
Quantifying the Resiliency of Fail-Operational
Real-Time Networked Control Systems
Arpan Gujarati
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
arpanbg@mpi-sws.org

Mitra Nasri1

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
mitra@mpi-sws.org

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract
In time-sensitive, safety-critical systems that must be fail-operational, active replication is com-
monly used to mitigate transient faults that arise due to electromagnetic interference (EMI).
However, designing an effective and well-performing active replication scheme is challenging since
replication conflicts with the size, weight, power, and cost constraints of embedded applications.
To enable a systematic and rigorous exploration of the resulting tradeoffs, we present an analy-
sis to quantify the resiliency of fail-operational networked control systems against EMI-induced
memory corruption, host crashes, and retransmission delays. Since control systems are typically
robust to a few failed iterations, e.g., one missed actuation does not crash an inverted pendulum,
traditional solutions based on hard real-time assumptions are often too pessimistic. Our analysis
reduces this pessimism by modeling a control system’s inherent robustness as an (m, k)-firm spec-
ification. A case study with an active suspension workload indicates that the analytical bounds
closely predict the failure rate estimates obtained through simulation, thereby enabling a mean-
ingful design-space exploration, and also demonstrates the utility of the analysis in identifying
non-trivial and non-obvious reliability tradeoffs.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-
physical systems

Keywords and phrases probabilistic analysis, reliability analysis, networked control systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.16

Related Version An extended version of this paper is available as a technical report [25],
http://www.mpi-sws.org/tr/2018-005.pdf.

1 Introduction

Networked control systems (NCSs) – where sensors, controllers, and actuators belonging
to one or more control loops are connected by a shared network – are widely deployed in
contemporary cyber-physical systems as they offer many practical advantages over dedicated
wiring solutions, not the least of which are cost and weight savings [26].

1 Mitra Nasri is supported by a post-doctoral fellowship awarded by the Alexander von Humboldt
Foundation.

© Arpan Gujarati, Mitra Nasri, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:arpanbg@mpi-sws.org
mailto:mitra@mpi-sws.org
mailto:bbb@mpi-sws.org
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.16
http://www.mpi-sws.org/tr/2018-005.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Quantifying the Resiliency of Fail-Operational Real-Time NCS

Like other embedded systems, NCSs are susceptible to both internal and external sources
of electromagnetic interference (EMI), e.g., spark plugs, TV towers, etc. [47]. In fact, the
likelihood of soft errors due to EMI across a fleet of devices should not be underestimated.
For example, Mancuso [41] observed that, assuming one soft error per bit in a 1MB SRAM
every 1012 hours of operation, and a worldwide population of 0.5 billion cars with an average
daily operation time of 5%, about 5,000 vehicles per day are affected by a soft error.

Since unmitigated soft errors can result in potentially catastrophic system failures, EMI-
induced error scenarios are anticipated in the design of safety-critical systems, and commonly
mitigated by means of either active or passive replication. In the context of high-frequency
control applications specifically, passive replication, i.e., the use of hot/cold standbys, is
insufficient if the failure detection and view-change latencies exceed the control frequency.
System engineers thus devise active replication (or static redundancy) schemes to ensure
that safety-critical NCSs are fail-operational (e.g., see [22, 15, 29]).

However, coming up with a good active replication scheme is no easy task. Engineers face
many questions, such as which components, if made more or less resilient (e.g., by adding
an extra replica, or shielding), will most impact the overall reliability? Alternatively, which
components could be replaced with cheaper consumer-grade parts with the least effect on
system reliability? Would dual modular redundancy suffice if the control logic is robust to,
say, 10% message loss or would triple modular redundancy be needed? In general, such
questions (and many more like them) do not have obvious answers, and particularly not if
size, weight, and power (SWaP) as well as cost constraints must be taken into account, too.

The challenge is further exacerbated by the fact that commercially-used controllers are
typically safeguarded against disturbances and noise using appropriate limiting or clamping
mechanisms, and most well-designed control systems are inherently robust to a few failed
iterations, e.g., one missed actuation does not crash an inverted pendulum. That is, requiring
that all control loop iterations must be correct and timely – i.e., completely unaffected by
soft errors – forces excessively pessimistic answers relative to the “true” needs of the workload,
and consequently results in under-utilized, cost-inefficient systems. Thus, to appropriately
dimension a fail-operational real-time NCS, a robustness-aware reliability analysis is required.

In this paper, we present a sound reliability analysis that evaluates a given configuration
of an actively replicated NCS and quantifies its resiliency to EMI-induced transient errors,
including message omission errors due to host crashes, incorrect computation errors due to
memory corruption, and deadline violations due to retransmission delays. The objective
is to provide system engineers with a sound method to evaluate (i.e., safely bound) the
reliability of an active replication scheme (i.e., for a given number of replicas for each task
in the NCS) assuming peak failure rates are known from empirical measurements and/or
environmental modeling. We consider NCSs that are networked using a broadcast medium
such as CAN (or Ethernet with a reliable broadcast primitive implemented on top) and
evaluate them at the granularity of message exchanges between the distributed components.

Unlike traditional solutions based on hard real-time assumptions, our analysis leverages
the robustness of well-designed control systems: since robust control loops tolerate a limited
number of transient failures (which result in degraded control performance, but not an
unrecoverable plant state), we characterize control loops with (m, k)-firm specifications,
where out of every k consecutive control loop iterations, at least m must be “correct and
timely” [27]. Blind and Allgöwer [9] have shown that the (m, k)-firm model is strictly stronger
than the classical asymptotic requirement for control robustness (e.g., as recently studied by
Saha et al. [52]), which mandates that, as the number of control loop iterations approaches
infinity, the failure rate should not exceed a given threshold. We thus use this model to bound
the failures in time (FIT) of an NCS, i.e., the expected number of control failures in one
billion operating hours, where control failure denotes a violation of the (m, k)-firm constraint.

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:3

Actuator
task

Controller
task replicas

Sensor
task replicas

Sensor
msg. streams

Control
Msg. streams

N N

C1

C2 A
S1

S2

U1

U2X2

PlantSensor Actuator

X1

Figure 1 An FT-SISO control loop. Solid boxes denote hosts. Each dashed box denotes a task
replica set or a set of message streams transmitted by a task replica set. Dashed arrows denote message
streams broadcasted over the shared network N , e.g., X1 and X2 are received by all tasks in C.

The proposed analysis consists of three steps. Given a model of a fault-tolerant single-
input single-output (FT-SISO) control loop with active replication of its critical tasks (§2), the
program-visible effects of EMI are first classified as crashes (resulting in message omissions),
memory corruption (resulting in incorrect messages), and message retransmissions (resulting
in deadline violations), and each of these errors is modeled probabilistically (§3). Second,
an intermediate analysis (§4) then relates the probability of individual message errors to
that of a failed iteration of a control loop, i.e., where the controlled plant is not actuated
as expected in an error-free iteration.2 Finally, a reliability analysis upper-bounds the FIT
of an NCS, which may consist of one or more FT-SISO control loops, as a function of the
control loops’ respective (m, k)-firm specifications.

We have evaluated the proposed analysis with a case study exploring replication options for
a CAN-based active suspension workload (§5). Our results show that analysis and simulation
results closely track each other when configuration parameters are varied. We also demonstrate
how the analysis can help in identifying non-obvious reliability tradeoffs, and identify the
underlying timing analysis of the CAN bus [16] as the single greatest individual source of
pessimism in our analysis due to its reliance on a critical instant that occurs only rarely.

2 System Model

We consider an FT-SISO networked control loop L deployed on hosts H = {H1, H2, . . .}
connected by a broadcast medium N , which is shared with other traffic as well, e.g., other
control loops, the clock synchronization protocol, etc. A block diagram is shown in Fig. 1.

The sensor task replicas S = {S1, S2, . . .} periodically generate sensor output and
broadcast it over N . As a convention, we let superscripts denote replica IDs. We let Xi

denote the message stream carrying the sensor values of the ith replica of the sensor task,
and let X = {X1, X2, . . .} denote the set of all such message streams.

The controller task replicas C = {C1, C2, . . .}, upon periodic activation, read the latest
received sensor messages, compute a new control command for the plant, update their local
states (e.g., in a PID controller, the integrator), and broadcast the control command. They
are assigned appropriate offsets to ensure that, in an error-free execution, the sensor messages
are available before any controller task replicas are activated. The message streams carrying
control commands are denoted U = {U1, U2, . . .}.

2 Note the difference between a failed iteration of a control loop and control failure. A failed iteration
is simply a deviation from an ideal, error-free scenario. Multiple failed iterations may lead to control
failure if they violate the control loop’s (m, k)-firm specification.

ECRTS 2018

16:4 Quantifying the Resiliency of Fail-Operational Real-Time NCS

Algorithm 1 Voting procedure before the ith activation of any controller task. The voting
procedure for the actuator task is defined similarly by replacing the input set Xi with Ui.
1: procedure PeriodicControllerTaskActivation
2: Latesti ← ∅ . start voting protocol
3: for all Xk

i ∈ Xi do
4: if Xk

i not received by its deadline then
5: continue . also accounts for omissions
6: Latesti ← Latesti ∪Xk

i

7: if Latesti = ∅ then return . omit output
8: resulti ← SimpleMajority(Latesti) . break ties based on message IDs
9: main logic of the task starts

The actuator task A is directly connected to the plant. Upon periodic activation, it reads
the latest received control commands and actuates the plant accordingly. Like the controller
tasks, A is also assigned an appropriate offset to ensure that, in an error-free execution, all
control commands are received before its activation. Unlike the sensor and controller tasks,
the actuator task A is not replicated since it requires special hardware in the plant actuator
to handle redundant inputs [29]. We revisit this issue in §7.

All tasks and messages in the control loop have a period of T time units. The ith runtime
activations or jobs of sensor task replicas in S = {S1, S2, . . . } and controller task replicas in
C = {C1, C2, . . . } are denoted Si = {S1

i , S
2
i , . . . } and Ci = {C1

i , C
2
i , . . . }, respectively; and

the ith job of actuator task A is denoted Ai. Similarly, the ith messages in sensor message
streams X = {X1, X2, . . . } and controller message streams U = {U1, U2, . . . } are denoted
Xi = {X1

i , X
2
i , . . . } and Ui = {U1

i , U
2
i , . . . }, respectively.

Finally, we let Ui denote the actuator command applied to the physical plant in the ith
iteration, i.e., output of job Ai, and let U = {U1,U2, . . . } denote the ordered set of such
commands applied to the physical plant across all iterations.

Assumptions. We assume that tasks resolve redundant inputs at the start of every iteration
through voting (Algorithm 1). We let Vi = {V 1

i , V
2
i , . . . } denote the set of voter instances

that resolve the redundant inputs for controller jobs Ci = {C1
i , C

2
i , . . . }, respectively, and

let V Ai denote the voter instance that resolves the redundant inputs for the actuator job Ai.
Since all inputs are available before the task is activated in an error-free scenario, message
streams that are delayed or omitted due to transmission or crash errors are ignored during
voting (Line 5 of Algorithm 1). In the worst case, if no input is available on time to the
voter due to errors, the task’s activation is skipped, i.e., the task’s output for that iteration
is omitted (Line 7). While computing the simple majority (Line 8), any ties in quorum size
are broken deterministically using message IDs.

We (pessimistically) assume that corrupted message replicas are identical because it is a
worst-case scenario w.r.t. the voting protocol. In particular, if the number of corrupted mes-
sages exceeds the number of correct messages, then assuming identically corrupted messages
implies that the voting outcome is corrupted, while in the case of non-identically corrupted
messages there is a high likelihood that correct messages still form the largest quorum.
In practice though, whether or not corrupted messages are likely to be identical is highly
system- and application-specific. Random EMI normally does not cause identically corrupted
patterns and many systems use end-to-end checksums; the likelihood of identically corrupted
messages is thus small. In contrast, if the application payload is of boolean type or encoded
using only a few bits, the likelihood of identically corrupted messages is non-negligible.

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:5

Furthermore, we assume that NCS hosts are synchronized using a clock synchronization
protocol (such as the Precision Time Protocol [1]), and that task and message offsets have been
chosen to account for the maximum clock synchronization error. Without this assumption, it is
much more challenging to ensure replica determinism (e.g., simply assigning appropriate offsets
to tasks and messages is insufficient) [48]. We also require that all NCS tasks are deterministic.
Thus, given identical inputs and identical states, any two sensor (controller) task replicas
produce identical sensor (control) messages, unless one is affected by memory corruption.

3 Fault Model

To lay the foundation for our analysis, we first give a precise fault model.
We model the EMI-induced raw transient faults, i.e., bit-flips on the network and in

host memory, as random events following a Poisson distribution. Let P(x, δ, λ) denote the
probability mass function of the Poisson distribution, i.e., the probability that x independent
events occur in an interval of length δ when the arrival rate is λ. Let τ and λi denote the
peak rate of raw transient faults affecting the network and each host Hi ∈ H, respectively.
We define the probability that x raw transient faults affect the network (respectively, host
Hi) in any interval of length δ as P(x, δ, τ) (respectively, P(x, δ, λi)).

In practice, the peak fault rates are empirically determined with measurements or derived
from environmental modeling assuming worst-possible operating conditions, and typically
include safety margins as deemed appropriate by reliability engineers or domain experts. As
a result, a Poisson process is a good approximation of the worst-case scenario, as previously
discussed by Broster et al. [13]. For instance, in the case of network faults, τ is likely to
exceed any transient actual fault rate τactual experienced in practice, which also varies over
time and/or based on a system’s current surroundings. Thus, as per the Poisson model, while
the actual probability that the network experiences at least one transient fault in any interval
of length δ is given by

∑
x>0 P(x, δ, τactual), we upper-bound this probability in our analysis

by
∑
x>0 P(x, δ, τ). That is, if τ > τactual , then

∑
x>0 P(x, δ, τ) >

∑
x>0 P(x, δ, τactual).3

Raw transient faults may manifest as program-visible retransmission, crash, and incorrect
computation errors [8, 6], which are also modeled probabilistically, as described below.

Networking protocols incorporate explicit mechanisms to mitigate the effects of transient
faults on the wire, e.g., error detection and correction in CAN [44]. Thus, we assume that
network message corruptions are always detected, but may result in retransmission errors
which may eventually lead to deadline violations. As in [12], we make the simplifying (but
safe) assumption that every transient fault on the network causes a retransmission. Thus,
we define the retransmission rate as τ , and the probability that x retransmissions occur in
any interval of length δ as P(x, δ, τ). Given this, an upper bound on the probability that a
message misses its deadline can be derived using prior work [13, 56].

In this work, we assume that an upper bound on the worst-case deadline-miss probability
of any message instance belonging to any sensor message stream Xx or any control message
stream Ux is known and denote this bound as B(Xx) or B(Ux), respectively.

Crash errors occur if the system suffers an EMI-induced corruption that causes an
exception to be raised and the system to be rebooted, or that induces an unbounded hang
that causes the system’s watchdog timer to trigger a reboot, e.g., see [43]. A crashed system
remains unavailable for some time while it reboots and thus causes an interval in which

3 This basic fact can be proved by representing the cumulative density function of the Poisson distribution
in the form of an upper incomplete gamma function [5].

ECRTS 2018

16:6 Quantifying the Resiliency of Fail-Operational Real-Time NCS

messages are continuously omitted. We assume that the recovery interval on each host Hi is
upper-bounded by Ri, which we assume also includes any delays that arise due to the need
to resynchronize any application state after a crash.

Prior studies have shown that a large fraction of transient faults have no negative
effects [60, 7, 3]. We thus assume a derating factor that accounts for masked transient faults,
which can be determined empirically [42]. Let fi denote the derating factor for crash errors
on host Hi; the peak rate of crash errors on host Hi is then given by ρi = fiλi. Using
the peak crash error rate, we model crash errors like raw transient faults as random events
following a Poisson distribution. Thus, we define the probability that x crash errors occur
on host Hi in any interval of length δ as P(x, δ, ρi).

Incorrect computation errors may occur if a message is corrupted before transmission
(during preparation), before the network controller computes a checksum for subsequent
error detection. Like crash errors, assuming a host-specific derating factor f ′i for incorrect
computation errors, the average error rate on host Hi is given by κi = f ′iλi and the probability
that x errors occur in any interval of length δ is given by P(x, δ, κi).4 Our notion of incorrect
computation errors does not refer to software bugs or Byzantine errors.

We refer to the interval during which a message is at risk of corruption as its exposure
interval. For stateful tasks such as a PID controller, the message computation relies on both
the current input and the application state, and the latter could be affected by latent faults
(i.e., state corruptions that have not yet been detected). Thus, the exposure interval of a
message depends on the mechanisms in place to tolerate (or avoid) latent faults.

If the hardware platform uses Error-Correcting Code (ECC) memory and processors with
lockstep execution (common in safety-critical systems), then the built-in protections suppress
latent faults, and it suffices to consider the scheduling window of a message (i.e., the duration
from the message’s creation to its deadline) as its exposure interval. If no such architectural
support is available, then any relevant state can be protected with a data integrity checker
task that periodically verifies the checksums of all relevant data structures (and that reboots
the system in the case of any mismatch). The exposure interval of a message then includes
its scheduling window and (in the worst case) an entire period of the data integrity checker.

We assume that the worst-case exposure interval for each message in Xx, Uy, and U is
known in advance and denote it using E(Xx), E(Uy), and E(U), respectively.

Assumptions. Based on the stochastic nature of physical EMI processes, we consider
EMI-induced transient faults, and hence basic message errors, to be independent. We do
however account explicitly for correlated errors that arise from the system architecture,
e.g., deterministic replicas will produce the same wrong output if given the same wrong input.

We also implicitly account for correlated surges in error rates across all components since
we analyze peak rates for all components. For example, if a UAV with an FT-SISO control
loop is flying through a strong radar beam, all replicas of the control loop simultaneously
experience increased rates of EMI. The proposed analysis is able to handle this correlation
because the derived upper bound on the failure rate is monotonic in all fault rates and
applied assuming peak fault rates, which in turn are determined such that they exceed the
fault rates expected in practice, especially during such high interference scenarios.

4 The choice of Poisson distribution for modeling both crash and incorrect computation errors is reasonable
since real-time tasks are repeated, short workloads; thus, any generated message is equally likely to
be affected by an error, and a host is equally likely to be crashed during any iteration of the task
(see [37] for a mathematical basis for this argument).

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:7

While evaluating the EMI-induced errors discussed above, we assume that other system
components are reliable, even though the NCS subsystem being analyzed may directly depend
on them, e.g., the power sources, the physical sensors and the actuators, the controlled
physical plant, or the clock synchronization mechanism. This assumption does not imply
that the proposed analysis is not useful if a dependent component fails, rather it provides a
FIT rate for one subsystem, which can then be composed with the FITs of other dependent,
dependee, or unrelated subsystems, e.g., using a fault tree analysis. This is a common way
of decomposing the reliability analysis of the whole system into manageable components.

We also assume that the network protocol guarantees atomic broadcast, i.e., messages
are received consistently by either all hosts, or none. While Byzantine error scenarios violate
this assumption, e.g., [39], they occur with such low likelihood that they are best modeled as
a separate, additive failure source and accounted for using a separate FIT analysis.

Finally, recall from §2 that tasks are assigned appropriate offsets to ensure sequentiality,
e.g., to ensure that sensor values are always available (in an error-free execution) before
any control task replica is activated. In this work, we assume that processor scheduling on
each host is statically checked and thus task offsets are correctly enforced. Alternatively,
processor scheduling delays due to transient faults could be explicitly taken into account as an
additional source of failed control loop iterations, e.g., when upper-bounding the probability
of a message omission (see Definition 1 in §4).

4 Probabilistic Analysis

We analyze the probability that the nth iteration of the control loop fails, for any n.
As mentioned in §2, due to clock synchronization and the atomic broadcast assumption,

message replicas are identical in an error-free scenario, i.e., the messages in Xn carry identical
sensor values and the messages in Un carry identical control commands. However, due to
incorrect computation errors, one or more messages in Xn may be corrupted. If the voters
Vn choose a corrupted sensor value, then all messages Un carrying the control commands are
also corrupted. Messages in Xn could also be delayed or omitted due to transmission and
crash failures, in which case the voters Vn work with fewer inputs. But if all the messages in
Xn are either delayed or omitted, the controller jobs Cn have no inputs to work with, hence
the messages Un are not prepared. Similarly, the controller to actuator information flow may
also be affected by errors, resulting in An’s output Un being corrupted or omitted. These
dependencies are illustrated using an example in Fig. 2.

Based on this intuition, we next bound the probability that the final output Un is cor-
rupted or omitted, in a bottom-up fashion and in small steps of a few lemmas each. We use
P (·) to denote exact probabilities and Q(·) to denote upper bounds on the exact probabilities.

In particular, we first define the analysis as a function of the following exact (but
unknown) probabilities for each message m:

I Definition 1. P (m omitted) denotes the exact probability of an omission. P (m delayed)
denotes the exact probability of a deadline violation. P (m corrupted) denotes the exact
probability of an incorrect computation.

In addition, since the effect of message corruption on Algorithm 1’s output also depends on
the application-specific message payload, the analysis initially also assumes the following
exact (but unknown) probability.

I Definition 2. P (Majority incorrect | I, C) denotes the exact probability that, given a
set of incorrect inputs I and correct inputs C, the SimpleMajority(I ∪ C) procedure in
Algorithm 1 (Line 8) outputs an incorrect value.

ECRTS 2018

16:8 Quantifying the Resiliency of Fail-Operational Real-Time NCS

voter o/p
incorrect

m
es

sa
ge

co
rru

pt
ed

m
es

sa
ge

de
la

ye
d

message
omitted voter o/p

incorrect
m

es
sa

ge
co

rru
pt

ed

voter o/p
omitted

message
delayed

m
es

sa
ge

om
itt

ed

message
corrupted

voter o/p
omitted

message
omitted

ac
tu

at
io

n
in

co
rre

ct

failed
iteration

actuation
omitted

Figure 2 Error probabilities at different stages of a CAN-based wheel control loop (see §5 for
details). Arrows denote dependencies among error probabilities of the different control loop stages.
The error rates (per ms) are τ = 10−4 for the CAN bus, ρi = 10−12 and κi = 10−12 for each Hi
hosting sensor and controller tasks, and ρa = 10−24 and κa = 10−24 for the actuator task’s host Ha.

In each step of the analysis, we ensure that the derived probability is either independent
of, or increasing in, these exact error probabilities. Thus, when instantiating the analysis
using upper bounds on the exact probabilities, we implicitly guarantee that the derived
iteration failure probability upper-bounds the actual iteration failure probability. Due to
space constraints, we do not give a proof of monotonicity in this paper. We revisit the issue at
relevant places where we explicitly add some pessimism to the analysis to ensure monotonicity.

Step 1. Analyzing the correctness of V y
n ’s output. We evaluate the probability that a

controller voter instance V yn outputs an incorrect value because of corrupted inputs.
Recall from §2 that Xn denotes the set of all sensor message replicas that are inputs to

V yn . Let Tn = 〈On,Dn, In, Cn,Zn〉 denote a 5-tuple constrained by the following definition.

I Definition 3. Tn = 〈On,Dn, In, Cn,Zn〉 is valid if On, Dn, In, Cn, and Zn partition
set Xn: messages in On are omitted; messages in Dn are not omitted, but delayed due to
retransmissions; messages in In are neither omitted nor delayed, but are incorrectly computed;
messages in Cn are neither omitted, delayed, nor incorrectly computed; and messages in Zn
may be omitted, delayed, or corrupted.

In general, Zn denotes the messages whose fate is undecided, or in other words, each
message Xy

n ∈ Zn may still be omitted with probability P (Xy
n omitted), delayed with

probability P (Xy
n delayed), and incorrectly computed with probability P (Xy

n corrupted).
Thus, if message Xy

n ∈ Xn is guaranteed to be omitted due to host crashes, then Xy
n ∈ On.

Similarly, if Xy
n is guaranteed to be transmitted on time and without being incorrectly

computed due to host corruptions, then Xy
n ∈ Cn.

Based on Definitions 1–3, we use the following recursive expression to compute the
probability that V yn outputs an incorrect value because the majority of its inputs is corrupted.

P

(
V yn output
incorrect

∣∣∣ 〈On,Dn, In,Cn,Zn〉

)
=

{
P (Majority incorrect

∣∣ In, Cn) Zn = ∅
Γ(〈On,Dn, In, Cn,Zn〉) Zn 6= ∅

(1)

where Γ(〈On,Dn, In, Cn,Zn〉) =(
P (Xs

n omitted)
× P (V yn output incorrect | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× P (V yn output incorrect | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:9

(
(1− P (Xs

n omitted))× (1− P (Xs
n delayed))× P (Xs

n corrupted)
× P (V yn output incorrect | 〈On,Dn, In ∪ {Xs

n}, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× P (V yn output incorrect | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)
and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

In each step of the recursion, a single message Xs
n ∈ Zn is either (i) omitted with

probability P (Xy
n omitted) and inserted into set On; (ii) not omitted but delayed with

probability (1 − P (Xy
n omitted)) · P (Xy

n delayed) and inserted into set Dn; (iii) transmit-
ted on time, i.e., neither omitted nor delayed, but is incorrectly computed with prob-
ability (1 − P (Xy

n omitted)) · (1 − P (Xy
n delayed)) · P (Xy

n corrupted) and inserted into
set In; or (iv) transmitted on time and without any corruptions with probability (1 −
P (Xy

n omitted)) · (1 − P (Xy
n delayed)) · (1 − P (Xy

n corrupted)), and thus inserted into set
Cn. The recursion terminates when all cases have been exhaustively enumerated, i.e., when
Zn = ∅ and On ∪ Dn ∪ In ∪ Cn = Xn.

Therefore, P (V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉), as defined in Eq. 1, computes the
exact probability that controller voter instance V yn outputs an incorrect value.

However, Eq. 1 is not monotonically increasing in the omission and delay probabil-
ities, as required. Its monotonicity in P (Xs

n omitted) and P (Xs
n delayed) depends on

P (Xs
n corrupted). This is because the overall failure probability could be reduced by simply

delaying or omitting a message, if that message is likely to be incorrectly computed and thus
has the potential to tilt the voting outcome in favor of an incorrect quorum.

To remove this dependency on P (Xs
n corrupted), we replace Γ(〈On,Dn, In, Cn,Zn〉) in

Eq. 1 with a slightly pessimistic term Γπ(〈On,Dn, In, Cn,Zn〉) (notice the fifth term in the
definition of Γπ(〈On,Dn, In, Cn,Zn〉)), and define an upper bound (stated below) on the
probability that controller voter instance V yn outputs an incorrect value.5

Q

(
V yn output
incorrect

∣∣∣∣ 〈On,Dn, In,Cn,Zn〉

)
=

{
P (Majority incorrect

∣∣ In, Cn) Zn = ∅
Γπ(〈On,Dn, In, Cn,Zn〉) Zn 6= ∅

(2)

where Γπ(〈On,Dn, In, Cn,Zn〉) =

(
P (Xs

n omitted)
× Q(V yn output incorrect | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× Q(V yn output incorrect | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× P (Xs
n corrupted)

× Q(V yn output incorrect | 〈On,Dn, In ∪ {Xs
n}, Cn,Zn \ {Xs

n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× Q(V yn output incorrect | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)
+ (

(1− P (Xs
n omitted))× P (Xs

n delayed)× P (Xs
n corrupted) +

P (Xs
n omitted)× P (Xs

n corrupted)

)
× Q(V yn output incorrect | 〈On,Dn, In ∪ {Xs

n}, Cn,Zn \ {Xs
n}〉)

 +


and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

Q(V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉) thus yields an upper bound on the probability that
voter instance V yn outputs an incorrect value. For convenience, we let Q(V yn output incorrect)
= Q(V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉) in the following.

5 See the appendix in the extended version of the paper [25] for a proof of monotonicity of Eq. 2.

ECRTS 2018

16:10 Quantifying the Resiliency of Fail-Operational Real-Time NCS

Step 2. Analyzing whether V y
n omits its output. We evaluate the probability that a

controller voter instance V yn omits its output because all its inputs were either delayed or
omitted, i.e., the special case in Algorithm 1 (Line 7). Once again, we state a recursive
expression to compute the probability, similar to the one used in Step 1.

P

(
V yn output
omitted

∣∣∣∣ 〈On,Dn, In,Cn,Zn

)
=


Λ
(
〈On,Dn, In, Cn,Zn〉

)
Zn 6= ∅

1 In ∪ Cn = ∅
0 In ∪ Cn 6= ∅

(3)

where Λ(〈On,Dn, In, Cn,Zn〉) =

(
P (Xs

n omitted)
× P (V yn output omitted | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× P (V yn output omitted | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× P (Xs
n corrupted)

× P (V yn output omitted | 〈On,Dn, In ∪ {Xs
n}, Cn,Zn \ {Xs

n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× P (V yn output omitted | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)


and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

P (V yn output omitted | 〈∅, ∅, ∅, ∅,Xn〉) thus yields the exact probability that voter in-
stance V yn omits its output. Note that Eq. 3 does not depend on the correctness of V yn ’s
inputs, but only on the timeliness of its inputs, unlike the simple majority procedure in
Eq. 1. Hence, Eq. 3’s monotonicity in P (Xs

n omitted) and P (Xs
n delayed) does not de-

pend on P (Xs
n corrupted), unlike Eq. 1. As a result, the use of a pessimistic term such as

Γπ(〈On,Dn, In, Cn,Zn〉) in Eq. 2 is not required in this case.
For convenience, we let P (V yn output omitted) = P (V yn output omitted | 〈∅, ∅, ∅, ∅,Xn〉).

Step 3: Analyzing the actuator voter instance V A
n . We bound the probability that V An

outputs an incorrect value, because the majority of its inputs is corrupted, or that it does
not choose anything, because all its inputs are either omitted or delayed.

Since all controller voter instances Vn operate on the same input values, if a correct voter
instance V yn outputs an incorrect value because of wrong inputs, it implies that all correct
voter instances in Vn output incorrect values. In such a scenario, the actuator voter V An is
guaranteed to get only incorrect control messages, since all of the control messages will be
prepared using the corrupted sensor values.

A similar property holds for the controller voter output omission. Proper deadline and
offset assignment guarantees that, in an error-free scenario, messages in Xn are transmitted
before the voter instances in Vn are activated. Thus, each voter instance can decide locally
whether a message was received past its deadline (in which case it is discarded, recall
Algorithm 1). As a result, if a controller voter instance V yn does not choose any value because
all its inputs are delayed or omitted, then all controller voter instances in Vn do not choose
any values, either. Thus, no output is generated by the controller task replicas and the
actuator voter omits its output, too, which results in a skipped actuation.

Let Q(V An output incorrect) denote an upper bound on the probability that voter instance
V An ’s outputs an incorrect value, conditioned on the assumption that the sensor inputs
of the controller voter instances Vn did not result in a corrupted output. Similarly, let
P (V An output omitted) denote the probability that voter instance V An ’s output is omitted,
conditioned on the assumption that the sensor inputs of the controller voter instances Vn did

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:11

not result in an omitted output. Both Q(V An output incorrect) and P (V An output omitted)
can be derived using the recursive procedures discussed in Steps 1 and 2, respectively, by
replacing the set of voter inputs Xn with Un (recall from §2 that Un denotes the set of all
inputs to V An). The case that the sensor inputs of the controller voter instances Vn result in
a corrupted or omitted output is accounted for in Step 5.

Step 4: Analyzing the final output Un. We first bound the probability that the actuation
during the nth control loop iteration is incorrect (Lemma 4), followed by the probability that it
is omitted (Lemma 5), and finally the joint probability of both events (Lemma 6). For brevity,
we let φ1 = Q(V yn output incorrect), φ2a = Q(V An output incorrect), φ2b = P (Un corrupted),
ω1 = P (V yn output omitted), ω2a = P (V An output omitted), and ω2b = P (Un omitted).

I Lemma 4. The probability that the actuation during the nth control loop iteration is
incorrect is at most φ1 (1 + φ2aφ2b) + φ2a + φ2b.

Proof. We consider two cases based on whether the sensor inputs to any voter instance V yn
results in corruption of the controller voter outputs (case 1) or not (case 2). The probability
that case 1 occurs is φcase1 = P (V yn output incorrect). For this case, since the sensor inputs
to voter instance V yn results in corruption of its output, voter instances in all controller tasks
choose an incorrect output. Thus, all control commands transmitted were incorrect, thus it
is guaranteed that the actuation during the nth control loop iteration is incorrect. Thus, the
conditional probability in this case is φcond1 = 1.

The probability that case 2 occurs is φcase2 = 1− φcase1 . For this case, the conditional
probability that the actuation during the nth control loop iteration is incorrect depends
on two sources: (a) voter instance V An ’s output can be incorrect, and (b) A’s host can
be affected by incorrect computation errors. The probability for case (a) is φcase2a =
P (V An output incorrect). The probability for case (b) is φcase2b = P (Un corrupted). Cases
(a) and (b) are independent: (a) occurs because inputs to V An were corrupted due to
incorrect computation errors on the controller tasks’ hosts, whereas (b) occurs due to
incorrect computation errors on the actuator task’s host. Thus, using theorem P (A1 ∪A2) =
P (A1)+P (A2)−P (A1) ·P (A2) for independent events A1 and A2, the conditional probability
for case 2 is φcond2 = φcase2a + φcase2b − φcase2a φcase2b.

By the law of total probability, the probability that the actuation during the nth control
loop iteration is incorrect is given by φcase1 φcond1 + φcase2 φcond2 . Upon expanding φcond1 ,
φcond2 , and φcase2 , and then rearranging the resulting expression w.r.t. φcase1 , we get

φcase1 φcond1 + φcase2 φcond2 =
(
φcase1 × (1− φcase2a − φcase2b + φcase2a · φcase2b)
+ φcase2a + φcase2b − φcase2a · φcase2b

)
.

Further, upon dropping any negative terms for monotonicity, and since φcase1 ≤ φ1 , φcase2a ≤
φ2a, and φcase2b = φ2b, we have the following upper bound:

φcase1 φcond1 + φcase2 φcond2 ≤ φ1 × (1 + φ2a · φ2b) + φ2a + φ2b. J

I Lemma 5. The probability that the actuation during the nth control loop iteration is delayed
or omitted is at most ω1 (1 + ω2aω2b) + ω2a + ω2b.

The proof of Lemma 5 is analogous to that of Lemma 4 and is thus omitted. In Lemma 6,
we compose the probabilities derived in Lemmas 4 and 5 to derive the probability that the
nth control loop iteration fails, i.e., that the actuation during this iteration is either incorrect
or delayed (or omitted). We do not assume that the probabilities derived in Lemmas 4 and 5
are independent, since it is possible that an omitted control message tilted the majority in
favor of the correct quorum, thereby reducing the probability that the actuation is incorrect.

ECRTS 2018

16:12 Quantifying the Resiliency of Fail-Operational Real-Time NCS

I Lemma 6. The probability that the nth control loop iteration fails is at most

Q
(
nth control loop iteration fails

)
=
(
φ1 (1 + φ2aφ2b) + φ2a + φ2b +
ω1 (1 + ω2aω2b) + ω2a + ω2b

)
. (4)

Proof. Follows from Lemmas 4 and 5. J

In summary, Steps 1–4 account for all direct and indirect dependencies between the
individual message error events and the final actuation of the controlled plant, and the
derived Q

(
nth control loop iteration fails

)
automates propagation of the failure probability

along this dependency tree. Although the analysis has exponential time complexity in the
number of sensor message streams |Xn| and the number of controller message streams |Un|
(due to the branching recursions in Eqs. 2 and 3), since the number of replicas of any task is
likely small, i.e., typically under ten, the analysis can be quickly performed.

Upper-bounding the failure probability. Since exact message error probabilities are impos-
sible to obtain, we instantiate the above analysis with upper bounds on the exact probabilities.
The analysis is monotonically increasing in the message error probabilities, and thus remains
sound despite the use of these upper bounds. We next define upper bounds on the message
error probabilities for any sensor message Xy

n. The bounds for any control message Uyn and
actuator task’s output message Un are analogously defined.

The probability that any sensor message Xy
n is delayed beyond its deadline is bounded

by P (Xy
n delayed) ≤ B(Xy) (as defined in §3). Let the host on which Xy

n’s sender task
is deployed be denoted Ha. Regarding message omission, suppose Xy

n is expected to be
scheduled for transmission at the earliest by time t and at the latest by time t+ J (where
J denotes the maximum release jitter of the message). Since Ra is the maximum time to
recover from a crash error on host Ha, if there is at least one crash error during the interval
[t−Ra, t+J), Xy

n’s arrival may be skipped. Thus, P (Xy
n omitted) ≤

∑
x>0 P(x, Ra+J, ρa).

Regarding message corruptions due to incorrect computation errors, recall from §2 that
the exposure interval for sensor message Xy

n is upper-bounded by E(Xy). Thus, Xy
n may

be corrupted if there is at least one incorrect computation error in this interval. Thus,
P (Xy

n corrupted) ≤
∑
x>0 P(x, E(Xy), κa).

The probability P (SimpleMajority incorrect | I, C) is upper-bounded by making the
worst-case assumption that incorrect inputs in I are identically faulty. Recall from Defi-
nition 2 that C and I denote the sets of correct and incorrect inputs, respectively, to the
SimpleMajority(I ∪ C) procedure in Algorithm 1. Assuming nc = |C|, ni = |I|, and that
s0 ∈ C ∪ I denotes the message in C ∪ I with the smallest ID, we obtain the following bound.

Q

(
SimpleMajority

incorrect

∣∣∣∣ I, C) =


1 (ni > nc) ∨ (ni = nc 6= 0 ∧ s0 ∈ I)
0 ni = nc 6= 0 ∧ s0 ∈ C
0 ni < nc ∨ ni = nc = 0

(5)

I Lemma 7. Eq. 5 upper-bounds the probability that procedure SimpleMajority(I ∪ C)’s
output in Algorithm 1 (Line 8) is incorrect.
Proof. If ni > nc, the largest-sized quorum belongs to incorrect messages, and Algorithm 1’s
output is incorrect with probability 1. If ni = nc 6= 0, there are two largest-sized quorums. If
message s0 with the smallest ID is incorrect (s0 ∈ I), Algorithm 1 chooses an incorrect output
with probability 1. Otherwise (s0 ∈ C), it chooses an incorrect output with probability 0. If
ni < nc, the largest-sized quorum belongs to correct messages, and Algorithm 1’s output is
correct, i.e., incorrect with probability 0. If ni = nc = 0, the voter has received no inputs, so
the probability of choosing an incorrect output is 0. J

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:13

The IID property. Since each of the upper bounds defined above is independent of n, Eq. 4
can be iteratively unfolded until it consists only of terms that are independent of n. The
bound is thus identical for any control loop iteration. In addition, the upper bounds are
derived under worst-case assumptions with respect to interference from other messages on the
network [13, 16]; and failure of the nth control loop iteration, defined as a deviation from an
error-free execution of that iteration, is independent of whether past iterations encountered
any failures or not. Thus, the bounds obtained using Eq. 4 for any two iterations n1 and
n2 are mutually independent as well. As a result, when Q(nth control loop iteration fails),
which is monotonic in the error rates, is instantiated with the aforementioned upper bounds
on the error rates, it satisfies the IID property with respect to n.

FIT analysis. We use the probability of a failed control loop iteration, i.e., the result of
Lemma 6, to derive the NCS’s FIT rate. First, we derive a lower bound on the mean time to
failure (MTTF) of the control loop. Recall from §1 that a control failure occurs if the control
loop violates its (m, k) specification. We model this problem in the form of a well-studied
a-within-consecutive-b-out-of-c:F system model [32], and leverage existing results [54] (which
depend on the IID property of the iteration failure probability) on the reliability analysis of
this system model to safely lower-bound the MTTF. Given an MTTF lower bound MTTFLB
in hours, the FIT rate is computed as 109/MTTFLB [57]. The full derivation and evaluation
of the FIT analysis is available online [24].

5 Evaluation

The objective of the evaluation is threefold. First, in order to understand the accuracy
of our approach, we compare the proposed analysis with simulations (§5.1). Second, we
demonstrate the ability of our analysis to reveal and quantify non-obvious differences in the
reliability of workloads with different (m, k) requirements and subject to error rates (§5.2).
And third, we illustrate the utility of our analysis in a design-space exploration context by
comparing FITs of different replication schemes (§5.3).

To implement the analysis, we extended the SchedCAT [10] library to support our system
model for CAN-based NCSs, and implemented the proposed analysis on top. All computations
related to the analysis were carried out at a precision of 200 decimal places using the mpmath
Python library for arbitrary precision arithmetic [31]. As the underlying timing analysis of
the network, we used Broster et al.’s probabilistic response-time analysis for CAN [12]. We
also implemented a simulation of a CAN-based NCS that mimics the system model described
in §2 along with CAN’s network transmission protocol (see [44] for a detailed description).

We use an active suspension workload for our experiments since it plays an important role
in ensuring the stability of a vehicle, and since robustness of such control systems under faults
has been thoroughly investigated in the past. For example, Li in his thesis [36] discusses
related work in the context of actuator delays and faults, and proposes a fault-tolerant
controller design for guaranteeing asymptotic stability. We base our experiments on the
CAN-based active suspension workload studied by Anta and Tabuada [4], since it nicely
matches our SISO NCS model. However, while Anta and Tabuada assume hard constraints
and vary the control loop periodicity for improved bandwidth allocation, our objective is to
explore the reliability of the control loop when assigned different (m, k)-firm configurations
(synthetically chosen in this paper) and for different fault parameters.

The workload consists of four control loops (L1, L2, L3, and L4) corresponding to the
control of four wheels (W1, W2, W3, and W4) with magnetic suspensions (period 1.75ms),

ECRTS 2018

16:14 Quantifying the Resiliency of Fail-Operational Real-Time NCS

two hard real-time messages that report the current in the power line cable (period 4ms) and
the internal temperature of the coils (period 10ms). In addition, we assumed the presence
of a clock synchronization message with a period of 50ms [21] and a soft real-time message
responsible for logging with a period of 100ms. The logging messages carried payloads
of eight bytes each, the control loop messages carried payloads of three bytes each, and
the remaining messages carried one-byte payloads. Considering a bus rate of 1mbit/s, the
workload resulted in a total bus utilization of 40%. The clock synchronization message
stream had the highest priority, followed by the current and temperature monitoring message
streams, the control message streams, and last, the logging message stream.

The recovery time from a crash was set to Rh = 1 s for each hostHh ∈ H, and the exposure
interval of each message stream was set to ten times its period to reflect the possibility
of latent errors. The error rates and the (m, k) specifications used in each experiment are
mentioned in the corresponding graphs. All error rates in the following are reported as the
mean number of errors per ms. For context, Ferreira et al. [20] and Rufino et al. [51] reported
peak transmission error rates range from 10−4 in aggressive environments to 10−10 in lab
conditions, and as per Hazucha and Svensson [28], a 4 Mbit SRAM chip has a fault rate of
approximately 10−12. The error rates used in the following experiments have similar orders
of magnitudes. Since the actuator task is not replicated, its host was assumed to be heavily
shielded and thus assigned negligibly low crash and incorrect computation error rates.

5.1 Experiment 1: Simulation vs. Analysis
To assess the accuracy of the proposed analysis, we compared the analytically-derived iteration-
failure probability bound (§4) with an estimate of the mean iteration failure probability
obtained through simulation. The pessimism incurred by the FIT analysis was already
evaluated in prior work [24] and found to be acceptably small, and is not considered here.

Recall from §4 that: (1) the analysis first upper-bounds the control loop iteration failure
probability as a monotonic function of the exact message error probabilities; and (2) since it
is impossible to determine the exact message error probabilities, a safe upper bound on the
iteration failure probability is then obtained by instantiating the monotonic function from
(1) with upper bounds on the exact message error probabilities (derived using the Poisson
fault model in §3). To separately evaluate the pessimism incurred in steps (1) and (2), we
used two different simulator versions Sim-v1 and Sim-v2 in this experiment.

In the simple version (Sim-v1), for each sensor message (and similarly for each control
message), the message error probabilities were known to the simulator. Thus, each time any
message is activated, the simulator draws a number uniformly at random from the range [0, 1],
compares it with the respective message error probabilities to decide whether the message is
affected by that error type, and if the message is affected, simulates the corresponding error
scenario. Thus, Sim-v1 does not actually simulate Poisson processes, nor does it simulate
the CAN protocol, but it helps to isolate the pessimism incurred in step (1).

Sim-v2 is more complex than Sim-v1, and simulates the entire NCS along with the CAN
transmission protocol. Separate Poisson processes are used to generate the respective fault
events on each host and on the network. These fault events may manifest as message errors
if they coincide with the message’s lifetime, e.g., as an incorrect computation error if they
coincide with the message’s exposure interval and a retransmission error if they coincide
with the message’s network transmission interval. Sim-v2 evaluates the pessimism incurred
when upper-bounding the message error probabilities as a function of the raw transient fault
rates using the Poisson model, e.g., when using the Poisson-based CAN timing analysis [13]

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:15

1 2 3 4 5
sensor and controller task replicas

10-6

10-5

10-4

10-3

10-2

10-1

100
P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis

Sim1

Sim2

(a) τ = 3× 10−20, ρi = 10−4,
κi = 10−20

1 2 3 4 5
sensor and controller task replicas

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis

Sim1

Sim2

(b) τ = 3× 10−20, ρi = 10−20,
κi = 10−4

1 2 3 4 5
sensor and controller task replicas

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis Sim1 Sim2

(c) τ = 3, ρi = 10−20, κi = 10−20

1 2 3 4 5
sensor and controller task replicas

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis

Sim1

Sim2

(d) τ = 3× 10−1, ρi = 10−5,
κi = 10−5

58.7% 65.9% 73.1% 80.3% 87.6% 94.8%

CAN bus utilization

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis Sim1 Sim2

(e) τ = 3× 10−1, ρi = 10−5,
κi = 10−5

100 500 1000 1500 2000

Reboot time (ms)

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
(f

a
ile

d
 i
te

ra
ti

o
n
)

Analysis Sim1 Sim2

(f) τ = 3× 10−20, ρi = 10−4,
κi = 10−20

Figure 3 Comparing the iteration failure probability bound derived from the analysis with the
estimates derived from simulation versions Sim-v1 and Sim-v2. The vertical errors bars along with
the simulation estimates denote 99% confidence intervals. Insets (a), (b), (c), and (d) illustrate the
variation in the iteration failure probability when the number of sensor and controller task replicas
of L1 are increased from one to five, for different sets of error rates. Insets (e) and (f) illustrate the
impact of increasing CAN bus utilization and reboot times, respectively, for three replicas.

to determine bounds on deadline violation probabilities. It also evaluates whether this
pessimism significantly impacts the overall iteration failure probability bound.

Both Sim-v1 and Sim-v2 make the worst-case assumption that any two faulty message
copies are identical, as in the analysis.

We compared the analysis, Sim-v1, and Sim-v2 for four different sets of error rates and
replication factors. We used higher error rates for this experiment than can be realistically
expected (and much higher than those used in the later experiments) as otherwise the
simulations would be extremely time-consuming. To understand the effects of individual
error types, we first compared three scenarios in which respectively only one of the three
error types was assigned a significant rate, i.e., ρi = 10−4, κi = 10−4, and τ = 3, respec-
tively, whereas the others were assigned negligible values, i.e. ≈ 10−20. Additionally, we
evaluated a fourth scenario where all three error types have significant rates, i.e., ρi = 10−5,
κi = 10−5, and τ = 3× 10−1. Finally, to understand the effects of bus utilization and reboot
time on the analysis, we compared the analysis, Sim-v1, and Sim-v2 for different CAN bus
utilizations (by assuming increased message payload sizes) and for different reboot times
(100ms-2000ms), with a replication factor of three. The results are shown in Figs. 3a–3f.

Several trends can be clearly seen. First, in all evaluated scenarios, the analysis results
always track Sim-v1 extremely closely, which indicates that any pessimism introduced in
step (2) to ensure monotonicity of the model with respect to the error rates is negligible.
The results shown in Figs. 3a, 3b, and 3d further show that the analysis tracks Sim-v2 quite
closely, too, provided that the underlying CAN timing analysis is not the bottleneck (i.e., if
message delays are not the dominant source of failures). Specifically, we observe that the full

ECRTS 2018

16:16 Quantifying the Resiliency of Fail-Operational Real-Time NCS

analysis, including step (1), results in less than an order of magnitude difference between
the predicted and observed failure probabilities if crash or incorrect computation errors
are non-negligible. This confirms the overall accuracy of the approach for the intended use
cases: the proposed analysis closely tracks and soundly bounds the actual iteration failure
probabilities in the presence of crashes, retransmissions, and message corruptions.

However, as is evident from Figs. 3a, 3b, and 3d, there exist cases where the analysis
diverges significantly from Sim-v2. The common factor in these scenarios is that the
underlying CAN analysis is the dominating factor. Most prominently, this is visible in Fig. 3c,
which focuses exclusively on transmission faults: while the analytical failure bound is initially
large and then decreases gradually with increasing replication factor, the observed failure
probability is several orders of magnitude smaller than the analytical bound and actually
indicates the opposite trend – the analysis is not at all a good predictor of actual failure rates
in this scenario. Fig. 3e indicates that the gap between Sim-v2 and the analysis increases
with CAN bus utilization. And even in Fig. 3a, when the replication factor is increased to
five (resulting in high network contention), Sim-v2 begins to deviate from the analysis.

We attribute the pessimism caused by the timing analysis to the fact that not every
message instance experiences worst-case interference during transmission (i.e., not every
message is released at a critical instant), and consequently, the derived deadline violation
probability is extremely pessimistic for most message instances.

We conclude that the pessimism incurred by the current CAN timing analysis is significant,
however, this has a measurable effect only in cases where the network becomes the dominant
reliability bottleneck. As we will show with the next experiment, this is rather unlikely in the
case of realistic fault rates (in contrast to the extremely high rates assumed in this experiment
for the sake of simulation speed, which exaggerate the impact of the CAN analysis).

Finally, Fig. 3f indicates that the pessimism incurred by step (1) also increases with the
reboot time, which is also an exaggerated trend due to the extremely high rate of crash
failures in this scenario (i.e., ρi = 10−4 per millisecond, which means a reboot is expected
every 10 seconds on average). As a result, with increasing reboot times, it becomes more
likely that a crash fault affects an already-crashed host while it is rebooting – which “masks”
in part the effects of the prior crash, which our analysis does not exploit. For more realistic
crash rates, the effect is negligible, and even in this exaggerated setup, the analysis stays
within an order of magnitude of the observed failure rate (note the y-axis scale in Fig. 3f).

In summary, we conclude from the overall small gap to the Sim-v2 baseline that the
incurred pessimism is not significant in cases where the crash and incorrect computation error
rates are non-negligible, and where network congestion is not the sole dominating bottleneck.

5.2 Experiment 2: FIT for Different Parameters
To evaluate the impact of different replication factors, (m, k) requirements, and environmental
conditions, we next evaluated control loop L1’s FIT while varying the number of sensor and
controller task replicas. Figs. 4a–4d present the results.

In Fig. 4a, m and k were varied as follows: 1 ≤ m ≤ 5, and k = 5 or k = 2m; and in
Fig. 4b, m/k is 90%, 95%, 99%, or 100% (while minimizing m and k).

A hard specification, i.e., where m = k, yields a much higher FIT rate compared to all
other specifications with m < k, even the ones with m/k ≥ 0.9, which highlights the need
for a robustness-aware reliability analysis. For example, in Fig. 4b, if the desired reliability
threshold is 10 FIT, a hard real-time analysis (i.e., requiring a 100% iteration success rate)
requires the use of three replicas, whereas if a 90% success rate is sufficient, then our analysis
indicates that no replication is required. Fig. 4a shows that increasing both m and k while

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:17

1 2 3 4 5
sensor and controller task replicas

10-100
10-89
10-78
10-67
10-56
10-45
10-34
10-23
10-12
10-1
1010

FI
T (5,5)

(4,5)
(3,5)
(2,5)
(1,5)
(1,2)
(2,4)
(3,6)

(a) τ = 10−4, ρi = 10−12,
κi = 10−12

1 2 3 4 5
sensor and controller task replicas

10-26

10-22

10-18

10-14

10-10

10-6

10-2

102

106

1010

FI
T

99.99%
99.0%
95.0%
90.0%

(b) τ = 10−4, ρi = 10−12,
κi = 10−12

1 2 3 4 5
sensor and controller task replicas

10-45
10-40
10-35
10-30
10-25
10-20
10-15
10-10
10-5
100
105

FI
T

τ=10−04

τ=10−06

τ=10−08

τ=10−10

(c) m = 9, k = 10,
ρi = κi = τ × 10−6

1 2 3 4 5
sensor and controller task replicas

10-115
10-103
10-91
10-79
10-67
10-55
10-43
10-31
10-19
10-7
105

FI
T

ρi =10−12

i =10−12

τ=10−02

(d) m = 9 and k = 10

W1 W2 W3 W4 W1 -W4

10-8

10-6

10-4

10-2

100

102

104

106

108
FI

T
Config 1
Config 2
Config 3
Config 4

(e) τ = 10−4, ρi = 10−8,
κi = 10−12

W1 W2 W3 W4 W1 -W4

10-8

10-6

10-4

10-2

100

102

104

106

108

FI
T

Config 1
Config 2

Config 3
Config 4

(f) τ = 10−4, ρi = 10−8,
κi = 10−12

Figure 4 (a, b) Parameters m and k are varied. (c, d) Failure rates τ , κi, and ρi are varied.
(e, f) Replication factors of the different control loops are varied.

keeping m/k constant reduces the FIT rate, which shows that an asymptotic specification
that relies only on the ratio m/k (and where k can hence be chosen to be arbitrarily large)
can be easily supported by our analysis. Interestingly, different (m, k) specifications can
result in very similar FIT rates, e.g., the curves of (3, 5) and (2, 4) in Fig. 4a overlap.

Next, we varied the transmission error rate τ across 10−4, 10−6, 10−8, and 10−10. The
crash and incorrect computation error rates were set to ρi = κi = τ × 10−6. The results are
illustrated in Fig. 4c. As expected, the FIT rates decrease as the error rates are lowered. The
FIT rates also decrease with increasing replication, but this decrease is significant only up to
three replicas. Confirming earlier observations [23], active replication in real-time systems
results in diminishing returns or becomes counterproductive after some point, as it reduces
the slack available for fault-induced retransmissions and results in increased FIT rates. In
general, graphs such as these can help engineers identify the maximum reliability that they
can extract out of a system by increasing its replication factor, or conversely, the minimum
number of replicas needed to achieve a desired level of reliability.

To better understand the effects of individual error types, we computed FIT values for
three different scenarios. In each scenario, only one of the three error types was assigned a
significant rate, i.e., ρi = 10−12, κi = 10−12, and τ = 10−2, respectively, whereas the others
were assigned negligible values, i.e., 10−48. As apparent in Fig. 4d, the FIT rates are higher
for crash and incorrect computation errors, but very low for transmission errors, despite a
relatively high retransmission rate and even at high utilization (five replicas). This indicates
the relative importance of tolerating host errors, at least when hard timeliness is not required,
and also puts in perspective the pessimism observed in §5.1 – while the CAN analysis is the
single biggest source of pessimism, its overall contribution to the overall failure probability is
relatively minor for realistic retransmission rates.

Fig. 4d also shows that active replication helps tolerate incorrect computation errors only
if the number of replicas is odd (i.e., the curve for κi = 10−12 does not improve when going

ECRTS 2018

16:18 Quantifying the Resiliency of Fail-Operational Real-Time NCS

from 1 to 2, or 3 to 4, replicas), in contrast to crash errors, which become less relevant already
with the first added replica (until a point of diminishing returns is reached at 3 replicas).
This is expected, e.g., with two replicas, the voting algorithm is unable to distinguish between
a correct and an incorrect input, which is significant if the messages are frequently corrupted.

In summary, Experiment 2 demonstrates that the analysis allows engineers to quantify
and explore an NCS’s reliability under various environmental conditions (i.e., for varying
peak error rates) and for different levels of robustness (by varying (m, k) specifications).

5.3 Experiment 3: FIT for Different Replication Schemes
To demonstrate that the analysis is useful for identifying reliability bottlenecks with respect
to resource constraints, and for identifying opportunities to significantly increase a system’s
reliability at modest costs, we conducted a case study in which we analyzed different
replication schemes of the workload. Our objective was to identify a replication scheme with
a FIT rate under 10. That is, if such an active suspension workload is deployed in, say, 100
million cars, then as per Mancuso’s calculations (discussed in §1), no more than about one
vehicle per day will experience a failure in its active suspension NCS.

We considered the following error rates: τ = 10−4, ρi = 10−8, and κi = 10−12. To model
practical design constraints, we assumed that the rear wheels W1 and W2 were close to many
electromechanical parts, and assigned the hosts of the respective sensor tasks an order of
magnitude higher crash and incorrect computation error rates. The different configurations
are summarized in Table 1 and the their FIT bounds are illustrated in Figs. 4e and 4f.

Given a period of 1.75ms and an (m, k)-firm specification of (9, 10) for each control loop,
the bound on the total FIT rate without any replication is greater than 1010. Can we find a
replication scheme with a FIT rate under 10 and with as few replicas as possible?

To answer the question, we conducted an exhaustive search over all possible replication
schemes, varying the replication factor of each task from one to five, ignoring any scheme that
did not result in a schedulable system. While we do not report the results of this exhaustive
search due to space constraints, we observed that all feasible replication schemes can be
partitioned into a few groups, where each group corresponds to schemes that result in FIT
rate bounds of roughly the same order of magnitude. Thus, for each group, we report only
the scheme with the minimum number of replicas, as given by Configurations 1–4 in Table 1
and Fig. 4e (configurations 5-8 and the corresponding Fig. 4f are discussed below).

Unfortunately, none of the feasible replication schemes yields a FIT rate under 10.
Configuration 1 contains two copies of the sensor and controller tasks for L1 and L2, which
helps reduce their respective FIT rate to under 102, but the system’s total FIT rate still
remains high (≈ 108) owing to L3 and L4’s high individual FIT rates. Adding an extra
replica of the sensor task for L3 and L4 (Configuration 2) does not help reduce this difference,
but adding an extra copy of both sensor and controller tasks for L3 and L4 (Configuration 3)
reduces the total FIT to around 102. In fact, while L3 and L4 are the bottleneck in
Configuration 1 and Configuration 2, the bottleneck in Configuration 3 is L1 and L2. At this
point, it seems that adding another pair of replicas for the rear wheel sensors (Configuration 4)
to tolerate the relatively higher fault rates might be sufficient to bring down the total FIT
rate under 10. However, this does not yield any significant benefit, and since we have maxed
out the bus utilization, we cannot add any more replicas. This shows that with the current
set of parameters, we cannot guarantee a FIT of under 10, which would have been difficult
to realize without the proposed analysis.

Can we instead relax the parameters of the control loops at the cost of slightly affecting
their instantaneous quality-of-control [4]? For example, does (i) a shorter period of 1.25ms

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:19

Table 1 Different replication schemes. Parameters xS and yC denote that x and y replicas were
provisioned for the sensor and the controller task of the respective wheel control loops.

Config. Wheel 1 Wheel 2 Wheel 3 Wheel 4 Period (m,k) Util.
1 2S, 2C 2S, 2C 1S, 1C 1S, 1C 1.75ms (9, 10) 59%
2 2S, 2C 2S, 2C 2S, 1C 2S, 1C 1.75ms (9, 10) 68%
3 2S, 2C 2S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 77%
4 4S, 2C 4S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 96%
5 2S, 1C 2S, 1C 1S, 1C 1S, 1C 1.25ms (3, 5) 68%
6 2S, 2C 2S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 55%
7 3S, 2C 3S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 61%
8 3S, 3C 3S, 3C 3S, 3C 3S, 3C 2.50ms (19, 20) 81%

with a relaxed (m, k)-firm specification of (3, 5), or alternatively, (ii) a relaxed period of
2.5ms with a stricter (m, k)-firm specification of (19, 20) allow designing the system with
the desired levels of reliability, i.e., with a FIT rate of 10 or less? To answer this question,
we once again exhaustively generated FIT bounds for all schedulable replication schemes
and report four representative cases here (see Configurations 5–8 in Table 1 and Fig. 4f).

For case (i), the best possible FIT bound (≈ 103) is obtained when two copies of the
L1 and L2 sensor tasks are provisioned (Configuration 5). While we could add a few more
replicas to Configuration 5 without saturating the bus, this does not help to reduce the FIT
bound any further. Case (ii), however, allows us to add many more replicas (Configurations 6–
8) because of the relaxed period, yielding much better FIT bounds despite the stricter
(m, k)-firm specification. In particular, Configuration 7 yields a total FIT bound under 1 and
Configuration 8 yields a total FIT bound of around 10−5. Thus, while case (i) is not a useful
alternative, case (ii) shows clear reliability benefits. In fact, the substantial FIT reduction
in case (ii) makes it a worthwhile tradeoff, despite the slightly degraded control quality [4],
whereas case (i) would give up control quality for no appreciable gain in reliability.

In general, this case study highlights the importance of quantifying system reliability for
design-space exploration and for identifying and strengthening the weakest link of a system
(e.g., in this study, L3 and L4 in Configurations 1–2, and L1 and L2 in Configuration 3), and
that the proposed analysis is an effective aid in this process.

6 Related Work

The (m, k)-firm model was first studied in the context of real-time streams and control
applications [27, 50]. Since then, many analyses and system designs have been proposed
for applications with (m, k)-firm specifications, mainly focussing on their temporal aspects
(e.g., see [11]). We use (m, k)-firm specifications to model control system robustness, where the
specification is a function of control loop iteration failures in both the time and value domains.

With regard to real-time networks, several reliability analyses have been proposed to date,
particularly of the CAN bus under EMI-induced retransmission errors, e.g., [59, 49, 45, 12, 16].
For example, Punnekkat et al. [49] and Broster et al. [12] proposed analyses to bound the
response time of CAN messages assuming a sporadic and a Poisson model of EMI, respectively,
and recently, Sebastian et al. [53] proposed the use of hidden Markov models in this context.
Our prior work [23] proposed an analysis to bound the probability of successful transmission
of a single logical message stream over CAN assuming host failures. In this work, like some
of the prior work, we use the Poisson model of EMI, but unlike all aforementioned analyses,
we evaluate the reliability of an end-to-end NCS system model.

ECRTS 2018

16:20 Quantifying the Resiliency of Fail-Operational Real-Time NCS

Related work in the NCS domain has focussed on evaluating the criteria for control stability
and performance, i.e., to what extent a control system can deviate from ideal operating
conditions without jeopardizing its functionality in the wake of various network failures,
e.g., [14, 38, 46, 30]. In contrast, we abstract the control specifics and solve the related, but
orthogonal problem of determining when and how frequently such robustness criteria are not
met, i.e., how likely it is that an inherently robust control system deviates from ideal operating
conditions to such a degree that its controlled plant may enter an unrecoverable state.

In related work targeting overall system reliability, Dugan and Van Buren [18] evaluated
the reliability of a specific system, namely a fly-by-wire systems with passive replication
(hot standbys), using Markov models to evaluate the state transition probabilities when a
system component fails, and fault trees to evaluate the reliability of each of the individual
states. It is possible to extend our analysis for systems with passive replication in a similar
manner. Sinha [55] proposed a reliability analysis of a fail-operational brake-by-wire system
networked with CAN and FlexRay buses. Sinha’s approach differs substantially from ours
since it is not defined at the granularity of individual messages. In contrast to these works
that focus on specific systems, our analysis targets broadcast-based NCSs in general.

An alternative approach for quantifying the reliability of NCSs faced with transient
component failures is the use of probabilistic model checkers such as PRISM [34] and
Storm [17]. This approach has been adopted in a number of works for reliability analysis
of simple networked systems [33, 19, 58, 2, 40, 35]. While such model-checking approaches
are very general, their weak spot is generally the question of scalability. In contrast, our
analysis is specific to the presented NCS model, but in return does not suffer from state-space
explosion issues. We plan to carry out a comparison of the two approaches in future work.

7 Conclusion

We have proposed the first analysis to safely bound the FIT rate of CAN-based SISO NCSs
that employ active replication to mitigate transient errors. Our analysis accounts for failures
in both the time and value domains, and exposes the inherent robustness of NCSs in the
form of (m, k)-firm constraints.

There is plenty of scope for future work, especially on more complex system models. To
tolerate failures in the actuator task, it could be replicated like the sensor and controller
tasks. Assuming that the physical actuator has some mechanism for redundancy suppression
(e.g., a hardware voter), such a system can be analyzed similarly to the presented analysis.

A fault-tolerant multi-input single-output (FT-MISO) control loop can be analyzed by
modifying Steps 1 and 2 in §4 to account for all replicas of the distinct sensor tasks in the sys-
tem. In contrast, a fault-tolerant multi-input multi-output system can be analyzed as multiple
independent FT-MISO systems, if an (m, k)-firm specification is given for each actuator.

For adaptive systems that allow dynamic reconfiguration of task replication factors based
on runtime monitoring of the error rates, our analysis can be used to evaluate the reliability
of different system modes. Similarly, in systems using passive replication or subject to
permanent failures, our analysis yields a FIT rate for each state in the system’s lifetime,
i.e., given a set of alive/dead replicas for that state, as in [18].

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:21

References
1 IEEE standard for a precision clock synchronization protocol for networked measurement

and control systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pages 1–300,
July 2008. doi:10.1109/IEEESTD.2008.4579760.

2 Masakazu Adachi, Yiannis Papadopoulos, Septavera Sharvia, David Parker, and Tetsuya
Tohdo. An approach to optimization of fault tolerant architectures using hip-hops. Software:
Practice and Experience, 41(11):1303–1327, 2011.

3 Zaid Al-Ars and Ad J van de Goor. Transient faults in DRAMs: Concept, analysis and
impact on tests. In International Workshop on Memory Technology, Design and Testing,
pages 59–64. IEEE, 2001.

4 Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption
for networked control systems over CAN. In Proceedings of the 30th Real-Time Systems
Symposium, pages 3–12. IEEE, 2009.

5 Robert B Ash. Basic Probability Theory. Courier Corporation, 2012.
6 Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004.

7 Ali Bakhoda, Seyed Ghassem Miremadi, and Hamid R Zarandi. Investigation of transient
effects on fpga-based embedded systems. In Proceedings of the 2nd International Conference
on Embedded Software and Systems, pages 6–pp. IEEE, 2005.

8 Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus problem in fault-
tolerant computing. ACM Computing Surveys, 25(2):171–220, 1993.

9 Rainer Blind and Frank Allgöwer. Towards networked control systems with guaranteed
stability: Using weakly hard real-time constraints to model the loss process. In Proceedings
of the 54th Annual Conference on Decision and Control, pages 7510–7515. IEEE, 2015.

10 Björn B Brandenburg. The schedulability test collection and toolkit, 2017. Available at
https://people.mpi-sws.org/~bbb/projects/schedcat.

11 Ian Broster, Guillem Bernat, and Alan Burns. Weakly hard real-time constraints on con-
troller area network. In Proceedings of the 14th Euromicro Conference on Real-Time Sys-
tems, pages 134–141. IEEE, 2002.

12 Ian Broster, Alan Burns, and Guillermo Rodriguez-Navas. Probabilistic analysis of CAN
with faults. In Proceedings of the 23rd Real-Time Systems Symposium, pages 269–278.
IEEE, 2002.

13 Ian Broster, Alan Burns, and Guillermo Rodriguez-Navas. Timing analysis of real-time com-
munication under electromagnetic interference. Real-Time Systems, 30(1-2):55–81, 2005.

14 Ahmet Cetinkaya, Hideaki Ishii, and Tomohisa Hayakawa. Networked control under ran-
dom and malicious packet losses. Transactions on Automatic Control, 62(5):2434–2449,
2017.

15 Cristian Ionut Chihaia. Active Fault-Tolerance in Wireless Networked Control Sys-
tems. PhD thesis, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften»
Elektrotechnik und Informationstechnik» Automatisierungstechnik und komplexe Systeme,
2010.

16 Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller area net-
work (CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, 2007.

17 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm
is coming: A modern probabilistic model checker. In Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, pages 592–600, 2017. doi:10.1007/978-3-319-63390-9_31.

ECRTS 2018

http://dx.doi.org/10.1109/IEEESTD.2008.4579760
https://people.mpi-sws.org/~bbb/projects/schedcat
http://dx.doi.org/10.1007/978-3-319-63390-9_31

16:22 Quantifying the Resiliency of Fail-Operational Real-Time NCS

18 Joanne Bechta Dugan and Randy Van Buren. Reliability evaluation of fly-by-wire computer
systems. Journal of Systems and software, 25(1):109–120, 1994.

19 Jonas Elmqvist and Simin Nadjm-Tehrani. Formal support for quantitative analysis of
residual risks in safety-critical systems. In Proceedings of the 11th High Assurance Systems
Engineering Symposium, pages 154–164. IEEE, 2008.

20 Joaquim Ferreira, Arnaldo Oliveira, Pedro Fonseca, and José Fonseca. An experiment to
assess bit error rate in CAN. In Proceedings of the 3rd International Workshop of Real-Time
Networks, pages 15–18, 2004.

21 Martin Gergeleit and Hermann Streich. Implementing a distributed high-resolution real-
time clock using the CAN-bus. In Proceedings of the 1st International CAN Conference,
volume 94, 1994.

22 Alain Girault, Hamoudi Kalla, and Yves Sorel. An active replication scheme that tolerates
failures in distributed embedded real-time systems. In Design Methods and Applications
for Distributed Embedded Systems, pages 83–92. Springer, 2004.

23 Arpan Gujarati and Björn B Brandenburg. When is CAN the weakest link? A bound on
failures-in-time in CAN-based real-time systems. In Proceedings of the Real-Time Systems
Symposium, pages 249–260. IEEE, 2015.

24 Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Lower-bounding the MTTF for
systems with (m,k) constraints and IID iteration failure probabilities. Technical Report
MPI-SWS-2018-004, Max Planck Institute for Software Systems, Germany, 2018. URL:
http://www.mpi-sws.org/tr/2018-004.pdf.

25 Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Quantifying the resiliency of fail-
operational real-time networked control systems. Technical Report MPI-SWS-2018-005,
Max Planck Institute for Software Systems, Germany, 2018. URL: http://www.mpi-sws.
org/tr/2018-005.pdf.

26 Rachana A Gupta and Mo-Yuen Chow. Overview of networked control systems. In Net-
worked Control Systems, pages 1–23. Springer, 2008.

27 Moncef Hamdaoui and Parameswaran Ramanathan. A dynamic priority assignment
technique for streams with (m, k)-firm deadlines. IEEE Transactions on Computers,
44(12):1443–1451, 1995.

28 Peter Hazucha and Christer Svensson. Impact of CMOS technology scaling on the atmo-
spheric neutron soft error rate. IEEE Transactions on Nuclear Science, 47(6):2586–2594,
2000.

29 Rolf Isermann, Ralf Schwarz, and Stefan Stolzl. Fault-tolerant drive-by-wire systems. IEEE
Control Systems, 22(5):64–81, 2002.

30 Ning Jia, Ye-Qiong Song, and Rui-Zhong Lin. Analysis of networked control system with
packet drops governed by (m, k)-firm constraint. In Fieldbus Systems and Their Applica-
tions 2005, pages 63–70. Elsevier, 2006.

31 Fredrik Johansson. mpmath - Python library for arbitrary-precision floating-point arith-
metic, 2017. Available at http://mpmath.org/.

32 Way Kuo and Ming J Zuo. Optimal Reliability Modeling: Principles and Applications. John
Wiley & Sons, 2003.

33 Marta Kwiatkowska, Gethin Norman, and David Parker. Controller dependability analysis
by probabilistic model checking. Control Engineering Practice, 15(11):1427–1434, 2007.

34 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In International Conference on Computer Aided Verification,
pages 585–591. Springer, 2011.

35 Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and Systems. PhD
thesis, University of Konstanz, Germany, 2015. URL: http://kops.uni-konstanz.de/
handle/123456789/30778.

http://www.mpi-sws.org/tr/2018-004.pdf
http://www.mpi-sws.org/tr/2018-005.pdf
http://www.mpi-sws.org/tr/2018-005.pdf
http://mpmath.org/
http://kops.uni-konstanz.de/handle/123456789/30778
http://kops.uni-konstanz.de/handle/123456789/30778

A. Gujarati, M. Nasri, and B. B. Brandenburg 16:23

36 Hongyi Li. Robust Control Design for Vehicle Active Suspension Systems with Uncertainty.
PhD thesis, University of Portsmouth, Portsmouth, 2012.

37 Xiaodong Li, Sarita V Adve, Pradip Bose, and Jude A Rivers. Architecture-level soft
error analysis: Examining the limits of common assumptions. In Proceedings of the 37th
International Conference on Dependable Systems and Networks, pages 266–275. IEEE, 2007.

38 Feng-Li Lian, James Moyne, and Dawn Tilbury. Analysis and modeling of networked
control systems: MIMO case with multiple time delays. In Proceedings of the American
Control Conference, volume 6, pages 4306–4312. IEEE, 2001.

39 George MA Lima and Alan Burns. A consensus protocol for CAN-based systems. In
Proceedings of the 24th Real-Time Systems Symposium, pages 420–429. IEEE, 2003.

40 Yu Lu. Probabilistic Verification of Satellite Systems for Mission Critical Applications.
PhD thesis, University of Glasgow, 2016.

41 Renato Mancuso. Next-Generation Safety-Critical Systems on Multi-Core COTS Platforms.
PhD thesis, University of Illinois at Urbana-Champaign, 2017. Available at http://hdl.
handle.net/2142/97399.

42 Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt, and Todd
Austin. A systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of the 36th International Symposium on
Microarchitecture, pages 29–40. IEEE, 2003.

43 Nithin Nakka, Giacinto Paolo Saggese, Zbigniew Kalbarczyk, and Ravishankar K Iyer. An
architectural framework for detecting process hangs/crashes. In Proceedings of the European
Dependable Computing Conference, pages 103–121. Springer, 2005.

44 Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Understanding and
Using the Controller Area Network Communication Protocol: Theory and Practice. Springer,
2012.

45 Nicolas Navet, Y-Q Song, and Françoise Simonot. Worst-case deadline failure probability
in real-time applications distributed over Controller Area Network. Journal of Systems
Architecture, 2000.

46 Johan Nilsson. Real-Time Control Systems with Delays. PhD thesis, Lund Institute of
Technology Lund, Sweden, 1998.

47 John Noto, Gary Fenical, and Colin Tong. Automotive EMI shielding–controlling au-
tomotive electronic emissions and susceptibility with proper EMI suppression meth-
ods. URL: https://www.lairdtech.com/sites/default/files/public/solutions/
Laird-EMI-WP-Automotive-EMI-Shielding-040114.pdf.

48 Stefan Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism,
volume 345. Springer Science & Business Media, 2007.

49 Sasikumar Punnekkat, Hans Hansson, and Christer Norstrom. Response time analysis
under errors for CAN. In Proceedings of the 6th Real-Time Technology and Applications
Symposium, pages 258–265. IEEE, 2000.

50 Parameswaran Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. Transactions on Parallel and Distributed Systems, 10(6):549–559,
1999.

51 Jose Rufino, Paulo Verissimo, Guilherme Arroz, Carlos Almeida, and Luis Rodrigues. Fault-
tolerant broadcasts in CAN. In Proceedings of the 28th International Symposium on Fault-
Tolerant Computing, pages 150–159. IEEE, 1998.

52 Indranil Saha, Sanjoy Baruah, and Rupak Majumdar. Dynamic scheduling for networked
control systems. In Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, pages 98–107. ACM, 2015.

53 Maurice Sebastian, Philip Axer, and Rolf Ernst. Utilizing hidden markov models for formal
reliability analysis of real-time communication systems with errors. In Proceedings of the

ECRTS 2018

http://hdl.handle.net/2142/97399
http://hdl.handle.net/2142/97399
https://www.lairdtech.com/sites/default/files/public/solutions/Laird-EMI-WP-Automotive-EMI-Shielding-040114.pdf
https://www.lairdtech.com/sites/default/files/public/solutions/Laird-EMI-WP-Automotive-EMI-Shielding-040114.pdf

16:24 Quantifying the Resiliency of Fail-Operational Real-Time NCS

17th Pacific Rim International Symposium on Dependable Computing, pages 79–88. IEEE,
2011.

54 M. Sfakianakis, S. Kounias, and A. Hillaris. Reliability of a consecutive k-out-of-r-from-n:F
system. Transactions on Reliability, 41(3):442–447, 1992.

55 Purnendu Sinha. Architectural design and reliability analysis of a fail-operational brake-
by-wire system from iso 26262 perspectives. Reliability Engineering & System Safety,
96(10):1349–1359, 2011.

56 Fedor Smirnov, Michael Glaß, Felix Reimann, and Jürgen Teich. Formal reliability analysis
of switched ethernet automotive networks under transient transmission errors. In Proceed-
ings of the 53nd Design Automation Conference, pages 1–6. IEEE, 2016.

57 Susan Stanley. MTBF, MTTR, MTTF & FIT explanation of terms. URL: http:
//imcnetworks.com/wp-content/uploads/2014/12/MTBF-MTTR-MTTF-FIT.pdf.

58 Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Augmenting formal development
of control systems with quantitative reliability assessment. In Proceedings of the 2nd In-
ternational Workshop on Software Engineering for Resilient Systems, pages 61–70. ACM,
2010.

59 Ken Tindell and Alan Burns. Guaranteeing message latencies on Control Area Network
(CAN). In Proceedings of the 1st International CAN Conference, 1994.

60 Nicholas J Wang, Justin Quek, Todd M Rafacz, and Sanjay J Patel. Characterizing the
effects of transient faults on a high-performance processor pipeline. In Proceedings of the
International Conference on Dependable Systems and Networks, pages 61–70. IEEE, 2004.

http://imcnetworks.com/wp-content/uploads/2014/12/MTBF-MTTR-MTTF-FIT.pdf
http://imcnetworks.com/wp-content/uploads/2014/12/MTBF-MTTR-MTTF-FIT.pdf

	Introduction
	System Model
	Fault Model
	Probabilistic Analysis
	Evaluation
	Experiment 1: Simulation vs. Analysis
	Experiment 2: FIT for Different Parameters
	Experiment 3: FIT for Different Replication Schemes

	Related Work
	Conclusion

