp sum up to Ł.

We first prove an invariant on Łf .

I Lemma 6. At any time t, Łf (jB − 1, t) ≤ jB for all 1 ≤ j ≤ m.

Proof. At an idle instant, at time 0, before any jobs arrive, all running slacks reset. Therefore,
by definitions of `i, the tasks in set Sj have r`i = jB. Therefore, there is B total work
with slack 0, B work with slack B, and so on. Therefore, the total work with slack B − 1 is
Łf (B − 1, 0) = B, the total work with slack 2B − 1 is Łf (2B − 1, 0) = 2B and, in general,
the total work with slack at most jB − 1 is Łf (jB − 1, 0) = jB. Since the total pending
hi-criticality work at any time is at most mB and nothing has slack more than (m− 1)B,
we have Łf ((m− 1)B, t) = Łf (mB − 1) ≤ mB. Łf is maximum at an idle instant, since Łp
is 0 for all values. After this point, Łf only reduces as jobs arrive in the system. J

We will now prove an invariant on the function Ł which will let us prove that the
lo-criticality task is schedulable.

I Lemma 7. When a lo-criticality job J arrives at time rJ , we have Ł(jB − 1, rJ) ≤ jB
for all 1 ≤ j ≤ m.

Proof. We will prove a stronger statement by induction.7 Without loss of generality, we
reset time to 0 at an idle instant. Say an lo-criticality job arrives at time rJ . After the
arrival of this lo-criticality job and until its completion or until an idle instant (whichever is
sooner), we have to prove the following: Say at time rJ + b+ c, the lo-criticality job has
executed for b time steps and some hi-criticality jobs have executed for c time steps. Then,
we have Ł(jB − 1− b, rJ + b+ c) ≤ jB − c. If we prove this statement, then we obviously
get the lemma by substituting b = c = 0.

At an idle instant, at time 0, all running slacks reset and all L is in Łf . Therefore,
Lemma 6 gives us the base case.

We now induct on time steps. Say a lo-criticality job J was released at time step rJ and
has a deadline of dJ . Lets say that at in interval [rJ , rJ + b + c], the schedule has done c
hi-criticality work and b work on this lo-criticality job. By the inductive hypothesis, we
have Ł(jB − 1− b, rJ + b+ c) ≤ jB − c.

Case 1: On the next step, say we do 1 unit of lo-criticality work. Then at time step
rJ + b+ c+ 1, we have done b+ 1 lo-criticality work and c hi-criticality work. We must show
that Ł(jB−1−b−1, rJ+b+c+1) ≤ jB−c. Now the slack of all jobs that have arrived by time
rJ+b+c, but not completed reduces by 1. Therefore, we have Łp(iB−1−b−1, rJ+b+c+1) =
Łp(iB−1−b, rJ +b+c). In addition, Łf (iB−1−b−1, rJ +b+c) = Łf (iB−1−b, rJ +b+c)
since b ≤ B and Łf only changes at discrete intervals of size B. Therefore, we have
Ł(iB−1−b−1, rJ+b+c+1) = Łp(iB−1−b−1, rJ+b+c+1)+Łf (iB−1−b−1, rJ+b+c+1) =

7 Without loss of generality, we are assuming discrete time for ease in induction. One can imagine that
each time step takes as long as a machine instruction. One can also do this induction based on events;
but it gets more complicated.
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Łp(iB − 1− b, rJ + b+ c) + Łf (iB − 1− b, rJ + b+ c) ≤ jB − c. If a job is released at time
step rJ + b+ c+ 1, this moves its work from Łf to Łp, but does not change the overall sum
in Ł.

Case 2: On the next step, we do one unit of work on some hi-criticality job Ji from task τi
in set Sj . The only way we can do this while job J is still pending is because r`i has become 0.
Therefore, w(τi) is part of Ł(0, rJ+b+c). Since Ł function is cumulative, this work is also part
of all Ł(K, rJ +b+c) for all K > 0. Therefore, when this work is executed, all Ł’s reduce by 1
on this time step. Therefore, Ł(jB−1−b, rJ+b+c+1) = Ł(jb−1−b, rJ+b+c)−1 ≤ jB−c−1.

The deadline of the lo-criticality job is 2B time steps after its release time. Say we
did W ≤ B lo-criticality work by the deadline and 2B −W hi-criticality work. Therefore,
we have Ł(iB − 1 −W,Jd) ≤ iB − 2B + W . Since W ≤ B, we have Ł(iB − 1 − B, Jd) ≤
iB − 2B + W ≤ iB − B. Since this invariant is true for all 0 ≤ i ≤ m − 1, we have,
Ł(iB − 1, Jd) ≤ iB. If the next job is immediately released, we have satisfied the invariant.
If the next job is not immediately released, then some hi-criticality job executes and the
Ł(iB − 1, t) for current time instant t only decreases, therefore, the invariant remains true
when the next lo-criticality job is released. J

We can now argue that all lo-criticality jobs meet their deadlines if the system remains
in lo-criticality mode. Recall that we argued that any work that was not in Ł(B− 1, t) when
a lo-criticality job J arrives at time t cannot become urgent before J completes since its
slack cannot become 0 before J completes.

I Lemma 8. lo-criticality jobs finish by their deadlines in lo-criticality mode.

Proof. From Lemma 7, we know that when a lo-criticality job arrives at time t, Ł(B−1, t) ≤
B. Therefore, at most B work has slack smaller than B when this job arrives. As this job
executes, slack of all jobs reduces, but only the work that already has slack smaller than
B can get to 0 before this job finishes. Therefore, only this B work can interfere with this
lo-criticality job. Therefore, the lo-criticality job gets to execute for B time units within
its scheduling window of 2B and hence does not miss its deadline. J

4.3.2 Correctness for HI-Criticality Behavior
We now have to show that all jobs can meet their deadlines in hi-criticality mode. In
particular, we will say that a transition occurs at Tr when some hi-criticality job executes
for CLi time steps, but does not signal completion. The lo-criticality task does not get any
further execution after time Tr. For all jobs that are pending at time Tr or arrive after Tr,
we must argue that they can complete by their deadlines even if they execute for hi-criticality
WCET CHi .

The intuition behind this proof relies on the periodic schedule. Recall that in the periodic
schedule’s schedulability relies on the following fact: if a job J from task τi in set Sj is released
at time rJ (with deadline dJ = rJ +2m), then it is guaranteed to finish its lo-criticality work
by time rJ + (2j + 1)B. Therefore, if this job were going to cause a mode-transition, then it
would happen before this time, implying Tr = rJ + (2j+ 1)B (or earlier). In addition, by this
time there are no pending jobs from any set in S1, S2, ..., Sj−1. Therefore, we can only have
pending jobs from tasks in sets Sj , Sj+1, ..., Sm−1. The total hi-criticality WCET for all jobs
in this set is 2(m− j)B and we have already done B work from set Sj . Therefore, the total
pending work is (2m− 2j − 1)B. Since all hi-criticality jobs have the same release time and
deadline in the periodic schedule, all this work can be completed by the deadline. Staring
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from the next hyper-period, we have an implicit deadline task system with on hi-criticality
tasks which have total utilization of 1; therefore, they are schedulable.

In the sporadic schedule, we no longer have the nice property that all pending hi-criticality
jobs have the same deadline. However, we can still argue the crucial point that the total
pending work at the transition time Tr is bounded. In particular, just like the periodic
schedule, if a job from task τi from set Sj causes the transition, then no job from sets
S0, S1, ..., Sj−1 can be pending. Therefore, the total amount of pending work is bounded.

We will say that there is carry-over work for task τi if a job J of task τi has been released
by the transition time Tr, but has not completed. We denote the set of carryover jobs by C.
We say that each task τi has completed di work by transition time Tr if the latest release of
this job has done di work by time Tr. This quantity di is defined for both carryover jobs and
non-carryover jobs.

We now prove a generalization of Lemma 5.

I Lemma 9. Consider a job Ji of task τi in set Sj with release time rJi < Tr which has not
completed by time Tr. We have Tr ≤ rJi + 2jB +

∑
τk∈Sj

dk. Therefore, the deadline for job
Ji is dJi ≥ Tr + 2mB − 2jB −

∑
τk∈Sj

dk.

Proof. After rJi , only tasks of higher priority than τi (those belonging to Sp where p < j)
tasks in Sj and lo-criticality tasks can execute before. Since the system remains in lo-
criticality mode until time Tr, no job has previously exceeded its lo-criticality WCET. There
is only jB work with higher priority and due to the slack condition, only jB lo-criticality
work can execute. Finally,

∑
τk∈Sj

dk work was done for tasks in set Sj . Since the system
stays busy between rJi and Tr, we get the condition on release time. The condition on dJi is
obtained by adding 2mB (the relative deadlines of all hi-criticality tasks) to rJi . J

Lemma 9 provides us a crucial condition that no pending job’s deadline is too close to
the transition point. Even more crucially, the higher the priority of the pending job (the
smaller the j value), the farther in the future its deadline is guaranteed to be. This is due to
the following. Either this job just completed its lo-criticality WCET CLi at time Tr and did
not signal completion (causing the mode transition) or this job has not yet completed its
lo-criticality WCET CLi . (If it had completed its CLi earlier, it cannot still be pending since
it would either complete or cause a transition earlier.) But we know that higher priority
jobs have a smaller response time in lo-criticality mode. Therefore, if higher-priority jobs
were going to exceed their lo-criticality WCET, causing a transition, then they cause this
transition sooner after their release compared to lower priority jobs.

This condition helps us prove completion of carryover jobs using a reverse-priority
scheduler. This scheduler only looks at carry-over jobs (it ignores all jobs that arrive after
Tr) and schedules jobs in reverse order of priorities. That is, carryover jobs from tasks in set
Sp where p > j are scheduled before carryover jobs from set Sj for all j.

I Lemma 10. All jobs with carry-over work complete by their deadlines using the reverse-
priority scheduler.

Proof. As we mentioned earlier, Lemma 9 implies that if we look at all the pending jobs at
transition time Tr, the higher the priority of the job, the farther in the future the deadline of
the job is guaranteed to be. This does not mean that all deadlines are ordered by priorities –
it only means that the higher priority jobs cannot have deadlines that are too soon after Tr.

It is easy to see that with the reverse priority scheduler, that carry-over jobs with priority j
will finish by time Tr+

∑
τk∈Sj ,Sj+1,...,Sm−1

(CHk −dk) ≤ Tr+2(m−j)B−
∑
τk∈Sj ,Sj+1,...,Sm−1

dk
time using the reverse priority scheduler. Since the deadline of any job Ji with priority j is
dJi ≥ Tr + 2(m− j)B −

∑
τk∈Sj

dk (Lemma 9), the job meets its deadline. J
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I Corollary 11. All jobs with carry-over work complete by their deadlines using EDF.

Proof. Since all carry-over jobs were released before Tr, EDF will always schedule them
before scheduling any jobs released after Tr. Therefore, just like the reverse-priority scheduler,
EDF ignores all non-carryover jobs until the carryover work is done. We know that EDF is an
optimal scheduler and if any scheduler can schedule a set of jobs, EDF can. Therefore, since
reverse-carryover scheduler and EDF consider the same set of carryover jobs, and reverse-carry
over scheduler meets all deadlines (Lemma 10), then EDF also meets all deadlines. J

We must now prove that all jobs that are released after transition time Tr can meet their
deadlines. These jobs are easier to reason about since after Tr, we do not have to worry
about mixed-criticality execution any more – we simply have a simple implicit deadline task
system where all tasks have the same period and deadlines.

I Lemma 12. All hi-criticality jobs meet their deadlines in hi-criticality mode when scheduled
with EDF.

Proof. Corollary 11 indicates that all carryover jobs meet their deadlines. So we need only
worry about jobs that are released after time Tr. Since all jobs have the same relative
deadline and we schedule using EDF, no job can interfere with a job that is released after
itself. Therefore, no job can suffer interference from 2 jobs of the same task. Since the total
hi-criticality WCET of all hi-criticality tasks collectively is 2mB and the relative deadline is
2mB, there is enough time to execute one job of all tasks after a job’s release time and still
meet its deadline. J

Lemmas 5, 8 and 12, and Theorem 2 collectively allow us to conclude that given an
instance I of 3-PARTITION, we can generate a sporadic task system that is schedulable if
and only if I has a solution. Therefore, a dual-criticality schedulability for sporadic task
systems is NP-hard in the strong sense – this completes the proof of the main result in this
section.

5 Conclusions and Discussion

Designing efficient mixed-criticality scheduling algorithms is a very challenging problem. In
this paper we have described our efforts at approach this problem by breaking it out into
two constituent components, seeking to separate the difficulties that arise from the on-line
nature of mixed-criticality scheduling – the fact that much important information is simply
not known prior to run-time – and those arising from computational complexity issues. As a
major step to doing so, we first needed to establish that determining MC-schedulability for
recurrent (periodic or sporadic) implicit-deadline task systems is NP-hard in the strong sense;
in this manner, we showed that all three mixed-criticality scheduling problems considered –
scheduling collections of jobs, of periodic tasks, and sporadic tasks – have to deal with both
sources of intractability.

With regards to the scheduling of collections of independent jobs, we established, for the
first time, an approximation ratio for OCBP vis-à-vis MC-schedulability, thereby quantifying
OCBP’s deviation from optimal behavior due to computational complexity issues (as opposed
to its sub-optimality due to non-clairvoyance). This result gave rise to several interesting
issues and questions:
1. A somewhat odd aspect of this result is that OCBP’s approximation ratio and its

competitive ratio (ie., its performance hit vis-à-vis a clairvoyant scheduler) are both equal
to the same constant (Φ,≈ 1.618); we do not have an understanding as to why this should
be so.
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2. We observed that speedup factor, when used as a metric for both competitive ratio and
approximation ratio, does not appear to compose in any meaningful manner: while the
competitive ratio of any MC-scheduling job algorithm is ≥ Φ and OCBP’s approximation
ratio for solving the MC-scheduling problem is Φ, the speedup factor of OCBP vis-à-vis
clairvoyant schedulability is also Φ (rather than, say, 2Φ or Φ2).

3. It would be interesting to seek to characterize other algorithms that have been proposed
for scheduling dual-criticality job instances (such as MC-EDF [13] and LE-EDF [9, page
29]) by approximation ratios. These algorithms have been experimentally observed to
perform better than OCBP on randomly-generated data; perhaps their superiority can
be quantified by showing that they have a smaller approximation ratio than Φ?

With regards to EDF-VD and the scheduling of recurrent task systems, the non-optimality
of EDF-VD vis-à-vis MC-schedulability had not, to our knowledge, been explored previously.
By showing that MC-schedulability for dual-criticality recurrent task systems is NP-hard
in the strong sense, we have provided some justification for the use of these non-optimal
algorithms. There are several open issues concerning the analysis of EDF-VD – we would, in
essence, like to eventually have as complete an understanding of EDF-VD’s effectiveness as
we have currently been able to obtain for OCBP. This includes determining whether EDF-VD
is optimal (vis-à-vis MC-schedulability – it is known to not be optimal vis-à-vis clairvoyant
schedulability) for certain classes of task systems, determining approximation ratios, etc.
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