
Improving the Schedulability and Quality of
Service for Federated Scheduling of Parallel
Mixed-Criticality Tasks on Multiprocessors
Risat Mahmud Pathan
Chalmers University of Technology, Sweden
risat@chalmers.se

Abstract
This paper presents federated scheduling algorithm, called MCFQ, for a set of parallel mixed-
criticality tasks on multiprocessors. The main feature of MCFQ algorithm is that different altern-
atives to assign each high-utilization, high-critical task to the processors are computed. Given
the different alternatives, we carefully select one alternative for each such task so that all the
other tasks can be successfully assigned on the remaining processors. Such flexibility in choosing
the right alternative has two benefits. First, it has higher likelihood to satisfy the total resource
requirement of all the tasks while ensuring schedulability. Second, computational slack becomes
available by intelligently selecting the alternative such that the total resource requirement of all
the tasks is minimized. Such slack then can be used to improve the QoS of the system (i.e.,
never discard some low-critical tasks). Our experimental results using randomly-generated paral-
lel mixed-critical tasksets show that MCFQ can schedule much higher number of tasksets and can
improve the QoS of the system significantly in comparison to the state of the art.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases mixed-criticality systems, real-time systems, multiprocessor scheduling,
federated scheduling

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.12

Funding This research has been funded by the MECCA project under the ERC grant ERC-2013-
AdG 340328-MECCA.

1 Introduction

Multicore processors offer high computing power to meet the increasing demand of more
advanced functions in many real-time systems like automotive and avionics. Multicores also
provide the opportunity to integrate multiple functions having different levels of criticality on
the same platform. The real-time tasks of such mixed-critical (MC) systems require different
levels of assurance in meeting their deadlines. A relatively high-critical task requires a higher
level of assurance in meeting its deadline because such a task is often safety-critical and its
correctness under very pessimistic assumptions needs to be approved by the certification
authority (CA). On the other hand, the system designers’ objective is to ensure the correctness
of both high- and low-critical tasks but under relatively less pessimistic assumptions. The
different concerns and pessimism between the CA and system designer makes it challenging
to develop a real-time multiprocessor scheduling strategy for MC system.

Parallel programming paradigm allows both inter- and intra-task parallelism to effectively
exploit the processing capacity of a parallel multicore architecture: each real-time task can be
implemented using a task-based parallel programming model such as OpenMP4.0 [33], where
the dependencies between sequential chunks of computation (called, subtasks) are specified

© Risat M. Pathan;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:risat@chalmers.se
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Improving the Schedulability and Quality of Service for Federated Scheduling

by programmers. Thus, each parallel task can be viewed as a direct acyclic graph (DAG),
where the nodes are subtasks and edges are dependencies (called, precedence constraints)
between the subtasks. This paper presents a scheduling algorithm and its analysis for a
collection of dual-criticality sporadic DAG tasks on multiprocessors where each task is either
a high-critical (HI) task or a low-critical (LO) task.

Several works on scheduling (non-MC) sporadic DAG tasks on multiprocessors [25, 31]
abstract the complex internal structure of each DAG task using only two parameters: total
work and critical-path length. The total work of a task τi is the sum of the worst-case
execution times (WCETs) of all the subtasks of task τi. The critical-path length of task τi is
the maximum sum of the WCETs of the subtasks that belong to any source-to-sink path of
task τi. Li et al. [27] proposed mixed-critical DAG task model by associating a nominal and
an overload value for the total work and critical-path length for each DAG task. The nominal
and overload total work of a DAG task τi are respectively denoted by CNi and COi such that
CNi ≤ COi . Similarly, the nominal and overload critical-path length are respectively denoted
by LNi and LOi where LNi ≤ LOi . Li et al. [26] recently (September, 2017) proposed federated
scheduling of implicit-deadline MC sporadic DAG tasks, called MCFS-Improve, which is an
improvement of their original work in [27].

The basic idea of federated scheduling is the following. Each MC task τi with overload
utilization larger than 1 is assigned to a set of dedicated processors and all the low-utilization
tasks are assigned on the remaining processors. Each task is also assigned a virtual deadline
[4] such that the task meets its deadline if it does not overrun its nominal total work and
critical-path length. The runtime system has two states: typical and critical. Each task
initially starts in typical state. The state of the system is switched from typical to the
critical state when some job does not signal completion by its virtual deadline. During the
critical state, the LO-critical tasks may need to be discarded to allocate additional computing
resource to the HI-critical tasks so that each HI-critical task meets its deadlines during the
critical state. Li et al. [27, 26] proposed a very interesting algorithm to assign a collection of
MC sporadic DAG tasks to a given number of processors and apply a schedulability test to
determine whether the assignment guarantees the MC-correctness of the system or not (the
formal definition of MC-correctness will be presented shortly).

By carefully analyzing the task-assignment algorithm in [26], we observed that the number
of dedicated processors required for individual high-utilization task does not take into account
how many processors are required for the other tasks. Consequently, the task assignment in
MCFS-Improve [26] may declare failure due to not having enough number of processors for
all the tasks even if there exists another way of allocating dedicated processors to individual
high-utilization task. Our second observation is that the task assignment algorithm in
MCFS-Improve does not explicitly consider to maximize the number of LO-critical tasks that
do not need to be discarded in the critical state. Maximizing the number of LO-critical tasks
that are never discarded is important to improve the QoS of the system.

The task assignment algorithm is very crucial for guaranteeing the MC-correctness for
federated scheduling on multiprocessors. Since the problem of assigning tasks to the processors
(even for sequential tasks) is NP-hard in the strong sense, designing an effective task
assignment algorithm for federated scheduling is not only important but also more challenging
for parallel tasks in comparison to sequential tasks. To this end, we propose a new task
assignment algorithm for federated scheduling, called Mixed-Criticality Federated Scheduling
with QoS (MCFQ), and empirically show that the performance is significantly better in terms
of both schedulability and improving the QoS of the system in comparison to MCFS-Improve.

R.M. Pathan 12:3

The main feature of MCFQ algorithm is that it finds different alternative ways to assign
individual high-utilization task to different number of dedicated processors based on a new
schedulability test. After all the different alternatives to assign each high-utilization task
are computed, we carefully select one particular alternative for each high-utilization task
such that all the tasks can be successfully assigned to the available number of processors.
In contrast to the task-assignment algorithm in [27, 26] that makes “local” decision about
task assignment when analyzing each individual high-utilization task separately, we make a
“global” decision by taking into account how processors can be intelligently allocated to the
tasks so that there are enough processors for all the tasks. The main contributions of this
paper are the following:

A new federated scheduling algorithm MCFQ for a set of implicit-deadline MC sporadic DAG
tasks on M processors is proposed. A new schedulability analysis for the high-utilization
and HI-critical tasks is proposed. The main outcome of the analysis is a polynomial-time
schedulability test that can be used to determine different alternatives for allocating
such tasks to dedicated processors. Based on the different alternatives for assigning
the high-utilization and HI-critical tasks, we ultimately find different alternatives to
assign all the tasks to the processors such that MC-correctness for each such alternative is
guaranteed.
We select the alternative to assign all the tasks that minimizes the total number of
processors required during the critical state, which maximizes the number of unused
processor during the critical state. The unused processors during the critical state are
used to meet the demand of additional computing capacity of the HI-critical tasks rather
than discarding some or all the LO-critical tasks. We apply Integer Linear Programming
(ILP) to maximize the number of such non-discarding LO-critical tasks.
Empirical investigation using randomly-generated tasksets shows that both the number
of schedulable tasksets and the QoS of the system using MCFQ algorithm are significantly
higher than the state-of-the-art MCFS-Improve algorithm.

The remainder of this paper is organized as follows. Section 2 presents the system model
and useful definitions that are used in this paper. An overview of the MCFQ algorithm is
presented in Section 3. The detailed schedulability analysis of the MCFQ algorithm is presented
in Section 4. Empirical investigation is presented in Section 5. Finally, related works are
presented in Section 6 before concluding in Section 7.

2 System Model and Useful Definitions

We consider scheduling a set Γ = {τ1, . . . τn} of n implicit-deadline MC sporadic DAG tasks
on M identical processors such that each processor has a (normalized) speed of one. Each
task τi is characterized by the tuple (Zi, Ti, Di, C

N
i , C

O
i , L

N
i , L

O
i) where

Zi ∈ {HI, LO} is the criticality of the task: LO and HI specifies that task τi is a low-critical
task and a high-critical task, respectively;
Ti ∈ R+ is the minimum inter-arrival time of the jobs (i.e., called the period) of the task;
Di ∈ R+ is the relative deadline the task such that Di = Ti;
CNi and COi are the maximum nominal and maximum overload total work for any job of
task τi where CNi ≤ COi for Zi = HI and COi = CNi for Zi = LO; and
LNi and LOi are the maximum nominal and maximum overload critical-path length for
any job of task τi where LNi ≤ LOi for Zi = HI and LOi = LNi for Zi = LO.

If a job of task τi is released at time r, then it must complete its execution by time (r+Di).
The nominal and overload utilizations of task τi are respectively denoted by uNi and uOi such

ECRTS 2018

12:4 Improving the Schedulability and Quality of Service for Federated Scheduling

that uNi = CNi /Di and uOi = COi /Di. If uOi > 1, then task τi is a high-utilization task;
otherwise, it is a low-utilization task. Based on the overload utilization and the criticality,
the tasks in set Γ are categorized in four disjoint subsets ΓHH, ΓHL, ΓLH, and ΓLL as follows:

ΓHH = {τi | uOi > 1 and Zi = HI} ΓLH = {τi | uOi > 1 and Zi = LO}
ΓHL = {τi | uOi ≤ 1 and Zi = HI} ΓLL = {τi | uOi ≤ 1 and Zi = LO}

Note that Γ = ΓHH ∪ ΓLH ∪ ΓHL ∪ ΓLL. We will use the following lemmas later in this paper.

I Lemma 1. Consider a MC DAG task τi. The following property is satisfied:

(COi − CNi) ≥ (LOi − LNi) (1)

Proof. By the definition of total work and critical-path length, it is evident that the total
work includes the work on the critical path. Therefore, the difference between the overload and
nominal total work is larger than or equal to the difference between the overload critical-path
length and nominal critical-path length. Therefore, (COi − CNi) ≥ (LOi − LNi). J

I Lemma 2. Consider a job J of a DAG task τ that is released at time r and executes on
m dedicated processors using a work-conserving algorithm1 where m ≥ 1. If the remaining
total work and the remaining length of the critical path at time (r + t) are respectively C and
L where t ≥ 0, then job J completes its execution no later than at time (r +R) such that

R ≤ t+ L+ C − L
m

(2)

Proof. Since (r +R) is the time at which the job completes its execution, there is at least
one processor busy executing the nodes of job J in the interval [r + t, r +R]. Let ` is the
cumulative length of intervals in [r + t, r + R] during which at least one processor is idle
where ` ≥ 0. Therefore, all the m processors are simultaneously busy for a cumulative length
of intervals equal to (R− t− `) in the interval [r + t, r +R].

Since the remaining length of the critical path decreases when there is at least one
processor idle, we have 0 ≤ ` ≤ L. Therefore, the total work completed during the interval
[r + t, r +R] is at least `+m · (R− t− `). Since the the maximum remaining total work at
time (r + t) is C, we have

`+m · (R− t− `) ≤ C
(since m ≥ 1 and ` ≤ L)

⇒ L+m · (R− t− L) ≤ C

⇔ R ≤ t+ L+ C − L
m

J

Our proposed MCFQ scheduling algorithm assigns a virtual deadline, denoted by Dv
i , to

each task τi. As will be evident later, the virtual deadline for each task is assigned such that
each job of task τi is guaranteed to meet its deadline by it virtual deadline if the total work
and critical-path length does not exceed their nominal values CNi and LNi , respectively.

1 A work conserving algorithm is any scheduling algorithm that never idles a processor if there is a node
waiting for execution.

R.M. Pathan 12:5

States. The system operates either in typical or critical state. The system starts in typical
state. If each job of each task τi signals completion by its virtual deadline Dv

i , then the
system remains in the typical state. If any job does not complete by its virtual deadline (i.e.,
either the total work or critical-path length exceeds the nominal value), then the system is
said to switch from typical to critical state. Once the system switches to the critical state,
jobs of the LO-critical tasks may be discarded. The system remains in the critical state if
each job of the HI-critical task signals completion without overrunning its overload total
work COi and overload critical-path length LOi . All other states are erroneous.

Correctness. We define an algorithm for scheduling a set of MC tasks to be correct if the
following properties are satisfied:

During the typical state, all the jobs of each task meet their deadlines.
During the critical state, all the jobs of each HI-critical task meets their deadlines.

It is evident from the definition of correctness that if the state of the system is changed from
typical to critical, then the runtime scheduler can discard the execution of such LO-critical
tasks during its critical state in order to provide additional computing resource to ensure the
correctness of the HI-critical tasks. The system can switch back from critical to typical state
based on the approach proposed by Li et al. [26, p. 794].

3 An Overview of the MCFQ Algorithm

The MCFQ scheduling works in two phases: an offline task assignment phase and an online
runtime scheduling phase. In this section, we present an overview of the task-assignment phase
and the runtime scheduler of MCFQ. In Section 4, we present the details of the task-assignment
phase, present the schedulability analysis, and prove the correctness of MCFQ.

Task Assignment Phase. This phase determines the mapping of the tasks to the processors
and also computes a virtual deadline Dv

i for each task τi. The idea of virtual deadline,
originally proposed for EDV-VD scheduling of sequential tasks [4], is also used by Li et al.
[27, 26] for MCFS-Improve algorithm. The virtual deadline of each task τi is used by the
runtime scheduler to determine whether the system needs to switch from typical to critical
state or not. The method to compute the virtual deadline will be presented shortly.

The MCFQ scheduling algorithm assigns each task to the processors based on whether
it is a high- or low-utilization task. It assigns each high-utilization (i.e., uOi > 1) task
τi ∈ (ΓHH ∪ ΓLH) to a set of dedicated processors. We denote πNi and πOi the number of
dedicated processors assigned to a high-utilization task τi for the typical and critical states,
respectively. The number of dedicated processors assigned to each HH task τi ∈ ΓHH for the
typical and critical states satisfies πNi ≤ πOi . A HH task τi is assigned additional (πOi − πNi)
processors to guarantee its correctness only if τi does not complete by its virtual deadline.

For each LH task τi, the task-assignment only determines the number of dedicated
processors πNi for the typical state. A LH task τi may need to provide its πNi processors (by
discarding τi) to some HI-critical task τk during the critical state. Therefore, πOi =0 for each
LH task τi if such a task is dropped; otherwise, πOi =πNi to specify that τi is never dropped.

We assign the low-utilization tasks in set ΓHL ∪ ΓLL. Since uOi ≤ 1 for each task τi ∈
(ΓHL ∪ ΓLL), we have CNi ≤ COi ≤ Di. Therefore, such a low-utilization task τi can execute
sequentially and does not necessarily require parallelism to meet its deadline. Similar to
[27, 26], the MCFQ algorithm also assigns all the low-utilization tasks using the MC-Partition-
0.75 algorithm proposed in [6]. By applying MC-Partition-0.75 algorithm [6] on all the

ECRTS 2018

12:6 Improving the Schedulability and Quality of Service for Federated Scheduling

low-utilization tasks, we determine the minimum number of processors required to ensure the
correctness of these low-utilization tasks. Note that MC-Partition-0.75 algorithm allocates
for all the low-utilization tasks the same number of processors for both the typical and
critical states. Let ΠLU is the minimum number of processors (computed by applying MC-
Partition-0.75 algorithm) required for the correctness of all the low-utilization tasks during
the typical and critical states. The minimum can be found by applying a bisection search.

After the number of processors determined for each high-utilization task and for all the
low-utilization tasks for the typical and critical states is determined, we apply the capacity
constraint: if the total number of processors required by all the tasks during each individual
state is not more than M (i.e., number of available processors), then the task-assignment
phase declares success; otherwise, it declares failure.

Before the task assignment phase starts, we assume that all the LH tasks may need to
be dropped (i.e., we assume πOi = 0 for each τi ∈ ΓLH). After the MCFQ algorithm finds a
successful assignment for all the tasks by assuming that all LH tasks are dropped, it may
be the case that the total number of processors required during the critical state for all the
tasks is smaller than M . In other words, there may be (unused) processors that have no
task assigned during the critical state. If the number of such unused processors during the
critical state is more than πNi for some LH task τi, then we set πOi =πNi to specify that such
a LO-critical task is never dropped. Such adjustment will not compromise the schedulability
of the HH task τk because the additional (πOk − πNk) processors to the HH task τk during
the critical state can be assigned from the set of idle processors rather than discarding the
LH task τi during the critical state.

Run-Time Scheduler. The runtime scheduler of MCFQ algorithm works as follows:
The system starts in typical state. During the typical state,

the nodes of each high-utilization task τi are scheduled using any work conserving
scheduling algorithm on πNi number of dedicated processors; and
the nodes of all the low-utilization tasks are scheduled on ΠLU processors on which
they are assigned by the MC-Partition-0.75 algorithm.

If any HI-critical task τi does not signal completion by its virtual deadline Dv
i , then the

system switches from typical to the critical state, and
If uOi > 1, then one by one active (i.e., not dropped yet) LH task τk for which πOk = 0
is dropped until additional (πOi − πNi) processors to the HH task τi are assigned. The
nodes of the HH task τi are now scheduled using a work conserving scheduling algorithm
on πOi dedicated processors.
If uOi ≤ 1, the all the LL tasks are dropped and the HL tasks are scheduled on the
ΠLU processors on which they are assigned by the MC-Partition-0.75 algorithm.

Note that if some HL task τi (i.e., uOi ≤ 1) triggers the switching of system’s state from
typical to critical, then all the LL tasks are dropped (no LH task is dropped) since all the
HL tasks (according to [6]) still meets their deadline on ΠLU processors during the critical
state. If some HH task τi (i.e., uOi > 1) triggers the switching of system’s state from typical
to critical, then adequate number of LH tasks are dropped to assign the HH task τi additional
(πOi − πNi) processors. The remaining (not yet dropped) LH tasks may continue execution
until some other HH task does not complete by its virtual deadline. Therefore, the system
may degrade gracefully as is pointed by Li et al.in [27, 26].

Practicality of Federated Scheduling. The practical consideration of federated scheduling
of parallel DAG tasks is discussed in [25] by pointing out that there is no preemption on any
high-utilization task since each such task has a dedicated number of processors. Note that

R.M. Pathan 12:7

a low priority parallel task in global scheduling (all processors are shared) or partitioned
scheduling (more than one task may share a dedicated subset of the processors) may suffer
from preemption. Li et al. in [26] also developed a reference system written in OpenMP
by implementing the MCFS-Improve scheduling in Linux using the RT_PREEMPT patch
as the underlying RTOS. It has been experimentally shown in [26] that the overhead of
real implementation of federated scheduling for parallel MC tasks is low. Since the runtime
scheduling of MCFS-Improve and our proposed MCFQ algorithms are fundamentally the same,
the MCFQ algorithm can also be implemented the same way as in [26] and is also expected to
have very low implementation overhead.

4 Schedulability Analysis and Task Assignment of MCFQ Algorithm

This section presents the task assignment strategy of MCFQ algorithm. The schedulability
analysis of the tasks in sets ΓLH and ΓHH are presented in subsections 4.1 and 4.2, respectively.
Recall that the MC-Partition-0.75 is used to determine the minimum number of processors
ΠLU to correctly schedule the tasks in set (HL ∪ LL). The total number of processors required
to guarantee the correctness for all the tasks in Γ is determined in subsection 4.3.

4.1 Task Assignment: LH tasks
In this section, the number of processors πNi required to ensure the correctness of LH task
τi is determined. The virtual deadline for each LH task τi is Dv

i = Di. For the time being,
we assume πOi =0 for each LH task τi (such a task is dropped during the critical state). In
subsection 4.4, we will determine which LH tasks do not need to be dropped and we reset
πOi = πNi for such LH tasks.

I Lemma 3. The execution of each LH task τi ∈ ΓLH is correct using the runtime scheduler
of MCFQ algorithm if task τi is assigned πNi dedicated processors during the typical state where

πNi = d(CNi − LNi)/(Di − LNi)e (3)

Proof. The proof is same as the proof in [26, (Lemma 2, p. 771)]. J

4.2 Task Assignment: HH Tasks
In this subsection, the schedulability analysis of each HH task τi in order to determine the
number of processors required to ensure its correctness during the typical and critical states
is presented. Each HH task τi is also assigned a virtual deadline Dv

i .
The outcome of the analysis is a schedulability test, denoted by SCHH(τi, µNi , µOi), where

µNi and µOi are respectively the number of dedicated processors assigned to task τi during the
typical and critical states such that 1 ≤ µNi ≤ µOi . If the schedulability test SCHH(τi, µNi , µOi)
is satisfied, then it is guaranteed that task τi meets its deadline where µNi and µOi are the
number of dedicated processors for τi during the typical and critical state, respectively.

Since there are M processors on the multiprocessor platform, we apply SCHH(τi, µNi , µOi)
for all possible pairs of (µNi , µOi) where µNi = 1, 2, . . .M and µOi = µNi , µ

N
i + 1, . . .M to

determine the valid pairs of (µNi , µOi) for which HH task τi meets its deadline during the
typical and critical states. From all the valid pairs (µNi , µOi) for each HH task τi ∈ ΓHH, we
select one pair for each HH task τi as the final values of πNi and πOi . The opportunity to select
the values of πNi and πOi from the different possible pairs has higher likelihood of satisfying
the capacity constraints of the platform, which is demonstrated using the following example.

ECRTS 2018

12:8 Improving the Schedulability and Quality of Service for Federated Scheduling

I Example 4. Consider a multiprocessor platform M = 16 and a taskset with three high-
utilization MC tasks. There is one LH task τa and two HH tasks τb and τc. The specific
values of the total work and critical-path length of these tasks are not needed to understand
this example. Assume that πNa = 5 for the LH task τa and πOa = 0. Also assume that the
SCHH(τb, µNb , µOb) test is satisfied for only one pair (µNb , µOb) = (4, 9) for task τb. Since there
is only one pair (µNb , µOb) = (4, 9) for HH task τb, we have only one option for selecting the
final values of πNb and πOb such that πNb = µNb = 4 and πOb = µOb = 9.

Finally, consider that SCHH(τc, µNc , µOc) is satisfied for two different pairs (µNc , µOc) = (5, 8)
and (µNc , µOc) = (6, 7) for task τc. Since there are two possible pairs of (µNc , µOc) for task τc,
there are two possible ways to select the final values of πNc and πOc for task τc.

If we select (πNc , πOc) = (µNc , µOc) = (5, 8) for task τc, the total number of processors for
the three tasks τa, τb and τc during the typical state is (5 + 4 + 5) = 14, which is not larger
than M = 16. The total number of processors for the three tasks τa, τb and τcduring the
critical state is (0 + 9 + 8) = 17, which is larger than M = 16. Consequently, the capacity
constraint is not satisfied and the overall task allocation phase declares failure.

If we select (πNc , πOc) = (µNc , µOc) = (6, 7) for task τc, the total number of processors for
the three tasks τa, τb and τc during the typical state is (5 + 4 + 6) = 15, which is not larger
than M = 16. The total number of processors for all the three tasks during the critical state
is (0 + 9 + 7) = 16, which is not larger than M = 16. Consequently, the capacity constraint
is satisfied for both states and the overall task allocation phase declares success. J

Example 4 demonstrates that the selection of the final values of πNi and πOi for each
of the HH tasks τi from the different alternative pairs of (µNi , µOi) is crucial to the overall
success of the task assignment algorithm of MCFQ. Before we present the schedulability test
SCHH(τi, µNi , µOi) in Lemma 5, we present how virtual deadline Dv

i is assigned to τi.

Virtual Deadline Assignment. Consider that the number of dedicated processors for HH task
τi during the typical and critical states are µNi and µOi , respectively. The virtual deadline
Dv
i for HH task τi is assigned as follows:

Dv
i = LNi + (CNi − LNi)/µNi (4)

I Lemma 5 (Schedulability test SCHH(τi, µNi , µOi)). Consider a pair (µNi , µOi) such that the
HH task τi is assigned µNi and µOi dedicated processors respectively for the typical and critical
states where 1 ≤ µNi ≤ µOi . Each job of task τi meets its deadline in all the correct states if
the following equation is satisfied:

Di ≥
CNi − LNi

µNi
+ ωi
µOi

+ LOi +min{LNi ,
ωi
µNi
} · (1− µNi

µOi
) (5)

where ωi = (COi − CNi)− (LOi − LNi).

Proof. Since (COi −CNi)− (LOi −LNi) ≥ 0 from Eq. (1), we have ωi ≥ 0. Moreover, LNi ≥ 0
and µNi ≥ 1. It follows that min{LNi , ωi/µNi } ≥ 0. Because µOi ≥ µNi , we also have
(1− µNi /µOi) ≥ 0. Therefore, min{LNi , ωi/µNi } · (1− µNi /µOi) ≥ 0 and from Eq (5) we have

Di ≥
CNi − LNi

µNi
+ ωi
µOi

+ LOi (6)

Consider a generic job Ji of task τi. Without loss of generality assume that the job is released
at time 0. The entire execution of job Ji happens in any of the three possible scenarios: (i)

R.M. Pathan 12:9

stable typical state, (ii) stable critical state, and (iii) during the transition from typical to
critical state. A stable state refers to the situation when there is no switching of states during
the execution of job Ji. This lemma is proved by showing that job Ji meets its deadline
for all these three scenarios if Eq (5) is satisfied. Since we are considering implicit-deadline
tasks, if the generic job Ji meets its deadline by time Di, then each other job of τi will also
meet its deadline.

Stable typical state. During the stable typical state, the subtasks of task τi are executed
using any work-conserving scheduling algorithm on µNi dedicated processors. Since job Ji
executes entirely in stable typical state, it signals completion at or before its virtual deadline
Dv
i . We will show that Dv

i ≤ Di, which shows job Ji meets its deadline during the stable
typical state. Since LOi ≥ LNi , from Eq. (6) we have Di ≥ CN

i −L
N
i

µN
i

+ ωi

µO
i

+LNi . Since ωi

µO
i

≥ 0

and Dv
i = CN

i −L
N
i

µN
i

+ LNi from Eq. (4), it follows that Di ≥ CN
i −L

N
i

µN
i

+ LNi = Dv
i .

Stable critical state. During the stable critical state, the subtasks of task τi are executed
using any work-conserving scheduling algorithm on µOi dedicated processors. The total
work and the critical-path length of any job of task τi during the critical state is at most
COi and LOi , respectively. Based on Lemma 2, the maximum time job Ji takes to finish its
execution starting from its release at time 0 is LOi + (COi − LOi)/µOi . We will show that
LOi + (COi − LOi)/µOi ≤ Di, which implies that job Ji meets its deadline during the stable
critical state. Since ωi = (COi − CNi)− (LOi − LNi), from Eq. (6) we have

Di ≥
CNi − LNi

µNi
+ (COi − CNi)− (LOi − LNi)

µOi
+ LOi

⇔ Di ≥
COi − LOi

µOi
+ (CNi − LNi) · (1

µNi
− 1
µOi

) + LOi

(Since CNi ≥ LNi because total work includes the work on the critical
path and µOi ≥ µNi , we have (CNi − LNi) · (1/µNi − 1/µOi) ≥ 0)

⇒ Di ≥
COi − LOi

µOi
+ LOi

State Switching. For this case, the job Ji does not complete execution by its virtual
deadline Dv

i and it switches from typical to critical state at time Dv
i . The subtasks of job Ji

execute on µNi processors during the interval [0, Dv
i) and on µOi processors after time Dv

i .
Let ` be the cumulative length of intervals in [0, Dv

i) during which at least one of the
µNi dedicated processors assigned to job Ji of task τi is idle such that 0 ≤ ` ≤ Dv

i . Since Ji
is not finished by time Dv

i and because at least one processor is idle for a duration of ` time
units in [0, Dv

i), the length of the critical path by time Dv
i is decreased by at least ` time

units. The remaining length of the critical path at time Dv
i , denoted by Lremain, is at most

Lremain = (LOi − `) (7)

where LOi is the overload critical-path length of τi. The cumulative length of intervals in
[0, Dv

i) during which all the µNi processors are simultaneously busy is (Dv
i −`). Therefore, the

amount of work done before the task τi switches its state at timeDv
i is at least [`+µNi ·(Dv

i −`)].
The remaining amount of total work at time Dv

i , denoted by Cremain, is at most

Cremain = COi − [`+ µNi · (Dv
i − `)] = COi − `− µNi · (Dv

i − `) (8)

ECRTS 2018

12:10 Improving the Schedulability and Quality of Service for Federated Scheduling

where COi is the overload total work of task τi. Since the total remaining work includes the
remaining work of the critical path, we have

Lremain ≤ Cremain(
From Eq. (7) and Eq. (8)

)
⇔ LOi − ` ≤ COi − `− µNi · (Dv

i − `)(
Since Dv

i = CNi − LNi
µNi

+ LNi from Eq. (4)
)

⇔ LOi − ` ≤ COi − `− µNi · (LNi + CNi − LNi
µNi

− `)

⇔ µNi · LNi + LOi − COi + CNi − LNi ≤ µNi · `

⇔ LNi −
(COi − CNi)− (LOi − LNi)

µNi
≤ `

(Since 0 ≤ `)

⇒ max

{
0, LNi −

(COi − CNi)− (LOi − LNi)
µNi

}
≤ `

⇔ LNi −max
{

0, LNi −
(COi − CNi)− (LOi − LNi)

µNi

}
≥ LNi − `

⇔ min

{
LNi ,

(COi − CNi)− (LOi − LNi)
µNi

}
≥ LNi − `(

Since ωi = (COi − CNi)− (LOi − LNi)
)

⇔ min

{
LNi ,

ωi
µNi

}
≥ LNi − ` (9)

Since µOi processors are assigned to job Ji from time Dv
i , the job Ji completes its execution

no later than time Dv
i + Lremain + Cremain−Lremain

µO
i

according to Lemma 2. We will show
that Dv

i + Lremain + Cremain−Lremain

µO
i

≤ Di, which implies that Ji completes at or before its
deadline. We have to prove that the following holds:

Dv
i + Lremain + Cremain − Lremain

µOi
≤ Di

(From Eq. (7) and Eq. (8))

⇔ Dv
i + LOi − `+ [COi − `− µNi · (Dv

i − `)]− (LOi − `)
µOi

≤ Di

⇔ Dv
i + LOi − `+ COi − µNi · (Dv

i − `)− LOi
µOi

≤ Di

(Since Dv
i = CNi − LNi

µNi
+ LNi from Eq. (4)

⇔ LNi + CNi − LNi
µNi

+ LOi − `+
COi − µNi ·

(
LNi + CN

i −LN
i

µN
i

)
+ µNi · `− LOi

µOi
≤ Di

⇔ LNi + CNi − LNi
µNi

+ LOi − `+ (COi − CNi)− (LOi − LNi)
µOi

− µNi · (LNi − `)
µOi

≤ Di

(Since ωi = (COi − CNi)− (LOi − LNi))

⇔ CNi − LNi
µNi

+ ωi
µOi

+ LOi + (LNi − `) · (1−
µNi
µOi

) ≤ Di

R.M. Pathan 12:11

(From Eq. (9), min
{
LNi ,

ωi
µNi

}
≥ (LNi − `))

⇐ CNi − LNi
µNi

+ ωi
µOi

+ LOi +min

{
LNi ,

ωi
µNi

}
· (1− µNi

µOi
) ≤ Di

⇔ Eq. (5)

Therefore, the generic job Ji of HH task τi meets its deadline in all the three scenarios. J

For each HH task τi, we can apply the schedulability test SCHH(τi, µNi , µOi) in Eq. (5) to
determine whether the HH task τi meets its deadline in all correct states if µNi and µOi number
of dedicated processors are assigned during the typical and critical states, respectively. We
say that SCHH(τi, µNi , µOi)=TRUE if Eq. (5) is satisfied; otherwise SCHH(τi, µNi , µOi)=FALSE.
The salient feature of the schedulability test SCHH(τi, µNi , µOi) is that the set of all possible
pairs (µNi , µOi) where 1 ≤ µNi ≤ µOi ≤M for which HH task τi is deemed schedulable in all
the correct states can be determined. The elements in each such pair are potential final
values of πNi and πOi for task τi. To this end, we define Ω(τi) the set of all such valid pairs
(µNi , µOi) for which the HH task τi is schedulable in any state as follows:

Ω(τi) =
{

(µNi , µOi) | SCHH(τi, µNi , µOi) = TRUE; µNi = 1, 2 . . .M ; µOi = µNi . . .M
}

(10)

We now filter some of the unnecessary elements from set Ω(τi) to limit the number of valid
pairs. Consider that SCHH(τi, 1, 1)=FALSE, SCHH(τi, 1, 2)=TRUE and SCHH(τi, 1, 3)=TRUE for
some HH task τi. Based on Eq. (10), we have (1, 1) /∈ Ω(τi) and {(1, 2), (1, 3)} ⊆ Ω(τi).
However, we may discard the element (1, 3) from set Ω(τi) since when µNi =1 it is unnecessary
(wastage of resource) to consider µOi =3 because µOi =2 processors are enough to guarantee
the correctness of task τi during the critical state. Therefore, we only need to consider such
pair (µNi , µOi) ∈ Ω(τi) where SCHH(τi, µNi , µOi − 1)=FALSE. To this end, we define Ω(τi) the
set of pairs (µNi , µOi) from set Ω(τi) for which SCHH(τi, µNi , µOi − 1)=FALSE as follows:

Ω(τi) =
{

(µNi , µOi) | (µNi , µOi) ∈ Ω(τi); SCHH(τi, µNi , µOi − 1) = FALSE} (11)

Note that Eq. (5) can be tested in constant time for the given values of CNi , LNi , COi ,
LOi , µNi and µOi for HH task τi. The set Ω(τi) in Eq. (10) can be computed for task τi by
applying test SCHH(τi, µNi , µOi) at most M(M + 1)/2 times since 1 ≤ µNi ≤ µOi ≤ M .
Therefore, the time complexity to compute the set Ω(τi) for one HH task τi is O(M2). Since
1 ≤ µNi ≤ µOi ≤M , the number of elements in Ω(τi) is O(M2). For all the O(M2) elements
in set Ω(τi), we can test SCHH(τi, µNi , µOi − 1) = FALSE is Eq. (11) is time O(M2). Therefore,
set Ω(τi) can be computed in time O(M2). Since for each element (µNi , µOi) ∈ Ω(τi) we have
SCHH(τi, µNi , µOi − 1)=FALSE, it follows that the number of elements in set Ω(τi) is O(M)
and the set Ω(τi) can be computed in time O(M2).

I Lemma 6. If (µNi , µOi) ∈ Ω(τi), then the HH task τi meets all its deadlines if the number
of dedicated processors during the typical and critical states are µNi and µOi , respectively.

Proof. Since (µNi , µOi) ∈ Ω(τi) only if (µNi , µOi) ∈ Ω(τi) based on Eq. (11). Moreover, if
(µNi , µOi) ∈ Ω(τi), then SCHH(τi, µNi , µOi) = TRUE based on Eq. (10). Therefore, task τi meets
all its deadlines based on Lemma 5 if the number of dedicated processors during the typical
and critical states are µNi and µOi , respectively. J

I Example 7. Consider the two HH tasks in Table 1 and M=8. We only list few elements of
set Ω(τi) in Table 1 for simplicity of presentation. The values in Table 1 will be used later.

ECRTS 2018

12:12 Improving the Schedulability and Quality of Service for Federated Scheduling

Table 1 Example of two HH tasks and some elements (µNi ,µOi) in Ω(τi) computed using Eq. (11)

.
Task CNi LNi COi LOi Di Some elements in Ω(τi)

τ1 9 4 52 20 45 {(1,2), (2,2), (3,3)}
τ2 11 4 80 42 54 {(2,6),(3,4)}

Given the set Ω(τi) for each task τi ∈ ΓHH, we now determine the total number of processors
required for correctly scheduling all the HH tasks in each state. Our objective is to find different
alternatives to assign all the HH tasks to the processors using the different alternatives in
Ω(τi) for each HH task τi.

Without loss of generality assume that there are Q number of HH tasks in set Γ such
that Q = |ΓHH| and the indices of the HH tasks in set ΓHH ranges from 1 to Q such that
ΓHH = {τ1, τ2, . . . τQ}. We also define sequence SpHH =< τ1, τ2, . . . τp > that includes the
HH tasks with indices from 1 to p, for p = 1, 2, . . . Q. Note that the sequence SQHH includes all
the tasks in ΓHH. Given the sequence of p tasks in SpHH, we denote ξ(SpHH) as the set where

each element in set ξ(SpHH) is a pair of sequences such that for each such pair of sequences
each sequence has p numbers;
the ith element in the first sequence is the number of processors required to meet the
deadline of the ith HH task in sequence SpHH during the typical state, and
the ith element in the second sequence is the number of processors required to meet
the deadline of the ith HH task in sequence SpHH during the critical state.

For example, consider ξ(S3
HH) ={(<1,2,3>,<4,5,6>), (<2,2,4>, <3,5,5>)} for the three tasks

in sequence S3
HH =< τ1, τ2, τ3 >. The interpretation of set ξ(S3

HH) ={(<1,2,3>,<4,5,6>),
(<2,2,4>, <3,5,5>)} is the following:

There are two elements in set ξ(S3
HH). Each of the two elements (< 1, 2, 3 >,< 4, 5, 6 >)

and (< 2, 2, 4 >,< 3, 5, 4 >) is a pair of sequences, where each sequence in a pair has
p = 3 numbers.
The pair (< 1, 2, 3 >,< 4, 5, 6 >) specifies that the number of dedicated processors
required for task τ1 (which is the 1st task in sequence S3

HH) during the typical and critical
states are 1 and 4, respectively. Similarly, the number of dedicated processors required for
task τ3 in sequence S3

HH for the typical and critical states are 3 and 6, respectively. The
total number of processors for all the three tasks in set S3

HH for the typical and critical
state are (1 + 2 + 3) = 6 and (4 + 5 + 6) = 15, respectively.

Each element in set SQHH specifies a particular alternative to assign all the HH tasks from
sequence SQHH to the processors so that the deadlines for all the HH tasks during the typical
and critical states are met. After the set ξ(SQHH) is computed, we select one alternative from
set ξ(SQHH) so that the capacity constraint for all the tasks in Γ is satisfied. Next we present
how to compute set ξ(SQHH).

4.2.1 Computing ξ(SQ
HH)

We apply dynamic programming to find set ξ(SQHH). The sum of the p numbers in the first
sequence and the sum of the p numbers in the second sequence for any element in ξ(SpHH) are
respectively the total number of processors required during the typical and critical states for
the HH tasks in SpHH. Since the number of processors of the platform is M , the total number of
processors required for any state must not be larger than M in order to satisfy the capacity
constraint. Based on this observation, the set ξ(SQHH) is recursively computed by considering

R.M. Pathan 12:13

one-by-one HH task from the sequence SQHH. In other words, we first compute ξ(S1
HH), then we

compute ξ(S2
HH), and continuing in this fashion, we finally compute ξ(SQHH).

The set ξ(SpHH) for p = 1 is computed as follows:

ξ(S1
HH) = ξ(< τ1 >) = {(< a >,< b >) | (a, b) ∈ Ω(τ1) } (12)

where Ω(τ1) is given in Eq (11). By assuming that the set ξ(Sp−1
HH) is already computed, the

set ξ(SpHH) is recursively computed for p = 2, 3, . . . Q as follows:

ξ(SpHH) =
{(

< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >
)
| COND1 ∧ COND2 ∧ COND3 ∧ COND4} (13)

where
COND1: (< a1, . . . ap−1 >,< b1, . . . bp−1 >) ∈ ξ(Sp−1

HH)
COND2: (ap, bp) ∈ Ω(τp)
COND3: (a1 + . . .+ ap−1 + ap) ≤M and (b1 + . . .+ bp−1 + bp) ≤M
COND4: If (a1 + . . .+ap) 6= (c1 + . . .+ cp) for some (< c1, . . . cp >,< d1, . . . dp >) ∈ ξ(SpHH),

then add (< a1, . . . ap >,< b1, . . . bp >) in set ξ(SpHH); otherwise, if (a1 + . . . + ap) =
(c1 + . . . + cp) and (b1 + . . . + bp) < (d1 + . . . + dp) for some (< c1, . . . cp >,< d1, . . . dp >

) ∈ ξ(SpHH), then add (< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >) in set ξ(SpHH) and remove
(< c1, . . . cp >,< d1, . . . dp >) from set ξ(SpHH).

Discussion. The set ξ(SpHH) in Eq. (13) is computed by selecting each element
(< a1, . . . , ap−1 >,< b1, . . . bp−1 >) from ξ(Sp−1

HH) due to COND1 and each element (ap, bp)
from Ω(τp) due to COND2 such that (a1 + . . .+ap−1 +ap) ≤M and (b1 + . . .+ bp−1 + bp) ≤M
due to COND3. A new element (< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >) is added to set ξ(SpHH)
only if COND4 is true, i.e., there is no other element (< c1, . . . cp−1, cp >,< d1, . . . dp−1, dp >)
that is already in set ξ(SpHH) such that (a1 + . . . + ap−1 + ap) = (c1 + . . . + cp−1 + cp) and
(b1 + . . .+ bp−1 + bp) ≥ (d1 + . . .+ dp−1 + dp).

The COND4 ensures that for any two elements (< a1, . . . ap−1 >,< b1, . . . bp−1 >) and
(< c1, . . . cp−1, cp >,< d1, . . . dp−1, dp >) where (a1 + . . .+ap−1 +ap) = (c1 + . . .+ cp−1 + cp),
the element with smaller total number of processors for the critical state is included in
set ξ(SpHH) while the other element is not included in set ξ(SpHH) (i.e., removed if included
previously). Consequently, for a given total number of processors required for the tasks in
sequence SpHH for the typical state, there is at most one element in set ξ(SpHH). Since COND3
is satisfied, there are at most M different possibilities for the total number of processors
required for the tasks for the typical state. Therefore, the number of elements in set ξ(SpHH)
is at most O(M). We have the following Lemma 8.

I Lemma 8. If (< a1, a2, . . . aQ >,< b1, b2, . . . bQ >) ∈ ξ(SQHH), then the pth HH task τp in
sequence SQHH meets the deadline in typical and critical states if ap and bp dedicated processors
are assigned to τp respectively during the typical and critical states for p = 1, 2, . . . Q.

Proof. If (< a1, a2, . . . aQ >,< b1, b2, . . . bQ >) ∈ ξ(SQHH), then the pair (ap, bp) ∈ Ω(τp) due
to COND2 for p = 1, 2, . . . Q. Based on Lemma 6, it holds for each (ap, bp) ∈ Ω(τp) that task
τp meets its deadline during the typical and critical state if ap and bp dedicated processors
are allocated to τp during the typical and critical state, respectively. J

Time Complexity to find ξ(SQ
HH). The time complexity to compute ξ(SQHH) is O(n · (n +

M) ·M2). Recall that there are O(M) elements in Ω(τi) for each τi in SQHH (discussed after
Eq. (11)). Therefore, the base in Eq. (12) can be computed for task τ1 in time O(M) since
each element (a1, b1) ∈ Ω(τi) is stored in set ξ(S1

HH)=ξ(< τ1 >) as (< a >,< b >).

ECRTS 2018

12:14 Improving the Schedulability and Quality of Service for Federated Scheduling

The COND4 guarantees that there are at most O(M) elements in set ξ(SkHH) for k = 1, . . . Q.
During each step of the recursion the set ξ(SpHH) is computed by considering one element from
ξ(Sp−1

HH) and one element from Ω(τp). Since there are at most O(M) elements in each set
ξ(Sp−1

HH) and Ω(τp), the time-complexity to select all the possible ways to select one element
from each set ξ(Sp−1

HH) and Ω(τp) (i.e., applying COND1 and COND2) is O(M2). And, there
are O(M2) possible choices to select one element from each set ξ(Sp−1

HH) and Ω(τp).
For each of these O(M2) selections, we apply COND3 and COND4. Given a selection

(< a1, . . . ap−1 >,< b1, . . . bp−1 >) ∈ ξ(Sp−1
HH) and (ap, bp) ∈ Ω(τp) , we can apply COND3 in

time O(n) since there are 2(p−1) = O(n) additions to evaluate COND3. We then apply COND4
in time O(M) since there can be at most O(M) elements already included in ξ(SpHH) and the
sums in COND4 are already computed during this step of the recursion. Consequently, for all
the O(M2) ways to select one element from each set ξ(Sp−1

HH) and Ω(τp), the set ξ(SpHH) is
computed in time O((n+M) ·M2) during the pth recursive step. Since there are at most
Q=O(n) tasks in sequence SQHH, the set ξ(SQHH) can be computed in time O(n · (n+M) ·M2).

I Example 9. Consider two HH tasks in Table 1 and M=8 where Ω(τ1) ={(1,2), (2,2), (3,3)}
and Ω(τ2) ={(2,6), (3,4)} for S2

HH =< τ1, τ2 >.
Based on Eq (12), we have ξ(< τ1 >)={(<1>,<2>), (<2>,<2>), (<3>,<3>)}. We

will now show how to find ξ(< τ1, τ2 >) based on Eq. (13). There are total 3× 2 = 6 ways
to select one element from each set ξ(< τ1 >) and Ω(τ2) by applying COND1 and COND2.
Therefore, set ξ(< τ1, τ2 >) without applying COND3 and COND4 is

ξ(< τ1, τ2 >) = {(< 1, 2 >,< 2, 6 >), (< 1, 3 >,< 2, 4 >), (< 2, 2 >,< 2, 6 >),
(< 2, 3 >,< 2, 4 >), (< 3, 2 >,< 3, 6 >), (< 3, 3 >,< 3, 4 >)}

After applying COND3, the element (< 3, 2 >,< 3, 6 >) is not included in set ξ(< τ1, τ2 >)
since (3 + 6) > M = 8. After applying COND4, the element (< 2, 2 >,< 2, 6 >) is not
included in set ξ(< τ1, τ2 >) since there is another element (< 1, 3 >,< 2, 4 >) such that
(2 + 2) = (1 + 3) and (2 + 6) > (2 + 4). Therefore, we have

ξ(< τ1, τ2 >) = {(< 1, 2 >,< 2, 6 >), (< 1, 3 >,< 2, 4 >),
(< 2, 3 >,< 2, 4 >), (< 3, 3 >,< 3, 4 >)}

4.3 Overall Task Assignment: Capacity Constraint
In this subsection, we determine whether there is an assignment of all the tasks to the
processors such that the total number of processors required during each of the two states is
not larger than M . We will now determine a set, denoted by Π, which is a subset of ξ(SQHH)
using which it can be verified whether the capacity constraint at each state for all the tasks
is satisfied or not. The set Π is defined as follows:

Π =
{
∅ if Q > 0 and ξ(SQHH) = ∅
{(< a1, . . . aQ >,< b1, . . . bQ >) | COND5 ∧ COND6} otherwise

(14)

where
COND5: (< a1, . . . aQ >,< b1, . . . bQ >) ∈ ξ(SQHH)
COND6: (a1 + . . .+ aQ +

∑
τi∈ΓLH

πNi + ΠLU) ≤M and (b1 + . . .+ bQ + ΠLU) ≤M .

I Theorem 10. The MCFQ scheduling algorithm correctly schedules all the tasks in set Γ if
Π 6= ∅.

R.M. Pathan 12:15

Proof. Since Π 6= ∅, we have at least one pair (< a1, . . . aQ >,< b1, . . . bQ >) ∈ Π such that
COND5 and COND6 are satisfied. Since (< a1, . . . aQ >,< b1, . . . bQ >) ∈ ξ(ΓHH) according to
COND5, each HH task τi meets its deadline in both typical and critical state if it is assigned ai
and bi processors according to Lemma 8.

Each LH task τi requires πNi dedicated processors to ensure its correctness according
to Eq. (3) of Lemma 3. Therefore, the total number of dedicated processors for all the
LH tasks to ensure their correctness is

∑
τi∈ΓLH

πNi . The total number of processors required
for scheduling all the low-utilization tasks during typical and critical state is ΠLU, where
ΠLU is the minimum number of processors required by the MC-Partition-0.75 to schedule all
the low-utilization tasks in set (ΓHL ∪ ΓLL).

Therefore, the total number of processors for all the tasks is (a1 + . . .+aQ+
∑
τi∈ΓLH

πNi +
ΠLU) and (b1 + . . .+ bQ + ΠLU) respectively for the typical and critical state. Since (a1 + . . .+
aQ +

∑
τi∈ΓLH

πNi + ΠLU) ≤M and (b1 + . . .+ bQ + ΠLU) ≤M based on COND6, the capacity
constraint at each state is met, the task assignment declares success, and the system correctly
schedules all the tasks based on MCFQ algorithm. J

4.4 Improving the QoS of LH Tasks
The set Π in Eq. (14) provides different alternatives to assign all the tasks to the processors by
assuming that all the LH tasks are dropped during critical state. However, if there are unused
processors during the critical state, then such unused processors may be allocated to the
HH tasks rather than dropping the LH tasks during critical state. Based on this observation,
we propose a scheme to maximize the number of LH tasks that are never dropped.

We select the alternative from set Π that minimizes the total number of processors
required during the critical state for all the HH tasks. Let (< a1, . . . aQ >,< b1, . . . bQ >) ∈ Π
is the alternative that minimizes the total number of processors required during the critical
state for all the HH tasks. The number of unused processors during the critical state, denoted
by Πidle, is computed as Πidle = M − (

∑Q
i=1 bi + ΠLU).

The unused processors can be allocated to the HH task τi when it does not complete by
its virtual deadline and requires additional (πOi − πNi) processors to ensure its correctness.
By allocating the unused processors to the HH tasks, we may not need to drop some or any
of the LH tasks. Given that there are Πidle unused processors during the critical state, we
formulate an ILP to maximum the number of LH tasks that are never dropped.

Let xi ∈ {0, 1} denote a decision variable whether the LH task τi may need to be dropped
or not. If xi = 1, then the LH task τi is never dropped and will be assigned πOi = πNi
dedicated processors also during the critical state. If xi = 0, then the LH task τi may need to
be dropped and we set πOi = 0. The value of decision variable xi for τi ∈ ΓLH is determined
using the following ILP to maximum the number of LH tasks that are never dropped:

maximize
xi

∑
τi∈ΓLH

xi

subject to
∑

τi∈ΓLH

πNi · xi ≤ Πidle and (xi = 0 or xi = 1)
(15)

Given the values of xi for all the LH tasks, the fraction of the total number of LH tasks
that are never dropped is (

∑
τi∈ΓLH

xi)/|ΓLH| and is the measure of the QoS for a given taskset
under MCFQ algorithm. We can also improve the QoS of the LL tasks by allocating them to
such idle processors based on partitioned EDF scheduling for sequential tasks (not addressed
in this paper).

ECRTS 2018

12:16 Improving the Schedulability and Quality of Service for Federated Scheduling

5 Empirical Investigation

The recent work by Li et al. [26] proposed the MCFS-Improve schedulability test for federated
scheduling of MC parallel tasks. In this section, we present the effectiveness of our proposed
schedulability test in Theorem 10 (denoted by Our-MCFQ) in guaranteeing the schedulability
and improving the QoS of randomly generated MC parallel tasks in comparison to the state-
of-the-art MCFS-Improve test in [26]. Before we present our results, we present the taskset
generation algorithm.

5.1 Taskset Generation Algorithm
Since both Our-MCFQ and MCFS-Improve tests depend only on the total work and the critical-
path length of each parallel task, we will directly generate these two parameters for each
parallel task. We denote UN and UO respectively the total nominal utilization of all the
tasks and total overload utilization of all the HI-critical tasks in a randomly generated taskset
Γ such that UN =

∑
τi∈Γ u

N
i and UO =

∑
τi∈(ΓHH∪ΓHL) u

O
i . Let UB = max{UN/M,UO/M}

denotes the upper bound on normalized total system utilization. Note that UB ≤ 1 is a
necessary condition for schedulability of taskset Γ on M processors.

The following experimental parameters are used for generating a random MC sporadic
DAG taskset with normalized total system utilization UB for M processors:

The proportion of high-utilization tasks in a taskset is controlled using probability phu.
The overload utilization of each high-utilization task is controlled using umax.
The ratio of the period and overload critical-path length of task τi is controlled using a
parameter Pmax such that 1 ≤ Ti/LOi ≤ Pmax.
The proportion of HI-critical tasks is controlled using probability phc.
The ratio of overload and nominal utilizations of task τi is controlled using a parameter
Rmax such that 1 ≤ uOi /uNi ≤ Rmax.

The following values of the experimental parameters are used:
Number of processors: M ∈ {16, 32, 48, 64, 80, 96, 112, 128, 144, 160}.
Normalized utilization bound: UB ∈ {0.05, 0.1, . . . 1.0}.
Probability of a task to be a high-utilization task: phu ∈ {0.1, 0.2, . . . 1.0}.
Upper bound on overload utilization of a high-utilization task: umax ∈ {2.0, 4.0, . . . 16.0}.
The maximum ratio of period and overload critical-path length: Pmax ∈ {2.0, 2.25 . . . 4.0}.
Probability of a task to be a HI-critical task: phc ∈ {0.1, 0.2, . . . 1.0}.
The maximum ratio of overload and nominal utilizations: Rmax ∈ {2.0, 2.25 . . . 4.0}.

We consider a total of 12,960,000 different combinations of the above parameters to
generate the tasksets. For each combination, we generate 1000 parallel MC tasksets where
each taskset is generated as follows (each parameter is selected from an uniform distribution):

Task period Di = Ti is drawn from the range [10, 1000].
A real number pui is drawn from the range [0, 1]. If pui ≤ phu, then τi is a high-utilization
task and its overload utilization uOi is drawn in the range [1.02, umax]; otherwise, τi is a
low-utilization task and its overload utilization uOi is drawn in the range [0.02, 1]. The
overload total work of τi is COi = uOi × Ti.
A real number Pi is drawn from the range [1, Pmax] and the overload critical-path length
is LOi = Ti/Pi.
A real number pci is drawn from the range [0, 1]. If pci ≤ phc, then Zi = HI; otherwise
Zi = LO.
If Zi = HI, then a real number Ri is drawn from the range [1, Rmax]; otherwise Ri = 1.

R.M. Pathan 12:17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
cc

ep
ta

nc
e

R
at

io

Our-MCF

MCFS-Improve

(a) M = 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
cc

ep
ta

nc
e

R
at

io

Our-MCF

MCFS-Improve

(b) M = 32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
cc

ep
ta

nc
e

R
at

io

Our-MCF

MCFS-Improve

(c) M = 64

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
cc

ep
ta

nc
e

R
at

io

Our-MCF

MCFS-Improve

(d) M = 128

Figure 1 Comparison of acceptance ratios for different number of processors for phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

The nominal total work and critical-path length are CNi = COi /Ri and LNi = LOi /Ri,
respectively.
Repeat the above steps as long as max{UO/m,UN/m} ≤ UB. Once the condition is
violated, discard the task that was generated the last.
If the resulting taskset satisfies the condition max{UO/m,UN/m} > UB − 0.05, then
accept the taskset and stop the procedure. Otherwise, discard the taskset and the repeat
the above steps.

The above taskset generation procedure ensures that each taskset has a total normalized
utilization within the range UB−0.05 and UB . This is reasonable because in our experiments
we consider values of UB that are incremented in step of 0.05.

5.2 Results: Schedulability Tests
We compare the effectiveness of Our-MCFQ test in terms of guaranteeing the schedulability of
randomly generated parallel MC tasksets in comparison to the MCFS-Improve test in [26].

For a given schedulability test and values of M , UB , phu, umax, Pmax, phc and Rmax, let
the acceptance ratio denotes the fraction of tasksets out of 1000 tasksets that are deemed
schedulable by the test at normalized utilization bound UB. The acceptance ratios for
M = 16, 32, 64, 128 are presented in Figure 1 for phu = 0.5, umax = 2.0, Pmax = 2.0,
phc = 0.5, and Rmax = 2.0 where the x-axis is the normalized utilization bound UB and the
y-axis is the acceptance ratio.

The acceptance ratios of both tests decreases as the normalized utilization bound UB
increases. Such decreasing trend in acceptance ratio for larger UB is expected because
tasksets with a relatively larger utilization are generally difficult to schedule.

The acceptance ratio of Our-MCFQ test is significantly better than the acceptance ra-
tio of MCFS-Improve test for M = 16, 32, 64, 128. For example, the acceptance ratio in
Figure 1b at UB = 0.4 for M = 32 is around 70% for Our-MCFQ test and less than 10%
for MCFS-Improve test. For M = 128 in Figure 1d, the acceptance ratio at UB = 0.2 is

ECRTS 2018

12:18 Improving the Schedulability and Quality of Service for Federated Scheduling

20 40 60 80 100 120 140 160

Varying number of processors (M)

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(a) Varying M

0.2 0.4 0.6 0.8 1

Varying prob. of high-utilization tasks (p
hu

)

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(b) varying phu

2 4 6 8 10 12 14 16

Varying upper bound on u
max

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(c) varying umax

2 2.5 3 3.5 4

Varying upper bound on P
max

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(d) Varying Pmax

0.2 0.4 0.6 0.8 1

Varying prob. of high-critical tasks (p
hc

)

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(e) Varying phc

2 2.5 3 3.5 4

Varying upper bound on R
max

 0%

 5%

10%

15%

20%

25%

W
e

ig
h

te
d

 A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Our-MCF

MCFS-Improve

(f) Varying Rmax

Figure 2 Weighted acceptance ratios for varying values of M , phu, umax, Pmax, phc, and Rmax.

around 90% for Our-MCFQ test and 0% for MCFS-Improve test. The acceptance ratio of the
MCFS-Improve test decreases to zero very rapidly with increasing UB for higher number of
processors in comparison to the Our-MCFQ test.

The relatively higher acceptance ratio of the Our-MCFQ test is due to our proposed task
assignment algorithm for the HH tasks. The MCFQ algorithm determines an assignment of the
HH tasks to the processors by choosing from different alternatives by taking in to account
the number of processors required for other tasks during the typical and critical states. On
the other hand, the task assignment of the MCFS-Improve test is restrictive in terms of
the number of different alternatives for assigning the HH tasks to the processors. It can be
analytically shown that if we plugin the alternative for assigning processors to the HH tasks
computed based on the MCFS-Improve test into the proposed schedulability test in Eq. (5),
then the test in Eq. (5) is also satisfied, which implies that the capacity augmentation bound
of the MCFS-Improve test also applies to our proposed test. However, such an analysis is
omitted in this paper due to space constraint.

The results presented in [26] show quite high acceptance ratio in comparison to the results
presented in this paper for the MCFS-Improve test. The reason is that we do not use the
task set generation algorithm from [26] because some of the assumptions were not explicitly
described in [26]. For example, it is not described in [26] how random numbers with log
normal distribution with mean (1 +

√
m/3) was generated without knowing the mean (µ)

and standard deviation (σ) of the associated normal distribution.
For comparison of the acceptance ratios of Our-MCFQ test and MCFS-Improve test for

varying values of M , phu, umax, Pmax, phc, and Rmax, we also computed the weighted
acceptance ratios and presented in Figure 2. The weighted acceptance ratio denotes the
fraction of schedulable tasksets weighted by the normalized utilization bound UB . If AR(UB)
denotes the acceptance ratio of a schedulability test for normalized utilization bound UB for
some given values of M , phu, umax, Pmax, phc, and Rmax, then the weighted acceptance ratio
for a set S of UB values is given as follows: W (S) =

(∑
UB∈S(AR(UB)× UB)

)
/
∑
UB∈S UB .

R.M. Pathan 12:19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
vr

. F
ra

c.
 o

f L
H

 ta
sk

s
th

at
 a

re
 n

ev
er

 d
ro

pp
ed

MCFS-Improve

Our-MCF

(a) M = 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization Bound

 0%

 20%

 40%

 60%

 80%

100%

A
vr

. F
ra

c.
 o

f L
H

 ta
sk

s
th

at
 a

re
 n

ev
er

 d
ro

pp
ed

MCFS-Improve

Our-MCF

(b) M = 32

Figure 3 Average fraction of LH tasks that are never dropped for phu = 0.5, umax = 2.0,
Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

When computing the weighted acceptance ratio by varying one parameter, the other
five parameters are kept fixed. The fixed values of the parameters are M = 64, phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5 and Rmax = 2.0. The significantly higher weighted
acceptance ratio of Our-MCFQ test in comparison to MCFS-Improve test is evident in Figure 2a-
2f respectively for the variation of the parameters M , phu, umax, Pmax, phc, and Rmax. The
acceptance ratio of Our-MCFQ is much higher because the task assignment algorithm is
successful in finding an allocation of the tasks to the processors such that the system is
correct while the task assignment of the MCFS-Improve test fails in many cases to find such
an assignment.

5.3 Results: Quality of Service
In this subsection, we compare the effectiveness of Our-MCFQ test with MCFS-Improve test
in improving the QoS of the system in terms of average fraction of the number of LH tasks
that are not dropped regardless of the state of the system. Note that Our-MCFQ test can
significantly schedule more tasksets than the MCFS-Improve test (Figure 1). For fairness, we
compare the QoS for only those tasksets that are deemed schedulable by both tests.

For each taskset that is deemed schedulable using both the Our-MCFQ test and the
MCFS-Improve test, (i) we apply the ILP in Eq. (15) to determine the fraction of the number
of LH tasks that are never dropped under the MCFQ algorithm, and (ii) we also determine
the fraction of the number of LH tasks that are never dropped based on the implementation
in [26]. The average fraction of the number of LH tasks that are never dropped (over all
the tasksets that are schedulable by both test) at each normalized utilization bound UB is
computed for each test and presented for M = 32 and M = 64 in Figure 3 where phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

It is evident that Our-MCFQ test is able to schedule all the LH tasks for normalized
utilization UB ≤ 0.4 while MCFS-Improve is never successful in allocating all the LH tasks for
any UB. For UB > 0.4, the Our-MCFQ test can also schedule large fraction of the LH tasks
without ever dropping them in comparison to MCFS-Improve. Therefore, the QoS of the
system using Our-MCFQ test is much higher than that of under MCFS-Improve.

6 Related Work

There have been several works on real-time scheduling of parallel non-MC tasks on multipro-
cessors based on fork-join model [22, 1], synchronous parallel task model [35, 32, 15], and
the dag task model [10, 12, 28, 3, 31]. Many of these works proposed resource-augmentation

ECRTS 2018

12:20 Improving the Schedulability and Quality of Service for Federated Scheduling

bounds and schedulability tests for global scheduling where the nodes of the tasks are allowed
to migrate from one processor to another. There are two other mechanisms to schedule
parallel DAG tasks: federated scheduling [25] and decomposition-based scheduling [21]. In
decomposition-based scheduling, a DAG task is transferred into a set of independent sporadic
task by inserting artificial release time and artificial deadline. The decomposed subtasks of
all the DAG tasks are scheduled based on GEDF scheduling policy in [21].

There are many works on scheduling MC systems since the seminal work by Vestal who
first proposed the MC sequential task model and its analysis based on fixed-priority scheduling
algorithm on uniprocessor platform [38]. Building upon Vestal’s seminal work [38], there
have been several approaches [9, 16, 11, 8, 24, 19, 4, 17, 23, 7, 5, 34] to design certification-
cognizant scheduling of MC system for both uni- and multiprocessor. The work in [14] presents
a recent survey on real-time scheduling of MC sequential tasks. To improve the quality of
service for the LO-critical tasks, there are also works that consider that the LO-critical tasks
are not dropped but provide delayed results, for example, by executing them less frequently
after the system switches to the critical state (e.g., weakly hard MC task model [18], elastic
MC task model [37, 36, 20]) or provides imprecise results [29, 13, 5, 34].

There are very few works on scheduling MC parallel tasks. Some works considers time-
table based scheduling [2] or partitioned MC scheduling based on decomposition strategy [30].
However, such scheduling algorithms are not applicable to DAG tasks for which the internal
structure is only known during runtime. The work in [27] and its extension in [26] consider
federated scheduling of MC sporadic DAG tasks. The authors in [27, 26] also derived capacity
augmentation bound of 3.67 for dual-critical tasks. It is also shown that the schedulability test
based on the capacity augmentation bound in [27, 26] does not perform well in comparison
to the schedulability test MCFS-Improve that is based on actual assignment of the tasks to
the processors. However, the task assignment for each HH task in MCFS-Improve algorithm is
not aware of how the other tasks are assigned to the processors and may fail to assign all the
tasks to the processors even if there is another way to successfully assign the tasks. On the
other hand, our proposed MCFQ algorithm does not finalize the assignment when analyzing
each HH task rather finalize the assignment when analyzing the overall task assignment for
all the tasks.

7 Conclusion

This paper presents a new schedulability analysis for federated scheduling of MC sporadic DAG
tasks on multiprocessors. The salient feature of this analysis is that different alternatives
to allocate each of the HH tasks to the processors during the typical and critical states
of the system are considered. The particular alternative to allocate a HH task is selected
such that all the tasks can be correctly scheduled on a given number of processors. The
MCFQ algorithm also tries to maximize the fraction of the number of LH tasks that are never
dropped. Experimental results show that the proposed schedulability test for MCFQ algorithm
not only can schedule much larger number of random tasksets but also can improve the
QoS of the system significantly in comparison to the state of the art. Investigating the
schedulability of MC parallel tasks where more than one high-utilization tasks are scheduled
on a set of dedicated processors is an interesting future work.

References
1 P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig. Response-time

analysis of parallel fork-join workloads with real-time constraints. In Proc. of ECRTS, 2013.

R.M. Pathan 12:21

2 S. Baruah. Semantics-preserving implementation of multirate mixed-criticality synchronous
programs. In Proc. of RTNS, 2012.

3 S. Baruah. Improved multiprocessor global schedulability analysis of sporadic dag task
systems. In Proc. of ECRTS, 2014.

4 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie. The Preemptive Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline
Sporadic Task Systems. In Proc. of ECRTS, 2012. doi:10.1109/ECRTS.2012.42.

5 S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviors. In Proc. of ECRTS, 2016. doi:10.1109/ECRTS.
2016.12.

6 S. Baruah, B. Chattopadhyay, H. Li, , and I. Shin. Mixed-criticality scheduling on multi-
processors. Real-Time Syst., 50(1):142–177, 2014. doi:10.1007/s11241-013-9184-2.

7 S. Baruah, A. Eswaran, and Z. Guo. MC-Fluid: Simplified and Optimally Quantified. In
Proc. of RTSS, 2015. doi:10.1109/RTSS.2015.38.

8 S. Baruah, Haohan Li, and L. Stougie. Towards the Design of Certifiable Mixed-criticality
Systems. In Proc. of RTAS, 2010. doi:10.1109/RTAS.2010.10.

9 S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with Multiple Criticality
Specifications. In Proc. of ECRTS, pages 147–155, 2008.

10 Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie, and An-
dreas Wiese. A generalized parallel task model for recurrent real-time processes. In Proc.
of RTSS, 2012.

11 Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality
systems. In Proc. of RTSS, 2011.

12 V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibility analysis in the
sporadic dag task model. In Proc. of ECRTS, 2013.

13 A. Burns and S. Baruah. Towards a more practical model for mixed criticality systems. In
Proc. of WMC, RTSS, 2013.

14 A. Burns and R. Davis. Mixed-criticality systems: A review. In (available online), Tenth
Edition, January, 2018. URL: http://www-users.cs.york.ac.uk/~burns/review.pdf.

15 Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, A. Easwaran, and Insik Shin. Global edf
schedulability analysis for synchronous parallel tasks on multicore platforms. In Proc. of
ECRTS, 2013.

16 François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens. Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities. Real-Time Systems,
46:305–331, 2010.

17 P. Ekberg and Wang Yi. Bounding and shaping the demand of mixed-criticality sporadic
tasks. In Proc. of the ECRTS, 2012.

18 Oliver Gettings, Sophie Quinton, and Robert I. Davis. Mixed criticality systems with
weakly-hard constraints. In Proc. of RTNS, 2015. doi:10.1145/2834848.2834850.

19 Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and Efficient Scheduling
of Certifiable Mixed-Criticality Sporadic Task Systems. In Proc. of RTSS, 2011. doi:
10.1109/RTSS.2011.10.

20 Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution rate of low-
criticality tasks in mixed criticality systems. In Proc. of WMC, RTSS, 2013. URL: http:
//www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf.

21 X. Jiang, X. Long, N. Guan, and H. Wan. On the decomposition-based global edf scheduling
of parallel real-time tasks. In Proc. of RTSS, 2016.

22 K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-
core processors. In Proc. of RTSS, 2010.

ECRTS 2018

http://dx.doi.org/10.1109/ECRTS.2012.42
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1007/s11241-013-9184-2
http://dx.doi.org/10.1109/RTSS.2015.38
http://dx.doi.org/10.1109/RTAS.2010.10
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://dx.doi.org/10.1145/2834848.2834850
http://dx.doi.org/10.1109/RTSS.2011.10
http://dx.doi.org/10.1109/RTSS.2011.10
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/paper6.pdf

12:22 Improving the Schedulability and Quality of Service for Federated Scheduling

23 J. Lee, K. M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid
Model-Based Mixed-Criticality Scheduling on Multiprocessors. In Proc. of RTSS, 2014.
doi:10.1109/RTSS.2014.32.

24 Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic
task systems. In Proc. of RTSS, pages 183–192, 2010.

25 J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Analysis of federated and
global scheduling for parallel real-time tasks. In Proc. of ECRTS, 2014.

26 J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Mixed-criticality federated
scheduling for parallel real-time tasks. Real-Time Systems, 53(5):760–811, Sep 2017. doi:
10.1007/s11241-017-9281-8.

27 J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated
scheduling for parallel real-time tasks. In Proc. of RTAS, April 2016. doi:10.1109/RTAS.
2016.7461340.

28 Jing Li, K. Agrawal, Chenyang Lu, and C. Gill. Analysis of global edf for parallel tasks. In
Proc. of ECRTS, 2013.

29 Di Liu, Jelena Spasic, Gang Chen, Nan Guan, Songran Liu, Todor Stefanov, and Wang Yi.
EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality Guarantees. In
Proc. of RTSS, 2016. doi:10.1109/RTSS.2016.013.

30 Guangdong Liu, Ying Lu, Shige Wang, and Zonghua Gu. Partitioned multiprocessor
scheduling of mixed-criticality parallel jobs. In 2014 IEEE 20th International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 1–10, Aug 2014.
doi:10.1109/RTCSA.2014.6910497.

31 A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G.C. Buttazzo.
Response-time analysis of conditional dag tasks in multiprocessor systems. In Proc. of
ECRTS, 2015.

32 G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques optimizing the number
of processors to schedule multi-threaded tasks. In Proc. of ECRTS, pages 321–330, July
2012. doi:10.1109/ECRTS.2012.37.

33 OpenMP. Openmp application program interface. version 4.0. 2013.
34 R. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on

multiprocessors. In Proc. of ECRTS, 2017.
35 A. Saifullah, K. Agrawal, Chenyang Lu, and C. Gill. Multi-core real-time scheduling for

generalized parallel task models. In Proc. of RTSS, 2011.
36 H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems.

In Proc. of RTCSA, 2014. doi:10.1109/RTCSA.2014.6910499.
37 H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In

Proc. of DATE, 2013. doi:10.7873/DATE.2013.043.
38 S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of

Execution Time Assurance. In Proc. of RTSS, pages 239–243, 2007. doi:10.1109/RTSS.
2007.47.

http://dx.doi.org/10.1109/RTSS.2014.32
http://dx.doi.org/10.1007/s11241-017-9281-8
http://dx.doi.org/10.1007/s11241-017-9281-8
http://dx.doi.org/10.1109/RTAS.2016.7461340
http://dx.doi.org/10.1109/RTAS.2016.7461340
http://dx.doi.org/10.1109/RTSS.2016.013
http://dx.doi.org/10.1109/RTCSA.2014.6910497
http://dx.doi.org/10.1109/ECRTS.2012.37
http://dx.doi.org/10.1109/RTCSA.2014.6910499
http://dx.doi.org/10.7873/DATE.2013.043
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47

	Introduction
	System Model and Useful Definitions
	An Overview of the MCFQ Algorithm
	Schedulability Analysis and Task Assignment of MCFQ Algorithm
	Task Assignment: LH tasks
	Task Assignment: HH Tasks
	Computing xi(S_{HH}^Q)

	Overall Task Assignment: Capacity Constraint
	Improving the QoS of LH Tasks

	Empirical Investigation
	Taskset Generation Algorithm
	Results: Schedulability Tests
	Results: Quality of Service

	Related Work
	Conclusion

