
Virtual Timing Isolation for Mixed-Criticality
Systems

Johannes Freitag
Airbus, Munich, Germany
johannes.freitag@airbus.com

Sascha Uhrig
Airbus, Munich, Germany
sascha.uhrig@airbus.com

Theo Ungerer
University of Augsburg, Augsburg, Germany
theo.ungerer@informatik.uni-augsburg.de

Abstract
Commercial of the shelf multicore processors suffer from timing interferences between cores which
complicates applying them in hard real-time systems like avionic applications. This paper pro-
poses a virtual timing isolation of one main application running on one core from all other cores.
The proposed technique is based on hardware external to the multicore processor and completely
transparent to the main application i.e., no modifications of the software including the operat-
ing system are necessary. The basic idea is to apply a single-core execution based Worst Case
Execution Time analysis and to accept a predefined slowdown during multicore execution. If
the slowdown exceeds the acceptable bounds, interferences will be reduced by controlling the
behavior of low-critical cores to keep the main application’s progress inside the given bounds.
Apart from the main goal of isolating the timing of the critical application a subgoal is also to
efficiently use the other cores. For that purpose, three different mechanisms for controlling the
non-critical cores are compared regarding efficient usage of the complete processor.

Measuring the progress of the main application is performed by tracking the application’s
Fingerprint. This technology quantifies online any slowdown of execution compared to a given
baseline (single-core execution). Several countermeasures to compensate unacceptable slowdowns
are proposed and evaluated in this paper, together with an accuracy evaluation of the Finger-
printing. Our evaluations using the TACLeBench benchmark suite show that we can meet a
given acceptable timing bound of 4 percent slowdown with a resulting real slowdown of only 3.27
percent in case of a pulse width modulated control and of 4.44 percent in the case of a frequency
scaling control.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Com-
puter systems organization → Embedded and cyber-physical systems, Computer systems organ-
ization → Reliability

Keywords and phrases multicore, hard real-time systems, timing isolation, safety-critical sys-
tems, mixed-criticality design and assurance

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.13

Funding This work was partially supported by the German Federal Ministry of Education and
Research within the project ARAMiS II with the funding ID 01IS16025Q and the ARTEMIS
Joint Undertaking under grant agreement 621429 (EMC2).

© Johannes Freitag, Sascha Uhrig, and Theo Ungerer;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:johannes.freitag@airbus.com
mailto:sascha.uhrig@airbus.com
mailto:theo.ungerer@informatik.uni-augsburg.de
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Virtual Timing Isolation for Mixed-Criticality Systems

1 Introduction

Several companies are seeking a new generation of autonomously piloted aircrafts for future
mobility concepts. Vehicles like Vahana, Pop-up, CityAirbus [4], or Lilium Jet [18] will be
ultra light-weight electrical helicopter-style vehicles providing a novel autonomous urban
transportation concept. The avionic systems for this kind of aircraft need to implement most
functionality available in current aircrafts while providing additional complex functionality
for autonomous flying. Furthermore, the electronic systems must be optimized for weight
and space in order to fit into this new generation of aircrafts.

A possible solution that enables the necessary integration of multiple avionic applications
into less avionic computers is the use of (massive) multicore processors comprising eight or
even more cores. Avionic systems show special requirements with respect to system reliability
and availability because of their safety-critical nature.

Even though first ideas of the regulations on how to apply multicore systems in avionics
are presented in the CAST-32 position paper and its follow-up CAST-32a [7], both authored
from the Certification Authorities Software Team (CAST), concrete design details are still
open. One of the major challenges in this context is the interference between applications
since theoretically one application can compromise another one, at least in the timing domain.
Accordingly, an essential requirement for certification is a clear and reliable isolation of
safety-critical applications that needs to be demonstrated to the certification authorities.

One of the most important issues is the contention on the memory (sub-)system resulting
from different applications on the cores since it has a major impact on the actual execution
time of an application. This is based not only on queued accesses to the memory and
interconnection systems but also on contention on shared caches.

For multicore systems, an approach to support execution of highly critical avionic (legacy)
applications is the Fingerprinting technology presented in [11]. Fingerprinting continuously
tracks the progress of an application by comparing the current state of execution to a virtual
single-core execution of the same application. Unacceptable timing deviations caused by
inter-core interferences can be mitigated by controlling the behavior of the non-critical cores.
Furthermore, the approach used for slowing down the cores shall allow the most efficient
possible usage of the other cores.

The contributions of this paper are
an evaluation of the Fingerprinting’s accuracy,
an analysis of the Fingerprinting’s (non-)intrusiveness on the main application,
three possible approaches to influence the behavior of the low priority cores for interference
reduction of the critical core,
a complete external closed control loop (CCL) that guarantees virtual timing isolation
between one main application and any other application running on a multicore system.

The remainder of this paper is organized as follows. The environment in which the
approach applies as well as the relevant hardware configurations are presented in Section 2.
Section 3 provides an overview of mature techniques and related work. The fingerprint
technology is described in Section 4 while the actuators are presented in Section 5. Section 6
introduces the complete control loop. Sections 4 to 6 comprise individual evaluations. The
paper concludes with Section 7 including an outlook on future work.

2 Setting the Scene

The avionic domain is a very defensive domain regarding novel technologies, mainly caused
by possible safety issues. Hence, we focus on the use of multicores with only a single-
core executing highly (safety) critical application (referred to as main application in the

J. Freitag, S. Uhrig, and T. Ungerer 13:3

following) while the others run applications with lower criticality. With respect to the timing
requirements examined in this paper, this means the first core is executing applications
with hard deadlines which must never be missed while the other cores run weakly hard [6],
soft, or non real-time applications. Accordingly, we are proposing a technique that enables
performance and timing guarantees for one core on the cost of the other cores’ performance.

In this approach we focus on critical applications that are executed periodically which
is typically the case for avionic applications. An example is an application which in every
loop reads data as input, processes the data and creates an output while the complete
procedure happens in a cycle of 5ms to 100ms. Any type of algorithm can be computed
and the execution of different code depending on the input is possible in every loop. A
lightweight operating system can schedule multiple applications with fixed time slicing (e.g.
as in integrated modular avionics (IMA)). However, the critical application shall not exchange
data with the low priority applications. The aforementioned restrictions do not apply for the
low non-critical applications running on the other cores. However, no timing guaranties can
be provided for these applications and it must be possible to change the timing behavior
arbitrarily without crashing neither the high-critical nor the low-critical application.

In order to reuse legacy software, guaranteeing a required performance shall be non-
intrusive. Moreover, modifications to an operating system (if any) shall be restricted to
a minimum to not increase system complexity too much. As appropriate standards and
best-practices propose extra circuits external to the processor system to increase system
reliability and safety (e.g. mentioned in [7]), we target at using such an external device for
guaranteeing performance and timing. In the optimal case, this timing isolation shall be
done in addition to the original tasks of a watchdog system.

2.1 Basic Idea

Our virtual timing isolation approach tracks the main application’s progress on the basis of
characterized behavior of hardware event counters integrated inside the core of a multicore.
Examples for suitable events are the number of executed instructions, cache misses, and
executed floating point operations based on a given time period. Periodically reading and
resetting such counters results in a curve that is characteristic for an executed application,
more specifically, for the progress of that application. When comparing a recorded reference
curve to the performance counter values measured online, the current progress with respect
to the reference execution can be measured.

In case the performance drops down, our timing isolation system is able to thwart the
other cores to reduce interferences. An integrated closed loop controller is responsible for
this task.

The hardware setup consisting of a main multicore processor and the timing isolation
system is shown in Figure 1. In our demonstrator system, a Xilinx FPGA is used for
the timing isolation system and implements all functionality required for measuring and
influencing the performance of the main application running on one core of the multicore.
The two systems are connected by the trace channels of the multicore (high speed serial
link) which need to be a bidirectional connection. The available Aurora interface fulfills this
requirement and provides access to the internal debug unit. Hence, the FPGA can read the
performance counters via the debug unit and any action for controlling the cores can also be
performed by this debug unit.

ECRTS 2018

13:4 Virtual Timing Isolation for Mixed-Criticality Systems

Multicore processor
NXP P4080

cores 1-7

FPGA
Xilinx Virtex-7

Timing isolation
processor
MicroBlaze

A
u
ro

ra

N
e
x
u
s

High speed
serial

Sensor:
Fingerprintingcore 0

Interconnect

Periodical
access
to the

performance
counters

Debug
interface

Other
applications

Critical
main

application

Measure performance (Fingerprint)

Interference reduction

C
o
n
tr

o
l
p

e
rf

o
rm

a
n
ce

Control:
P-Controller

Actuator:
Thwarting

cores

Figure 1 Hardware setup with a multicore processor under observation by the timing isolation
system implemented in an FPGA.

Table 1 Different cache configurations used in the evaluations.

Realistic Max. Interferences Max. Traffic
L1 on L1 off L1 off
L2 off L2 off L2 off
L3 off L3 off L3 int. SRAM
Memory ext. SDRAM Memory ext. SDRAM Memory int. SRAM

2.2 Hardware Configuration

The system under observation is a NXP P4080 which is an eight-core multicore processor
based on the PowerPC architecture (see Figure 1). All cores are configured to run at a
nominal frequency of 1.5 GHz. The processor comprises three caching levels where the L1
(separated instruction and data) and L2 (shared instruction and data) caches are private
to each core while the 2 MB L3 cache is shared between all cores [23]. Furthermore, the
processor provides two memory controllers from which only one is used for the evaluations.
Cache coherency as well as cache stashing is disabled for isolation of the cores.

For our evaluations we used different configurations of the caches (see Table 1) to
demonstrate the different technologies under appropriate conditions. In all configurations
the private L2 cache is disabled because enabling it increases core-local caches and reduces
interferences between cores (due to lower miss-rates). Moreover, L3 is never used as shared
cache since this would complicate a possible WCET analysis. The Realistic configuration uses
the local L1 instruction and data caches and the external SDRAM as main memory. Max.
Interference also disables both L1 caches to generate the maximum accesses from the cores to
the interconnect. Since all accesses target the external SDRAM, they show a comparatively
long latency. The Max. Traffic configuration is similar to Max. Interference but uses an
internal SRAM (L3 used as SRAM) instead of the external SDRAM. This configuration
generates the highest traffic on the interconnect due to the low latencies of accesses.

The timing isolation processor is implemented as a soft-core micro-controller (Xilinx
MicroBlaze) running at 125 MHz inside a Xilinx Virtex-7 FPGA (see Figure 1). The FPGA
is attached to the debug unit of the P4080 via a high speed serial Aurora link (2.5 GBit/s).

J. Freitag, S. Uhrig, and T. Ungerer 13:5

Thus, the FPGA is able to extract information from the multicore processor without stopping
the cores, trigger frequency scaling and halt and continue cores. Since messages from and
to the debug interface are wrapped into the NEXUS protocol [1], we developed a Nexus IP
block to speed up the process of extracting data in the FPGA. The software for monitoring
and controlling the main applications progress is executed by the MicroBlaze.

2.3 Benchmarks
For the evaluation of the approach two different benchmarks are used to demonstrate the
effectiveness in a worst case interference scenario (read/write opponent) and a more realistic
scenario (TACLeBench benchmark suite).

2.3.1 Read/Write Opponent
In order to create a worst case interference scenario benchmark, as much data has to be
stored/loaded to and from memory as possible. In the presence of caches, every access to the
data should be a cache miss in the private caches in order to create interferences. Therefore,
the distance between two consecutive memory accesses has to be at least the size of a cache
line. In the case of the P4080 this is 64 Bytes in the L1 and L2. This technique is described
in more detail in [21]. For the evaluation, an assembler program was developed that consists
of a loop that only executes either load or store instructions with a distance of 64 Bytes.
Thus, the code fits into the instruction cache but not in the data cache.

2.3.2 TACLeBench
TACLeBench [10] is a benchmark suite comprising five packages of algorithms which are
commonly used in embedded systems. In this paper only 19 algorithms from the TACLeBench
(version 1.9) sequential package are used because these algorithms do not fit completely in the
private caches like the other benchmark packages. Examples of the sequential algorithms are
encrypting, sorting, dijkstra, H.264 block decoding and image recognition. These programs
can be compiled independent of standard libraries and operating systems which makes them
easy to adapt to our test system. The code size of the individual algorithms ranges from 117
to 2710 SLOCs.

Similar to a real avionic application we executed the 19 benchmark algorithms successively
in a loop. In order to simulate a program that acts different for different input parameters
the order of the algorithms can be defined to be random for each run.

3 Related Work

Multicore systems in avionic applications are still not wide spread. One reason is the
difficulty to obtain suitable Worst Case Execution Time (WCET) estimates since application
performance can drop significantly if multiple cores (i.e. applications) are sharing bus and
memory [20]. Furthermore, it is not possible to identify all interference channels on COTS
multicore processors [2]. Therefore, a WCET analysis on possible worst case scenarios leads
to a high WCET overestimation (estimated WCET compared to unknown realistic WCET)
for current COTS MPSoCs. Hence, the performance gain of the multicore is neglected.

Predictability by processor design is studied for example in [25], [15], and [27]. Fur-
thermore, there exist several approaches to limit or even control the interferences between
high and low critical tasks on multicore systems in software to relax the worst case scenario

ECRTS 2018

13:6 Virtual Timing Isolation for Mixed-Criticality Systems

and, hence, improve WCET analysis results. These solutions focus on task or even thread
granularity and are integrated into the scheduling of the system. The main idea of these
approaches is counting e.g. bus accesses and limiting them by suspending the corresponding
thread. Examples of such approaches are presented in [17], [21], [5], [26], [16], and [3]. An
overview of these and other approaches is given in [14].

Even though these approaches are very interesting for newly developed applications, they
are not suitable for combing multiple legacy single-core avionic applications on a multicore
processor because the legacy applications or the underlying operating system would either
have to be modified, which leads to a high effort in certification (because of increased system
complexity), or restrict the applications in a way that the performance gain of the multicore
is neglected.

A previous approach for characterizing an application’s execution is presented in [9]. It
is used in high performance systems to predict an application’s future behavior and needs
for adjusting architectural parameters for performance optimizations. It is not related to
embedded real-time systems but successfully uses a similar, but intrusive, technology for
tracking application’s performance.

The use of feedback controllers in combination with real-time systems is not new. For
example, a closed loop controller is used in [19] for dynamic resource allocation and power
optimization of multicore processors. An example for closed loop control in a real-time
scheduler is presented in [24] and [8] while a controller for thermal control of a multicore
processor is introduced in [13]. However, all of these methods require intrusive measurements
and no non-intrusive approach for controlling the interferences between cores by an external
device has been presented in the past.

4 Progress Measurement using Fingerprints

Implementing a closed control loop requires a controlled system, a sensor, an actuator, and
a control algorithm. The controlled system is the main application running on one core.
As sensor element, we developed a Fingerprinting system that tracks the progress of an
application transparently. The Fingerprinting is described in this section while the actuator
and control elements are presented in Sections 5 and 6, respectively.

4.1 Fingerprinting
During the execution of an application a flow of instructions is executed. This flow is not
homogeneous in terms of type of instructions (e.g. arithmetic, floating point, branch), source
of the instructions (e.g. cache, internal scratchpad, external memory), and execution time
of instructions (e.g. simple arithmetic, complex arithmetic, memory access). Accordingly,
measuring for example the number of executed floating point instructions per time unit will
lead to a characteristic curve of an application or a part of the application. If the application
(or the relevant part of it) is executed several times the measured curves are very similar.
For tracking the progress of a known application, its measured curve can be compared to the
recorded reference curve of executed floating point instructions at any time.

In case an application executed on a multicore processor suffers from interferences with
other applications on the shared memory hierarchy, its progress is slowed down. Slowing
down the application will result in a stretched (in time) but shrunk (in the value range)
curve. When comparing such a mutated measured curve with the original reference curve,
the actual slowdown can not only be identified but also be quantified at any time during
execution.

J. Freitag, S. Uhrig, and T. Ungerer 13:7

0

500

1000

1500

2000
Instructions completed

0
50

100
150
200
250

Branch instructions completed

0

500

1000

1500

2000

 E
ve

nt
s

[#
/u

s]

Instructions fetched

0
50

100
150
200
250
300
350

0 5 10 15 20 25 30 35 40 45

Time [ms]

Stores completed

Figure 2 Measured curves of the four event counters: Instructions completed on top curve,
Instructions fetched second, Branches completed third, and Stores completed in lowest curve when
executing the sequential benchmarks of the TACLeBench benchmark suite.

Many current MPSoC (e.g. based on ARM, PowerPC) include performance counters
implemented in hardware which can be configured to increment every time a given event is
raised. While the amount of events which can be configured is usually more than 100, the
amount of counters that can be incremented simultaneously is small (around four to six) [22].
Therefore, the events that are suitable for tracking have to be selected.

Figure 2 presents event counter curves of the TACLeBench sequential benchmarks (see
Section 2.3.2) for the four event types Instructions completed, Instructions fetched, Branches
completed, and Stores completed. These event types were used throughout the whole paper.
For the fingerprints it is not relevant which event types are selected as long as it produces a
continues stream of measurement data (which is for example not the case for floating point
instructions) and the selected event types result in different curves. The displayed curves
originate from a bare metal execution on a NXP P4080. The characteristics origin from
the following algorithms within the TACLeBench in the following order: adpcm, anagram,
audiobeam, cjpeg_transupp, cjpeg_wrbmp, epic, fmref, g723, gsm, h264, huff, ndes, petrinet,
rijndael, statemate. These algorithms for example include jpeg transformations (7th to 12th
ms), h264 decodings (21th to 28th ms) and AES decryption (32rd to 38th ms). In the figure
it is visible that the characteristics are different for the type of algorithms executed as well
as the monitored events for the same algorithm.

4.2 Creation of a Fingerprint Model
The Fingerprint model is obtained by executing the main application several (thousand)
times. The performance counter values of the selected events are recorded with the frequency
defined by the algorithm running on the timing isolation processor (100µs period in this
case which is identical to the tracking frequency). Afterward, the recorded characteristics

ECRTS 2018

13:8 Virtual Timing Isolation for Mixed-Criticality Systems

Figure 3 Generation process of the Fingerprint model. The raw data (left) is clustered by a
k-means algorithm and is reduced to the median curve to build up the Fingerprint model.

are clustered using a bisecting k-means algorithm applying the distance function1

d(x,y) =
n∑

i=1
[|xi − yi| > δmax] (1)

with runtime measurement vector x, centroid vector y, length n of the pattern and the
maximum difference between two data points δmax. This distance function does not sum
up the differences between each measurement point but it counts the number of samples
with an error higher than the given δmax. In comparison to the standard distance function
this function is not sensitive to drops in the curve as displayed in Figure 3 on the left. In
case of two curves where these drops are slightly shifted, the overall distance in the standard
function would be big even though the rest of the curve fits perfectly. With the given distance
function, errors bigger than δmax are taken equally into account which better clusters the
main streams within the recorded data.

The bisecting k-means algorithm was chosen because no predefined number of clusters has
to be given. Instead, the number of clusters is resulting from a defined maximum distance
dmax. Thus, only fingerprints with a distance d ≤ dmax to each other are in one cluster. The
centroid is defined randomly for the first iteration of the bisecting k-means algorithm and
refined in the subsequent iterations until the clusters reach their final states. The medians
of the resulting cluster centroids are combined into a tree model, the Fingerprint. Figure 3
shows an example process flow of the Fingerprint generation. In the first step an overlay
of the recorded curves is displayed which are clustered in the second step. Afterwards, the
medians of the clusters are computed and the original curves are discarded. Finally, the tree
model is created.

The Fingerprint is represented by a graph as shown in Figure 4. The root node is
the starting point of the application2. A node describes a sequence of counter values
characterizing a part of the applications execution. One node consists of at least the number
of simultaneously compared samples during tracking (4 samples in the current implementation)
and depending on the application, all the samples until to the end of the period of the

1 Please note the Iverson brackets: [P] =
{ 1 if P is true;

0 otherwise.
2 Note that the application must be a typical embedded application that is executed periodically.

J. Freitag, S. Uhrig, and T. Ungerer 13:9

Figure 4 Example of a Fingerprint tree model.

application or the next branch. Each node has at least one successor node, except for the
last node representing the end of execution in one iteration. In case of multiple successor
nodes they represent (at least) two different paths of following characteristics. The split
into multiple paths can be caused by different execution paths of the application or by
different environmental conditions e.g., the first execution can have a different path than
the following executions due to cold caches and warmed-up caches. It can also happen that
different execution paths are not explicitly visible in the Fingerprint if these paths show
similar characteristics as others.

4.3 Tracking the Progress of Applications in Real-Time
During actual execution time, the timing isolation system again reads the performance
counter values. In this case, the values are compared to the stored Fingerprint model and
the actual path along the tree is tracked. In contrast to the generation of the Fingerprint
model which can be created off-line on a powerful compute node, timing is crucial for the
tracking phase. The comparison between the measurements and the stored characteristic
sequences has to be performed in real-time. Furthermore, it has to be done with the limited
performance of a micro-controller as it would economically not make sense to observe the
multicore with a high power single-core processor or even a multicore processor. In our
setup the tracking is performed by a Microblaze which is a soft core micro-controller. For
performance reasons the similarity is determined with a simple distance function

d(t) =
t∑

i=t−n

(xi − Fi)2 (2)

with x runtime measurement vector, F Fingerprint vector, t discrete sampling time step from
the beginning of the current period and n number of samples to compare. In the current
implementation, in every iteration the recent four samples are compared. Comparison of only
four samples is sufficient because the resulting similarity is accumulated over time. Thus,
the decision whether the complete application run fits to the Fingerprint is not only based
on the most recent comparison but on all the measurements.

Since measurements and Fingerprint never match exactly because of different execution
environments (cache state, concurrent bus and memory accesses) or just because of jitter at

ECRTS 2018

13:10 Virtual Timing Isolation for Mixed-Criticality Systems

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

S
lo

w
d

ow
n

[%
]

Time [ms]

Slowdown real
Slowdown measured

Standalone real
Standalone measured

Figure 5 Quality of the quantification over the runtime of the TACLeBench suite in standalone
and with seven opponent cores (Slowdown) using the Realistic cache configuration (L1 cache is
enabled). The plotted dots represent the mean values while the bars reflect the minimum and
maximum value measured.

the measuring points, the tracking algorithm is based on similarities, not on exact equality.
This is of special importance at the nodes of the Fingerprint model because here the algorithm
has to decide which path to continue.

Because the selection of the future path is based on similarity, there is an uncertainty at
the decision point. To make the tracking robust despite of this uncertainty, our Fingerprinting
implementation is able to track multiple different paths in parallel. In case of further branches
in the tree, the most probable paths are followed and less probable paths are dropped. This
decision is based on the matching of the runtime values with the path until the decision
point is reached. In the current implementation four paths can be tacked simultaneously.

When determining the similarity of an actual measurement sequence to the model, the
actual values are compared to the original model. Furthermore, a slowed down version of the
model is computed by shifting the original model which is also compared to the measured
values. In case of a better fit of the slowed down version the delay of the actual execution
is determined. For the following comparisons the complete model is shifted in order to fit
to the measurements. This enables the algorithm to track the application also in case of
a delayed execution, e.g. by bus and/or memory contention. A slowdown can not only be
detected, it can also be quantified during the execution.

4.4 Precision of the Interference Quantification over Time
For the evaluation of the precision of the quantification algorithm we instrumented the
TACLeBench suite. The instrumentation is inserted at the start and after every benchmark.
Thus, 20 milestones are inserted into the 19 algorithms of the TACLeBench suite subsequently.
Each instrumentation consists of a time measurement within the multicore processor, which
is stored in the RAM of the P4080 for later readout, and a special trace message which is
sent to the quantification FPGA. Therefore, the time measurements can be used to calculate
the actual slowdown which can be compared to the interference quantification values at the
time these messages are received.

For the comparison, the TACLeBench was first executed standalone in order to record
the time measurements without slowdown as shown in Figure 5 “Standalone real”. All the
different measurements are performed 100 times and the mean values are plotted. The

J. Freitag, S. Uhrig, and T. Ungerer 13:11

bars are indicating the minimum and maximum values. The cache configuration in this
experiment is Realistic (L1 cache is enabled). At the same time the slowdown was measured
by the FPGA displayed in the “Standalone measured” curve. Here it is visible that there is
a slight overestimation in the interference quantification of around 1% in some cases.

In the second step, the benchmark was executed with seven write opponents causing
an average total slowdown of around 8%. However, the slowdown over time varies as it is
depending on the different algorithms and their memory access behavior. The actual slowdown
is shown in Figure 5 “Slowdown real” while the slowdown detected by the interference
quantification with fingerprints is labeled as “Slowdown measured”. Overall, the real and
the measured slowdown are matching very well. For example the final (at 52ms) actual
average slowdown value is 8.0% compared to a measured slowdown of 7.1%. In the case
of the “Standalone” execution, the final average overestimation of the slowdown is only
0.5%. In total, the average deviation of the average value of less than 1%. However, in the
beginning of the run (first millisecond) the values do not match. This is due to the fact that
the quantification algorithm takes a small start period of around 1 ms to align the measured
curve with the curves in the model. However, once this alignment is fixed the matching
is very responsive as can be seen in the figure. An evaluation on which slowdowns can be
reliably detected and how fast these can be detected is presented in [11].

4.5 Non-intrusiveness of the Read-Out Process
In order not to create any further interference on the critical application, the read-out
overhead of the progress tracking should be as small as possible (non-intrusive). However,
as the Fingerprinting approach relies on the performance counter values (see Section 4.1)
which reside inside the cores these values have to be accessed from outside the SoC. The
extraction process including the possible interference channels are displayed in Figure 6.
Every extraction is triggered by an external signal sent by the external timing isolation
system.

Once an external signal is received, the first step (1 in Figure 6) inside the SoC is the
transfer of the performance counter values to the memory-mapped Performance Monitor
Counter Capture Registers as the performance counter registers inside the cores are not
accessible by the debug interface. This transfer is triggered by a signal from the debug
interface to the respective core. In the manual of the e500mc cores [22] it is not specified
where the Performance Monitor Counter Capture Registers are located and how the transfer
is implemented. However, measurements showed that this happens in a non intrusive way as
no delay of a program executed on the core could be observed.

In the second step (2 in Figure 6) the Performance Monitor Counter Capture Registers
are accessed by the Triggered memory-mapped access unit of the debug interface. This is
implemented as a usual memory mapped access. Therefore, the interconnect is used to
transport the data to the debug interface. This is a possible interference channel as the
interconnect is also used by the cores when these access the memory, the shared cache or the
I/O interfaces.

For a reliable tracking four 32bit performance counter values per core need to be extracted
as mentioned in Section 4.1. Depending on the read out frequency the bandwidth needed
on the interconnect varies. For an example extraction frequency of 1 MHz (1 µs period) a
bandwidth of 128 Mbit/s per observed core is needed. However, if the performance counters
of all cores shall be extracted in parallel at this frequency the resulting bandwidth is 1 Gbit/s.
Even though NXP claims that the P4080 provides 0.8 Tbps coherent read bandwidth [23],
interference is measurable even if only one core is observed.

ECRTS 2018

13:12 Virtual Timing Isolation for Mixed-Criticality Systems

Multicore Processor SoC
NXP P4080

Triggered memory-
mapped access

Debug
Interface

Memory
ControllerInterconnect

Memory-mapped
Performance counter

capture register

Performance
counters

PowerPc Core
1

2

Debug Trace Interface

Figure 6 Possible interference channels on the example of an NXP P4080 SoC with eight cores.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.1 1 10 100 1000

S
lo

w
d

ow
n

[%
]

Access period [us]

TACLeBench

Figure 7 Slowdown of the TACLeBench exe-
cution on one core depending on the access period
of the performance counter read out process.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 1 10 100 1000

S
lo

w
d

ow
n

[%
]

Access period [us]

1 Core - 1 observed
8 Cores - 1 observed
8 Cores - 8 observed

Figure 8 Slowdown of the read benchmark
to the on-chip SRAM (L3 cache configured as
SRAM) while the L1 and L2 caches are disabled.

The interference measured for the execution of the sequential TACLeBench benchmarks
on one core while the remaining cores are idle is shown in Figure 7. The slowdown s is
defined as

s(p) =
(

x(p)
xunobserved

− 1
)
∗ 100 (3)

with the access period p, the execution time without observation xunobserved and the execution
time for a given period for reading out the PMC capture registers x(p).

The bars are the respective observed min/max values. At some points the bars are below
zero. This results from the fact that the execution time is varying even without disturbance
from the read out process. These slight variations are a result of cache, interconnect and
memory mechanisms.

It can be recognized that the slowdown is very small (around 0.09%) even at access
frequencies of 10 Mhz. For access periods larger than 20 µs the interference is not measurable.
The result is identical for the case that the performance values are extracted from the core

J. Freitag, S. Uhrig, and T. Ungerer 13:13

executing the benchmark as well as from any core that is in idle mode. Even though the
interference is decreasing with a higher access period there are two measurements that are
lower than expected (around 0.4 µs). We assume this is because of a synchronization of
the memory accesses of the TACLeBench with the memory mapped accesses of the debug
interface.

The intrusiveness analysis using the TACLeBench benchmarks shows the potential impact
on a real application. However, in order to determine the worst case interference of the
read out process an application was developed that almost only performs memory accesses.
Furthermore, the subsequent memory accesses read/write data from/to addresses with 64
byte distance which is the size of one cache line. Additionally, the L1 and L2 caches are
disabled while the L3 cache is used as SRAM memory (Maximum Traffic cache configuration).
Therefore, every load instruction initiates a transaction in the interconnect which is considered
as the worst case.

The slowdown of this application is displayed in Figure 8 for three configurations. In the
first configuration the application runs on one core while the remaining cores are idle. In the
second and third configuration the application is executed on all eight cores simultaneously.
The extraction process is performed on one core or all the cores. The slowdown is determined
similar to the TACLeBench analysis with Equation 3 but normalized to the eight core
execution without reading the counter registers. Thus, the slowdown resulting from the
inter-core interference is eliminated.

The measured slowdown is not significantly higher compared to the TACLeBench analysis
for the one core execution. However, when all the eight cores are used for execution, the
slowdown is around six times higher in case only one core is observed which is still a very low
slowdown. The higher interference for the eight core execution results from the utilization of
the interconnect from the cores. For access periods larger than 20 µs (50 kHz) the interference
is again not measurable. In case all the cores are observed simultaneously the interference
is much higher. As expected, the interference is around eight times higher compared to
the case where only one core was monitored. The slowdown reaches a maximum at around
1.02 µs and the slowdown is not increasing with decreasing access periods. At this point the
maximum speed of the triggered memory mapped access of the debug interface is reached.
However, for extraction periods above 50 µs the interference is also not measurable.

5 Performance Control by Interference Reduction

The presented Fingerprinting is used as the sensor element of the closed control loop. In
this section the actuator which influences the performance of the other cores and, hence, the
interferences is explained. A simple technique for reducing the interferences with the main
application is halting and resuming the opponent cores based on a threshold. For example,
whenever the slowdown of the main application rises over 5% the other cores are halted
and continued once the slowdown drops under 5%. This actuator is effective and stops the
interferences of the opponent cores but it is heavily intrusive for the tasks running on the
other cores and might have severe effects depending on the executed application. Apart from
the main goal of isolating the timing of the critical application a subgoal is also to efficiently
use the other cores. Therefore, two more advanced and less intrusive actuators are presented
in this section. These actuators are pulse width modulated interferences and frequency scaling.
We present an extended evaluation of pulse width modulated interferences[12] and the new
approach using a frequency scaling methodology.

ECRTS 2018

13:14 Virtual Timing Isolation for Mixed-Criticality Systems

5.1 Pulse Width Modulated Interferences
Modern multicore systems like the P4080 provide means to halt and continue cores individually.
Whenever a core is halted, the clocks are still running, but the core is not fetching or executing
instructions [22]. Thus, no accesses to the memory are performed and the interference is
stopped. Both actions can be triggered by messages on the back channel of the trace interface,
i.e. by writing to control registers. This means that the timing isolation processor (see
Figure 1) is able to control the activity of the cores individually from an external device.

To provide not only a binary (on/off) way of setting the performance of the cores, we
implemented a (software-based) Pulse Width Modulated (PWM) enabling/disabling of the
individual cores, according to the signals from the closed loop controller in short time ranges.
We have chosen a PWM period of 1ms which is equal to 10 times the 100µs required to
track the application performance. Hence, we can reduce the performance of cores competing
with our main core in steps of 10%. During the duty cycle all the opponent cores are active,
while for the rest of the period the cores are stopped.

5.2 Frequency Scaling
A slowdown of an interfering low priority core can also be done by a frequency downscaling.
This is highly depending on the processor architecture. For example, the number of different
clocks and the divider steps are varying between processors. In the case of the P4080 only
four possible configurations can be selected: Two different clock sources and to each clock
source a divider (divide by two) can be applied. However, in order to have a maximum
frequency range, the highest frequency selectable clock frequency is 1.5GHz while the lowest
frequency is 800MHz. Therefore, the possible frequencies are 400MHz, 750MHz, 800MHz
and 1.5GHz which can be configured for each core individually. This configuration is also
possible during runtime from an external device via the debug interface. Since, it is possible
to scale down the frequency of an individual core the execution on that core can be slowed
down and thus, the interferences with the main core is reduced.

5.3 Evaluation of PWM and Frequency Scaling
For the evaluation of the effectiveness of both the PWM and the frequency scaling approach
we used the TACLeBench and the read/write algorithm in three different scenarios:
1. Read with seven read opponents (Figure 9): shows the worst case interference scenario,
2. TACLeBench with seven write opponents (Figure 10): shows a realistic application (this

benchmark is application oriented and generates realistic traffic on the shared interconnect
and memory and profits from local data caches) with worst case opponents,

3. TACLeBench with seven TACLeBench opponents (Figure 11): shows a realistic application
on core 0 with realistic opponents.

All the scenarios were evaluated in two different cache configurations: Realistic (L1 is
enabled) and Maximum Interferences (no caches enabled).

For the evaluation of the frequency scaling the performance of the applications was
measured without frequency scaling of the opponent cores in the first step. All cores were
running with 1.5GHz which is labeled in the figures as Without control. In scenario one
and three the performance is identical for all applications on all core as the applications are
identical. In scenario two the Without control performance is depicted individually. In a
second step the opponent cores are set to 400MHz which is the minimum configurable speed
for the P4080 when the maximum speed is configured to 1.5 GHz. The performance of core 0

J. Freitag, S. Uhrig, and T. Ungerer 13:15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

Number of cores

Without control
Core 0

Other cores

(a) Frequency scaling for a varying number of
opponents. The opponents are scaled down to
400 MHz while core 0 is running at 1.5 GHz.

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

P
er

fo
rm

an
ce

PWM duty cycle

Core 0
Other cores

(b) PWM halt and resume of the opponent cores
for a varying duty cycle while seven opponent
cores are running.

Figure 9 Frequency Scaling and PWM efficiency with the read algorithm (see chapter 2.3.1) on
core 0 as well as read opponents on the other seven cores. These measurements were conducted
with the Maximum interference cache configuration (all caches disabled). A separate analysis (not
shown here) indicated that the curves are very similar for enabled local caches as the read algorithm
is designed to cause maximum stress on the interconnect and does not take advantage of caches.

as well as the performance of the other cores was measured. As expected, it is visible that the
performance of the other cores drops while the performance of core 0 is increased. However,
the amount is highly depending on the scenario and cache configuration. The measurements
were taken for a varying number of opponent cores. For example, in case of Number of cores
is four, core 0 is running with 1.5GHz, cores 1 to 3 are running with 400MHz and cores 5 to 8
are idle in the controlled case. In the case of only one core, there is obviously no data plotted
for Core 0 and Other cores but this data point was used to normalize the measurements.

During the evaluation of the PWM approach all eight cores are utilized while the duty
cycle of all seven opponent cores is varying from 0 to 100% in steps of 10%. As result, the
execution time for the main application as well as the opponent applications is measured.

The results for scenario one with the read algorithm on the main core and up to seven
read opponents is shown in Figure 9. It can be observed that the frequency scaling is not able
to reduce the interferences from the opponent core enough to keep core 0 at a performance
level higher than 90%. The increase of performance in comparison to the uncontrolled case
is only around 4% for one opponent core (number of cores equal to two) and is completely
negligible for seven opponent cores (number of cores equal to eight). This effect is the same
for both cache configurations and can be explained by the cache behavior of the algorithm.
Even though the opponent cores are executing instructions with one fourth of the speed, the
memory interface is still jammed by the opponents because the memory is even slower. In
contrast to that, the results for the PWM approach shown in Figure 9b reveals that even in
the case of running seven opponents in parallel, the performance of the main application can
be fully recovered. This shows that in the worst case the frequency scaling is not sufficient
but the PWM approach can control the performance of the main application at the cost of
heavily slowing down the opponents.

The more realistic scenario of TACLeBench with seven write opponents is shown in
Figure 10. In contrast to the other scenarios there are four curves displayed for the frequency
scaling instead of three. This is because there are different applications running on core

ECRTS 2018

13:16 Virtual Timing Isolation for Mixed-Criticality Systems

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

Number of cores

Without control core 0
Core 0

Without control other cores
Other cores

(a) Frequency scaling of the opponents to 400
MHz. No caches enabled.

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

P
er

fo
rm

an
ce

PWM duty cycle

Core 0
Other cores

(b) PWM halt and resume of seven opponents.
No caches enabled.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

Number of cores

Without control core 0
Core 0

Without control other cores
Other cores

(c) Frequency scaling of the opponents to 400
MHz. L1 cache enabled.

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

P
er

fo
rm

an
ce

PWM duty cycle

Core 0
Other cores

(d) PWM halt and resume of seven opponents.
L1 cache enabled.

Figure 10 Frequency scaling and PWM efficiency with TACLe on core 0 and write opponents on
the other cores. For Figure a and b the Maximum interference cache configuration applies while for
Figure c and d the Realistic cache configuration (L1 cache enabled) was used.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

Number of cores

Without control
Core 0

Other cores

(a) Frequency scaling of the opponents to 400
MHz.

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

P
er

fo
rm

an
ce

PWM duty cycle

Core 0
Other cores

(b) PWM halt and resume of seven opponents
for a varying duty cycle.

Figure 11 Frequency scaling and PWM efficiency with TACLe on core 0 and TACLe opponents on
the other cores. The measurements were taken with the Maximum interference cache configuration.

J. Freitag, S. Uhrig, and T. Ungerer 13:17

0 and the other cores which are evaluated separately. In the case of no caches the results
are similar to the results in the read/read scenario. However, if the L1 cache is enabled the
performance of the TACLeBench does not drop below 90% even with seven write opponents.
The effect of the frequency scaling is not significant because of the cache behavior of the
write algorithm like in the read/read scenario.

For the scenario of TACLeBench with seven TACLeBench opponents the results are
displayed in Figure 11. It is visible that the frequency scaling has a significant effect on the
performance of the application on core 0. Especially in the case of one and two opponents
(two and three cores in Figure 11a) the frequency scaling increases the performance to
over 90%. However, even though a performance increase of around 15% compared to the
uncontrolled case is visible in the eight core case, frequency scaling is not sufficient for
advancing the performance to a level of over 90%. Additional measurements (not shown in
the figure) show that in the case of the Realistic cache configuration the loss in performance
of the TACLe benchmark on core 0 is negligible and the performance of core 0 with seven
opponents is still 99%.

Concluding this evaluation, frequency scaling is less efficient for improving performance of
core 0 compared to PWM. On the other hand, frequency scaling affects applications running
in parallel to core 0 less than PWM.

6 Closed Control Loop

We used two algorithms as control element, a simple threshold-based one and a proportional
controller. Both techniques affect all concurrent cores synchronously. The threshold-based
algorithm disables the concurrent cores when the slowdown of the main application exceeds a
given threshold and enables the cores again when the slowdown falls below the same threshold
again. The second technique uses a proportional controller with an actuator based on the
PWM activity control and the frequency scaling, respectively, as described in the previous
section.

As mentioned in Section 5.1, it is possible to control the cores individually which allows
for idling only the low priority cores which create a high traffic on the shared resources. In
order to detect the individual core interference, one performance counter in every low priority
core has to be read periodically in addition to the performance counters in the critical core.
This performance counter is configured with the event bus interface unit accesses. Thus, it
counts the actual number of L2 cache misses which creates contention. The non-critical cores
with the highest number of bus interface unit accesses can than individually be slowed down
by one of the proposed techniques.

However, for this evaluation of the effectiveness of the control loop we used the TACLe
benchmarks as main application and the aforementioned Write algorithm as opponents
running on seven cores in parallel. We set a maximum slowdown of 4% as target performance
of the main application compared to the standalone execution. Individual core interference
detection is irrelevant in that case as all opponent cores are running the same application
(worst case interference). Therefore, the low priority cores are equally slowed down while the
critical application is untouched.

The results of the evaluation are shown in Figure 12, 13 and 14. In the figures, the
progress of the TACLeBench over time is displayed in the upper part and the measured
slowdown over time in the lower part. The upper part presents the number of executed
instruction per µs. For comparison, the standalone (no opponent applications) and the
uncontrolled (seven opponent applications without control) executions are displayed. The

ECRTS 2018

13:18 Virtual Timing Isolation for Mixed-Criticality Systems

0
200
400
600
800

1000
1200
1400
1600
1800

0 10 20 30 40 50

In
st

ru
ct

io
ns

 c
om

pl
et

ed
 [#

/u
s]

Time [ms]

No control Simple control Standalone

0

5

10

15

20

0 10 20 30 40 50

S
lo

w
d

ow
n

[%
]

Time [ms]

No control
Simple control

Threshold
Other cores enabled

Figure 12 TACLeBench performance over time without control and with applied simple threshold
controller.

0
200
400
600
800

1000
1200
1400
1600
1800

0 10 20 30 40 50

In
st

ru
ct

io
ns

 c
om

pl
et

ed
 [#

/u
s]

Time [ms]

No control PWM control Standalone

0

5

10

15

20

0 10 20 30 40 50
0

20

40

60

80

100

S
lo

w
d

ow
n

[%
]

D
ut

y
cy

cl
e

[%
]

Time [ms]

No control PWM control Duty cycle

Figure 13 TACLe performance over time without control and with applied PWM controller.

J. Freitag, S. Uhrig, and T. Ungerer 13:19

0
200
400
600
800

1000
1200
1400
1600
1800

0 10 20 30 40 50

In
st

ru
ct

io
ns

 c
om

pl
et

ed
 [#

/u
s]

Time [ms]

No control Frequency control Standalone

0

5

10

15

20

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

S
lo

w
d

ow
n

[%
]

F
re

qu
en

cy
 [M

H
z]

Time [ms]

No control Frequency control Frequency

Figure 14 TACLe performance over time without control and with applied frequency scaling
controller.

uncontrolled execution takes about 8% longer than the standalone run. The diagrams in the
lower part of the figures represent the slowdown of the main application as tracked by the
Fingerprinting. Since the tracking of progress is based on discrete steps, the performance
reductions are manifested in sharp steps. The following phases of smooth performance
increases are caused by relative distribution of a slowdown over a longer time, i.e. a one-time
delay at the start of the application of 5% is reduced over the total execution time to a much
lower slowdown.

In Figure 12 the results of the threshold controller are displayed. The dotted line represents
the threshold (4%) i.e. the maximum target slowdown of the main application. The gray
shaded boxes identify the times when the other seven cores are active. No grey shading
means that the other cores are disabled by the control mechanism. It is visible that the
opponent cores are disabled whenever the measured slowdown is higher than the threshold
value which keeps the total slowdown in the end at a measured slowdown of 3.59%. The
actual total slowdown is 4.44% (measured by comparing the times it took for executing
the benchmark in the standalone and controlled case) which means an underestimation of
the slowdown by the Fingerprinting and an exceedance of the threshold by less than 0.5%.
During the total run of one TACLeBench benchmark the opponents are executed for 67%
and halted for 33% of the time.

The behavior of the PWM controller is shown in Figure 13. The duty cycles of the
competing cores are set according to the measured slowdown. A slowdown of less than
2% allows full performance for all cores, a slowdown above 7% leads to complete disabled
competing cores. Between 7% and 2%, the duty cycles are adjusted in 10% steps from 10%
to 90% (one step per half percent of slowdown). The grey shaded areas represent the duty
cycles of the PWM core activation signal. As can be observed, the 4% target slowdown of
the main application is reached after completion (3.23% measured while the actual slowdown
was 3.27%). Moreover, the active phases of the competing cores are much longer in time but
less intensive. Since we are using a PWM signal, this means that the cores are active for

ECRTS 2018

13:20 Virtual Timing Isolation for Mixed-Criticality Systems

many but smaller periods. With this PWM control, the seven bad guys get 74% of the cores’
performance while the main application still meets the performance requirements which is
an advantage of 7% over the threshold based actuator. Moreover, actual slowdown of the
main application is better than the targeted acceptable threshold of 4%.

The frequency scaling approach is displayed in Figure 14. The possible frequencies of
the opponent cores are 400MHz, 800MHz and 1.5GHz. Furthermore, the core can be halted.
Similar to the PWM approach a slowdown of less than 2% allows full performance for all
cores, a slowdown above 7% leads to completely disabled competing cores. Between 7% and
2%, the frequencies are adjusted in linear intervals. The grey shaded areas represent the
frequencies of the opponent cores. The slowdown of the main application is reduced with a
total measured value of 3.60% (real slowdown: 4.44%). However, this was not possible by
only scaling down the cores. During the period of high interference in the beginning of the
execution the opponent cores had to be halted for a sufficient reduction of the interferences.
An assessment of the cores processing time compared to the aforementioned approaches does
not make sense in this case. The frequency scaling of a core cannot be compared with halting
and continuing a core because the performance of a scaled down core is highly dependent on
the instructions executed.

The scenarios one and three show slight violations in actual slowdown compared to the
target threshold. This is because of an underestimation of the slowdown by the Fingerprinting
caused by the technologies latency. Adding a safety margin when defining the acceptable
bounds could help here.

7 Conclusion and Future Work

This paper presents a virtual timing isolation of one main application running on one core
from all other cores of a multicore processor. The proposed technique is based on hardware
external to the multicore and completely transparent to the main application. The basic
idea is to apply a single-core execution based Worst Case Execution Time analysis and to
accept a predefined slowdown during multicore execution. If the slowdown exceeds predefined
acceptable bounds, interferences will be reduced by thwarting other cores to keep the main
application’s progress inside the bounds.

We evaluated the accuracy of the transparent tracking of the application’s progress
(Fingerprinting), the effectiveness of different thwarting techniques, and the performance of a
complete closed control loop using a simple P-controller. The latter shows that it is possible
to transparently enable an application staying within given timing bounds even though there
are a maximum of seven opponents flooding the shared interconnect with traffic. Evaluations
indicated a slight underestimation of the application’s slowdown which could be compensated
by adding a safety margin. Determining a suitable range for this safety margin is part of
future work.

It is planned to extend the thwarting in order to affect only cores driving high traffic
on the interconnect instead of all competing cores. This can be reached by evaluating the
interconnect accesses of the other cores to identify cores with high influence. Moreover,
a combination of frequency scaling and PWM driven thwarting would be interesting for
more effective and fine-grained interference control. Also using a more complex control
algorithm like a full PID controller could be useful to increase performance of competing
cores. The target of future research will be enabling more than one core running hard
real-time applications.

J. Freitag, S. Uhrig, and T. Ungerer 13:21

References
1 The Nexus 5001 Forum - Standard for a Global Embedded Processor Debug Interface, 2012.
2 Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J Cazorla. On the

Tailoring of CAST-32A Certification Guidance to Real COTS Multicore Architectures. In
12th IEEE International Symposium on Industrial Embedded Systems (SIES), 2017.

3 Ankit Agrawal, Gerhard Fohler, Johannes Freitag, Jan Nowotsch, Sascha Uhrig, and Mi-
chael Paulitsch. Contention-Aware Dynamic Memory Bandwidth Isolation with Predict-
ability in COTS Multicores: An Avionics Case Study. In Marko Bertogna, editor, 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 2:1–2:22, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2017.2.

4 Airbus. Future of urban mobility. 2018. http://www.airbus.com/innovation/urban-air-
mobility.html.

5 S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-aware scheduling of multicore
task sets for real-time systems. In 2012 IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 300–309, Aug 2012. doi:10.1109/
RTCSA.2012.48.

6 G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems. IEEE Transactions
on Computers, 50(4):308–321, Apr 2001. doi:10.1109/12.919277.

7 Certification Authorities Software Team (CAST). Position Paper CAST-32A: Multi-core
Processors. November 2016. URL: https://www.faa.gov/aircraft/air_cert/design_
approvals/air_software/cast/cast_papers/media/cast-32A.pdf.

8 Tommaso Cucinotta, Fabio Checconi, Luca Abeni, and Luigi Palopoli. Self-tuning Sched-
ulers for Legacy Real-time Applications. In Proceedings of the 5th European Confer-
ence on Computer Systems, EuroSys ’10, pages 55–68, New York, NY, USA, 2010. ACM.
doi:10.1145/1755913.1755921.

9 Evelyn Duesterwald and Sandhya Dwarkadas. Characterizing and predicting program be-
havior and its variability. In In International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 220–231, 2003.

10 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Si-
mon Wegener. TACLeBench: A benchmark collection to support worst-case execution
time research. In Martin Schoeberl, editor, 16th International Workshop on Worst-Case
Execution Time Analysis (WCET 2016), volume 55 of OpenAccess Series in Informatics
(OASIcs), pages 2:1–2:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

11 Johannes Freitag and Sascha Uhrig. Dynamic interference quantification for multicore
processors. In 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pages
1–6, Sept 2017. doi:10.1109/DASC.2017.8101991.

12 Johannes Freitag and Sascha Uhrig. Closed Loop Controller for Multicore Real-Time
Systems. In Mladen Berekovic, Rainer Buchty, Heiko Hamann, Dirk Koch, and Thilo
Pionteck, editors, Architecture of Computing Systems – ARCS 2018, pages 45–56, Cham,
2018. Springer International Publishing.

13 Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D. Koutsoukos. Feedback
Thermal Control of Real-time Systems on Multicore Processors. In Proceedings of the
Tenth ACM International Conference on Embedded Software, EMSOFT ’12, pages 113–122,
New York, NY, USA, 2012. ACM. doi:10.1145/2380356.2380379.

14 S. Girbal, X. Jean, J. Le Rhun, Daniel Gracia Pérez, and M. Gatti. Deterministic platform
software for hard real-time systems using multi-core COTS. In 2015 IEEE/AIAA 34th

ECRTS 2018

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.2
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/12.919277
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/ cast/cast_papers/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/ cast/cast_papers/media/cast-32A.pdf
http://dx.doi.org/10.1145/1755913.1755921
http://dx.doi.org/10.1109/DASC.2017.8101991
http://dx.doi.org/10.1145/2380356.2380379

13:22 Virtual Timing Isolation for Mixed-Criticality Systems

Digital Avionics Systems Conference (DASC), pages 8D4–1–8D4–15, Sept 2015. doi:10.
1109/DASC.2015.7311481.

15 Kees Goossens, Martijn Koedam, Andrew Nelson, Shubhendu Sinha, Sven Goossens,
Yonghui Li, Gabriela Breaban, Reinier van Kampenhout, Rasool Tavakoli, Juan Valen-
cia, Hadi Ahmadi Balef, Benny Akesson, Sander Stuijk, Marc Geilen, Dip Goswami,
and Majid Nabi. NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality
Applications, pages 491–530. Springer Netherlands, Dordrecht, 2017. doi:10.1007/
978-94-017-7267-9_17.

16 N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H. Anderson, and F. D. Smith. Attacking
the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-
Criticality Provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 1–12, April 2016. doi:10.1109/RTAS.2016.7461323.

17 Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy,
Sylvain Girbal, and Daniel Gracia Pérez. Distributed Run-time WCET Controller for Con-
current Critical Tasks in Mixed-critical Systems. In Proceedings of the 22Nd International
Conference on Real-Time Networks and Systems, RTNS ’14, pages 139:139–139:148, New
York, NY, USA, 2014. ACM. doi:10.1145/2659787.2659799.

18 Lilium GmbH. Lilium Home Page. 2018. https://lilium.com/.
19 M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva. Power Optimiz-

ation in Embedded Systems via Feedback Control of Resource Allocation. IEEE Transac-
tions on Control Systems Technology, 21(1):239–246, Jan 2013. doi:10.1109/TCST.2011.
2177499.

20 J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics.
In 2012 Ninth European Dependable Computing Conference, pages 132–143, May 2012.
doi:10.1109/EDCC.2012.27.

21 Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon Wegener, and
Michael Schmidt. Multi-core interference-sensitive wcet analysis leveraging runtime re-
source capacity enforcement. In ECRTS, pages 109–118. IEEE Computer Society, 2014.
doi:10.1109/ECRTS.2014.20.

22 NXP Semiconductors. e500mc Core Reference Manual, 2013. Rev. 3.
23 NXP Semiconductors. P4080 QorIQ Multicore Communication Processor Reference

Manual. NXP Semiconductors, rev 2 edition, 2014.
24 D. R. Sahoo, S. Swaminathan, R. Al-Omari, M. V. Salapaka, G. Manimaran, and A. K.

Somani. Feedback control for real-time scheduling. In Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301), volume 2, pages 1254–1259 vol.2, May 2002.
doi:10.1109/ACC.2002.1023192.

25 Martin Schoeberl, Sahar Abbaspourseyedi, Alexander Jordan, Evangelia Kasapaki,
Wolfgang Puffitsch, Jens Sparsø, Benny Akesson, Neil Audsley, Jamie Garside, Raffaele
Capasso, Alessandro Tocchi, Kees Goossens, Sven Goossens, Yonghui Li, Scott Hansen,
Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Jens Knoop, Daniel Prokesch, Peter
Puschner, André Rocha, and Cláudio Silva. T-crest: Time-predictable multi-core ar-
chitecture for embedded systems. Journal of Systems Architecture, 61(9):449–471, 2015.
doi:10.1016/j.sysarc.2015.04.002.

26 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pell-
izzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arundale, and Richard Bradford.
Single Core Equivalent Virtual Machines for Hard Real-Time Computing on Multicore Pro-
cessors. Technical report, 2014.

27 T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische, J. Fernandes, P. G.
Zaykov, Z. Petrov, B. Böddeker, S. Kehr, H. Regler, A. Hugl, C. Rochange, H. Ozaktas,
H. Cassé, A. Bonenfant, P. Sainrat, I. Broster, N. Lay, D. George, E. Quiñones, M. Panic,

http://dx.doi.org/10.1109/DASC.2015.7311481
http://dx.doi.org/10.1109/DASC.2015.7311481
http://dx.doi.org/10.1007/978-94-017-7267-9_17
http://dx.doi.org/10.1007/978-94-017-7267-9_17
http://dx.doi.org/10.1109/RTAS.2016.7461323
http://dx.doi.org/10.1145/2659787.2659799
http://dx.doi.org/10.1109/TCST.2011.2177499
http://dx.doi.org/10.1109/TCST.2011.2177499
http://dx.doi.org/10.1109/EDCC.2012.27
http://dx.doi.org/10.1109/ECRTS.2014.20
http://dx.doi.org/10.1109/ACC.2002.1023192
http://dx.doi.org/10.1016/j.sysarc.2015.04.002

J. Freitag, S. Uhrig, and T. Ungerer 13:23

J. Abella, F. Cazorla, S. Uhrig, M. Rohde, and A. Pyka. parMERASA – Multi-core
Execution of Parallelised Hard Real-Time Applications Supporting Analysability. In 2013
Euromicro Conference on Digital System Design, pages 363–370, Sept 2013. doi:10.1109/
DSD.2013.46.

ECRTS 2018

http://dx.doi.org/10.1109/DSD.2013.46
http://dx.doi.org/10.1109/DSD.2013.46

	Introduction
	Setting the Scene
	Basic Idea
	Hardware Configuration
	Benchmarks
	Read/Write Opponent
	TACLeBench

	Related Work
	Progress Measurement using Fingerprints
	Fingerprinting
	Creation of a Fingerprint Model
	Tracking the Progress of Applications in Real-Time
	Precision of the Interference Quantification over Time
	Non-intrusiveness of the Read-Out Process

	Performance Control by Interference Reduction
	Pulse Width Modulated Interferences
	Frequency Scaling
	Evaluation of PWM and Frequency Scaling

	Closed Control Loop
	Conclusion and Future Work

