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Abstract
NVIDIA’s CUDA API has enabled GPUs to be used as computing accelerators across a wide
range of applications. This has resulted in performance gains in many application domains, but
the underlying GPU hardware and software are subject to many non-obvious pitfalls. This is
particularly problematic for safety-critical systems, where worst-case behaviors must be taken into
account. While such behaviors were not a key concern for earlier CUDA users, the usage of GPUs
in autonomous vehicles has taken CUDA programs out of the sole domain of computer-vision and
machine-learning experts and into safety-critical processing pipelines. Certification is necessary in
this new domain, which is problematic because GPU software may have been developed without
any regard for worst-case behaviors. Pitfalls when using CUDA in real-time autonomous systems
can result from the lack of specifics in official documentation, and developers of GPU software
not being aware of the implications of their design choices with regards to real-time requirements.
This paper focuses on the particular challenges facing the real-time community when utilizing
CUDA-enabled GPUs for autonomous applications, and best practices for applying real-time
safety-critical principles.
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1 Introduction

A fundamental shift is reshaping how real-time analysis is applied in all forms of autonomous
systems (e.g., UAVs, robotics, and, especially, self-driving automobiles). These systems are in-
creasingly dependent on escalating computational requirements for various applications based
on machine learning (ML). Examples include computer-vision applications that recognize
people and objects in high-bit-rate streams from multiple video cameras, and applications
that process 3-D models of the surrounding environment from high-volume streams of LIDAR
data. These and other ML applications in autonomous vehicles have prompted the adoption
of specialized computing accelerators to match computational demands. Graphics processing
units (GPUs) are among the most prominent and accessible of these specialized accelerators
because of their high-throughput performance. While high throughput is necessary for ML
applications based on multiple streams of sensor inputs, it alone is not sufficient. Safe
operation of autonomous vehicles also requires temporal correctness from GPU-using tasks –
this is where real-time analysis becomes essential for autonomous systems.

Why there is a problem. Unfortunately, GPUs present many challenges, so modeling,
analyzing, and certifying a safety-critical autonomous system using GPUs is currently
beyond the state-of-the-art. One reason is that GPUs are fundamentally different from
CPUs. Real-time analysis is based on well-understood scheduling algorithms that allocate
CPU capacity. In contrast, GPU hardware and software together implement GPU-specific
scheduling algorithms that are proprietary, opaque, and can change without notice. Modeling
and analysis efforts under these conditions are subject to many pitfalls when applied to
real-time safety-critical workloads in GPU-using autonomous systems.

Focus of this paper. Our motivation for this work is to provide guidance, recommendations,
and warnings about numerous pitfalls to both research and implementation practitioners.
We have found that writing programs for real-time tasks that combine CPU and GPU
computations is harder than we first thought. Based on several years of study, experimentation,
and experience with GPU programming, we are presenting here a compendium of specific
issues that are essential background for developing task systems where real-time design meets
GPUs.

Choice of GPU platforms. We base our findings on our experiences with NVIDIA GPUs for
a number of reasons. The most salient reason is that NVIDIA GPUs are in cars on the road
today. Further, NVIDIA has positioned itself as a market leader in automotive applications.
For example, NVIDIA’s “Jetson” line of embedded platforms specifically targets autonomous
systems, and is marketed as “the embedded platform for autonomous everything” [21]. Three
generations of the Jetson series of embedded single-board computers have been produced
by NVIDIA; the TK1, TX1, and TX2. NVIDIA also markets a higher-performance line of
embedded platforms, the “Drive PX” series, which includes multiple models such as the
Drive PX2, Drive PX Xavier, and Drive PX Pegasus.

NVIDIA GPUs serve as an exemplar of the push for throughput over predictability in
GPUs . Recent developments in the NVIDIA GPU ecosystem are focused on improving ML
applications, especially those for autonomous driving. Most of these improvements center
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around increasing throughput or reducing execution latency, but little, if any, attention has
been paid to requirements of the real-time tasks used in autonomous systems. This lack of
attention is evident in the sparse efforts by NVIDIA to improve or document GPU scheduling
behavior or improve the predictability of GPU execution times.

1.1 Contributions
The major contribution of this paper lies in discussing pitfalls for real-time GPU usage of
relevance to both those conducting research on autonomous systems and those who design
and build them. These pitfalls fall within three categories:

Synchronization and blocking. In any task consisting of a combination of CPU and GPU
computations, there are necessary synchronization points (e.g., a CPU program needs to
wait until a GPU has produced a result). Synchronization inherently leads to blocking terms
in scheduling analysis. Unfortunately, we have learned that why and when synchronization
blocking occurs in a GPU-using task is not straightforward to determine. Further, some
forms of synchronization can lead to significant capacity loss on both CPUs and GPUs.
We have constructed experiments that expose these synchronization effects and carefully
describe them along with a list of specific pitfalls the unwary programmer may encounter.
This contribution is fully presented in Sec. 3.

GPU concurrency. We have realized that there is a fundamental trade-off that exists for
designing real-time tasks that use a GPU. A conventional choice is to write and execute
the task program as an operating system (OS) process in its own non-shared address space.
This provides cross-task memory isolation. If this choice is used, however, the NVIDIA GPU
programming environment (described in Sec. 2) does not permit any concurrent computations
on the GPU even if sufficient GPU resources are available. Depending on how GPU programs
are organized and written, this can lead to capacity loss on the GPU. The alternate choice
is to write and execute a task as a schedulable thread that shares a process address space
with other task threads. Cross-task memory isolation is lost, but the GPU programming
environment provides mechanisms that allow concurrent computations on the GPU. NVIDIA
provides a third option with a middleware environment that is claimed to provide the best
of both choices – memory isolation with concurrency enabled. We have performed a case
study using algorithms that are exemplars for computer-vision tasks in autonomous vehicles
to evaluate these trade-off options. The results and guidelines are fully presented in Sec. 4.

CUDA programming perils. Our research has necessarily involved constructing many
thousands of lines of GPU programming for performing experiments. This experience has
been especially enlightening about the perils one can encounter in programming for NVIDIA
GPUs. The perils span a spectrum of pain ranging from simple documentation errors to
functions that default in strange ways, to programming “gotchas.” We present a list of perils
with descriptions and examples of the ones most likely to cause problems in Sec. 5.

Value for autonomous systems. We believe that this paper will help bridge the gap between
research and implementation in autonomous systems. For example, real-time researchers
may not be familiar with GPU programming for applications of ML and other forms of
AI used in real-time tasks. Likewise, programmers responsible for implementations are
given little guidance about creating GPU-using task systems amenable to real-time analysis.

ECRTS 2018
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We provide the necessary understanding required to apply GPUs in real-time tasks while
avoiding numerous hidden pitfalls. We also expose GPU-related issues that must be mitigated
for real-time guarantees to be possible in autonomous systems. We further believe that
the fundamental issues presented herein are relevant to any real-time application using
computational accelerators, and likely hold for other manufacturers’ GPUs, digital signal
processors (DSPs), or FPGAs.

1.2 Related Work

Treating GPUs as non-shared devices has been a consistent theme in much of the prior
research on GPU scheduling for real-time systems. More predictable execution times result
from restricting access to the entire GPU (or its independent execution and data movement
components) to a single task at a time [11, 15, 16, 28, 29, 27, 31].

Other prior research takes a slightly different approach and improves schedulability
by simulating preemptive execution [3, 15, 17, 33]. These designs typically split GPU
computations into smaller fragments, which can be individually scheduled and preempted.
One of these frameworks, called Kernelet [32], even allows GPU sharing as a means to
improve utilization, but interference effects caused by sharing are not addressed.

The decision to treat GPUs as non-shared devices is largely motivated by a perceived need
to work with a greatly simplified model of GPU execution (resulting, we believe, primarily
from a lack of information from GPU manufacturers). If GPU scheduling behavior is an
opaque “black box,” it is a rational conclusion that sharing must be avoided because execution
ordering and interference effects cannot be known. Our research is motivated, however, by
an observation that GPU sharing will become essential for effectively utilizing less-capable
embedded GPUs. Our research goal is to enable the modeling and analysis of a combined
CPU+GPU scheduling framework that allows real-time tasks to share multicore CPUs and
one or more GPUs.

We began our research by experimentally investigating the impacts of GPU sharing on
the NVIDIA Jetson TK1 [24] and TX1 [25]. In these studies, we focused on GPU sharing
by CPU processes (tasks) that have separate address spaces. We found that sharing in this
context happens only through round-robin time-sliced multiplexing of GPU computations
onto the GPU execution hardware. This multiplexing form of scheduling presents many
challenges for modeling and analysis. In later work, we experimentally investigated GPU
sharing by CPU tasks that share an address space (threads) on both the TX1 [26] and the
more-capable TX2 [1]. In these studies, we found that truly concurrent sharing can indeed
occur and deduced rules the GPU uses to schedule execution.

The work summarized so far was all directed at scheduling real-time tasks that use a
GPU for parts of their executions. Other work has focused on timing analysis for GPU
workloads [4, 5, 6, 7, 8], techniques for remedying performance bottlenecks [13], direct I/O
communication [2], and techniques for managing or evaluating GPU hardware resources,
including the cache and DRAM [9, 10, 12, 14, 18, 19, 30].

2 Background

In this section, we provide background information on the NVIDIA GPUs used in this
research. The CUDA programming framework is described, and a simple example of a CUDA
program is explained.
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Figure 1 Jetson TX2 Architecture (left) and GeForce GTX 1070 Architecture (right).

2.1 CUDA-Enabled Devices

The work presented here refers to the Kepler, Maxwell, Pascal, and Volta architectures of
NVIDIA GPUs. NVIDIA introduced these four different generations of GPU architectures,
in that order, within a time span of about five years (2012 - 2017) – a pace of change more
rapid than normally seen in CPU generations. GPUs are programmed using the CUDA API,
which is an NVIDIA-provided set of libraries and language extensions for C/C++.

We consider both discrete GPUs and integrated GPUs. An integrated GPU, such as
the NVIDIA Jetson TX2 shown on the left in Fig. 1, is part of a System-On-Chip (SoC)
implementation combined with conventional multicore CPUs. The SoC is packaged along
with DRAM and external connectors as a small (approximately 7 inches square) single-board
computer. The integrated GPU shares hardware resources, such as DRAM, with CPU cores.
The TX2 runs the Linux operating system, with additional support from closed-source binary
drivers provided by NVIDIA. The TX2’s low size, weight, and power (SWaP) requirements
and low price tag make it a good exemplar of GPU-enabled platforms intended for embedding
in autonomous systems.

Fig. 1 (left) shows the high-level architecture of the TX2. The TX2 contains a six-core
heterogeneous ARMv8 CPU, 8GB of DRAM, and an integrated Pascal GPU. The TX2’s
GPU consists of two streaming multiproccessors (SMs), each comprised of 128 GPU cores.
The SMs together can be logically viewed as an execution engine (EE). Additionally, there
is a hardware copy engine (CE) that can copy data between memory regions allocated for
CPU use and those allocated for GPU use. The integrated GPU has fewer GPU cores than
found in typical high-end GPUs used for graphics, gaming, and high-performance computing
applications. We are interested in exploiting any potential for sharing the TX2’s GPU by
multiple tasks so that its computing capacity is not unnecessarily wasted.

Shown on the right in Fig. 1 is the architecture of the GTX 1070, an example of a discrete
GPU. Discrete GPUs consist only of the SMs and local device memory, typically packaged
on an adapter card for mounting in a PCIe expansion slot on a computer motherboard. Like
all discrete GPUs, the GTX 1070 does not share memory with the host CPU, instead using
the PCIe bus to copy data to and from host memory. This GPU features many more SMs
than the TX2, increasing the potential benefit attainable if shared among multiple tasks. It
also has two CEs, and a larger cache.

ECRTS 2018
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Algorithm 1 Vector Addition Pseudocode.
1: kernel vecAdd(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure main
. (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d_A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d_A, h_A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h_C, d_C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d_A)
13: . . .

2.2 Relevant CUDA Programming Fundamentals
A CUDA program runs as a task (process or thread) on a CPU and relies on a GPU for some
part of its computational requirements.1 The general structure of a CUDA program when it
needs to interact with the GPU is as follows: (i) allocate memory for GPU use; (ii) copy
input data from CPU memory to GPU memory; (iii) launch execution of a GPU program
called a kernel2 to process the data; (iv) copy the results from the GPU memory back to
the CPU memory; (v) free unneeded memory.

CUDA kernels are written from the perspective of a single GPU thread. As an example,
consider the CUDA program expressed in pseudocode in Algorithm 1. It uses the kernel
vecAdd to add a single pair of elements per GPU thread, storing the sum in a corresponding
location in an output array. Line 2 demonstrates the use of special global system-defined
variables to determine the array element on which to operate. When the kernel executes,
threads will run in lock-step with each thread performing the same operation simultaneously
on different data. To avoid confusion with GPU threads, we will henceforth refer to CPU
threads as CPU tasks (or just tasks).

A kernel is run on the GPU as a set of thread blocks that can be executed in any order.
These thread blocks, or simply blocks, are each comprised of a number of threads. As seen in
Line 10 of Algorithm 1, the number of blocks and threads per block are programmer-specified
and can be set at runtime when a kernel is launched. The GPU scheduler uses these values
to assign work to the SMs. Blocks are the schedulable entities on the GPU. All threads in a
block are always executed on the same SM, and run non-preemptively until completion. A
kernel completes when all threads in all blocks have exited.

We refer to kernels and memory-copy operations collectively as GPU operations. GPU
operations are submitted to a GPU in CUDA streams. Operations within a stream are
executed in FIFO order. By default, the NULL stream is used, but users can submit operations
to multiple user-defined streams.3 Kernels from different streams can run concurrently by

1 Note that both CPU and GPU computations are specified in the same CUDA program.
2 Unfortunate terminology, not to be confused with an OS kernel.
3 CUDA documentation only guarantees that operations within a stream are executed in FIFO order, but
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sharing the GPU’s cores if sufficient internal resources are available. Copy operations are
handled by the GPU’s CE and can be concurrent with kernel executions on the EE.

CUDA API calls can be synchronous or asynchronous; for many calls, a variant of
both is available. For example, cudaMemcpy and cudaMemcpyAsync both copy data between
regions of CPU memory and GPU memory, or between two regions of GPU memory, but
cudaMemcpyAsync can return control to the calling CPU task before the copy is completed,
whereas cudaMemcpy blocks the CPU task until the memory copy completes.

Kernel launches are always supposed to be asynchronous. The CUDA documentation4 [23],
however, uses a narrow definition of “asynchronous” that can be misleading. According to
the documentation, “asynchronous library functions that return control to the host thread
before the device completes the requested task.” Notably, this definition does not imply
that asynchronous API calls are nonblocking to the CPU. As noted in Sec. 3, we have found
situations in which kernel launches still cause CPU blocking even if the API call returns
before the requested kernel completes.

3 Synchronization and Blocking

CPU scheduling has been studied and well-understood for decades; in particular, real-time
scheduling analysis of task systems is based on predictable scheduler and task behaviors. A
worst-case execution time (WCET) for each task can be determined using clear specifications
of the machine’s architecture including the cache, bus, and DRAM operations. Incorporating
GPUs into real-time analysis (as with all coprocessors), requires different models with new
sets of issues to be considered. In this section, we discuss one set of issues that lead to a
surprising number of pitfalls when CUDA GPUs are used: synchronization.

In prior work, we investigated the scheduling rules for kernels and copy operations in
CUDA programs [1]. However, this investigation focused on a limited context where few
CUDA operations beyond kernel launches and memory copies were used. In most real-world
CUDA software, programmers will likely encounter (both intentionally and unintentionally)
the need for synchronization between CPU and GPU operations. The added complexity of
synchronization can result in utilization loss, potentially leading to unbounded response times
in task sets with high utilization. In this section, we explore various forms of CPU-GPU
synchronization and the resulting implications for real-time systems. We limit attention for
now to CPU tasks that share a single Linux address space and create user-defined streams.
As covered in detail in Sec. 4, this setup allows potential concurrency among operations on
the GPU.

3.1 Overview of GPU Synchronization

Most developers are familiar with the concepts of synchronization in a CPU-only context
where two or more tasks must communicate or coordinate their actions. Synchronization
becomes more complicated when a CPU task must coordinate with programs executed on
the GPU. The common case is that the CPU task must determine when data in GPU
memory is safe to access (e.g., copy back to CPU memory). This is accomplished using GPU
synchronization, where the GPU must complete outstanding work and reach a synchronization

does not describe how operations from different streams are ordered.
4 Specifically, Section 3.2.5.1 of the Programming Guide for CUDA version 9.1.85.

ECRTS 2018
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Figure 2 Explicit synchronization requested before K3, observed on the Jetson TX2.

point: a point in time when data access can safely occur. There are also other, less common,
cases when GPU synchronization is necessary.

In CUDA there are multiple ways to achieve GPU synchronization. They fall into
two broad categories: explicit synchronization, which is always programmer-requested, and
implicit synchronization, which can occur as a side effect of CUDA API functions intended for
purposes other than synchronization. We have uncovered in our research some unfortunate
pitfalls relating to actual GPU synchronization behavior, especially with respect to blocking.
So, while these may not be pitfalls for non-safety-critical applications, ignoring the effects of
certain specific mechanisms for achieving synchronization would be perilous in a safety-critical
system where blocking must be anticipated and accounted for in analysis.

3.1.1 Explicit Synchronization
Explicit synchronization refers to synchronization points that the CUDA programmer expli-
citly requests using the CUDA API. Explicit synchronization is typically used after a program
has launched one or more asynchronous CUDA kernels or memory-transfer operations and
must wait for computations to complete. In contrast to implicit synchronization, the sole
purpose of explicit-synchronization functions is to block the calling CPU task until the GPU
reaches a synchronization point.

The CUDA documentation5 states that explicit synchronization will block the calling
task until “all preceding commands” have completed. For example, if the API function
cudaDeviceSynchronize is invoked, “preceding commands” may encompass all commands
issued to the device from all CPU tasks. Other explicit-synchronization options, including
cudaStreamSynchronize, will only block until preceding commands from a specified stream
have completed.

We carried out experiments using our open-source framework6 to investigate the specific
behaviors of GPU synchronization on real GPU hardware. Fig. 2 shows the behavior of

5 Section 3.2.5.5.3 of the Programming Guide for CUDA version 9.1.85.
6 Available at https://github.com/yalue/cuda_scheduling_examiner_mirror.

https://github.com/yalue/cuda_scheduling_examiner_mirror
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explicit synchronization observed in one such experiment. In Fig. 2 (also in Figs. 3 and 4),
each shaded rectangle corresponds to a separate thread block. The left and right endpoints of
each rectangle correspond to the times at which the block started and completed execution,
as measured on the GPU. Each rectangle’s height represents its size in CUDA threads.
Additionally, the vertical axis is subdivided by SM. The particular experiments presented in
Figs. 2-4 were performed using the Jetson TX2, which features two SMs. Up to 2,048 CUDA
threads can be assigned to a single SM at once.

The CUDA program executed to produce Fig. 2 consists of four CPU tasks all sharing a
single address space. Each CPU task launched one kernel in a separate user-defined stream.
Kernel launches were separated by a small amount of time. Each kernel consisted of two
blocks of 512 threads, and the figure shows that one block from each kernel was scheduled
on each SM. Each thread performed a busy-loop for a set amount of time.

An explicit-synchronization command, cudaDeviceSynchronize, was issued at time (a)
by the CPU task responsible for launching kernel K3. This caused K3’s CPU task to be
blocked until the prior commands, the execution of kernels K1 and K2, had both completed
at time (c). This behavior is exactly what one would expect, given the description of explicit
synchronization from official documentation. However, our experiments also uncovered Pitfall
1 for the unwary:

I Pitfall 1. Explicit synchronization does not block future commands issued by other tasks.

The fact that the launch of K4 by its CPU task was not blocked at time (b) is an example
of this pitfall. Implicit synchronization, which we cover next, presents even more serious
pitfalls.

3.1.2 Implicit Synchronization
Implicit synchronization occurs as a side effect of CUDA API calls that are otherwise
unrelated to synchronization. For example, implicit GPU synchronization may occur due to
freeing GPU memory or launching a kernel to the default stream. Presumably, this is because
some modifications to GPU device state can only occur while no kernels are executing. The
CUDA documentation about implicit synchronization7 states that “two commands from
different streams cannot run concurrently if any one of the following operations is issued
in-between them by the host thread:
1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same device memory
5. Any CUDA command to the NULL stream”
Unlike the relatively straightforward documentation about explicit synchronization, our
experiments revealed that this list includes several operations that do not necessarily cause
implicit synchronization, and fails to include some functions that do. We consider this
particularly problematic for real-time systems, where the ability to accurately model blocking
is critical.

I Pitfall 2. Documented sources of implicit synchronization may not occur.

7 Section 3.2.5.5.4 of the Programming Guide for CUDA version 9.1.85.
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Figure 3 Implicit synchronization caused by launching kernel K3 in the NULL stream.

Pitfall 2 became apparent to us when, in all of our experiments, we never observed
implicit synchronization as a result of a device-memory operation (allocation, set, or copy)
or a page-locked host memory allocation. Our experiments covered the two most recent
CUDA versions, 8.0 and 9.0, and the three most recent NVIDIA GPU architectures, Maxwell,
Pascal, and Volta. This, of course, does not prove that implicit synchronization can never
happen under such circumstances, but it does indicate that the documentation’s statement
that “two commands cannot run concurrently” is not a reliable rule. The only case (from
this list) in which we did observe implicit synchronization was launching GPU operations in
the NULL stream.

Fig. 3 shows a similar scenario to the one in Fig. 2, with one key difference: the CPU task
for K3 did not call cudaDeviceSynchronize before K3 was launched, but instead launched
K3 in the NULL stream. The implicit synchronization, and resulting loss of concurrency, is
clearly visible in the figure. Execution of K3 must wait for the first two kernels to complete,
and, in contrast to explicit synchronization, K4 is also prevented from running concurrently.
Even though this loss of concurrency may be striking, it is notably explicitly documented,
and can be used (or avoided) in a careful design for a real-time task.

We found, however, a different source of implicit synchronization that is a far more
problematic pitfall, and is not even listed in the documentation on synchronization: freeing
device memory.

I Pitfall 3. The CUDA documentation neglects to list some functions that cause implicit
synchronization.

I Pitfall 4. Some CUDA API functions will block future, unrelated, CUDA tasks on the
CPU.

Fig. 4 shows the results of an experiment identical to the one in Fig. 2, but this time the
call to cudaDeviceSynchronize at time (a) was replaced with a call to cudaFree, which
was used to de-allocate memory on the GPU. Pitfalls 3 and 4 can be observed in this plot.
The fact that this blocked the calling CPU thread until all prior GPU work had completed
at time (c) indicates that cudaFree created implicit synchronization. Similar to the NULL-
stream behavior, implicit synchronization also prevented subsequent kernels from starting to
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Figure 4 Implicit synchronization causing additional CPU blocking due to cudaFree.

execute until cudaFree completed at time (c). We speculate that this behavior by cudaFree
is necessary because alterations to memory-mapping state requires a quiescent execution
environment. However, the most surprising effect was not that K4 was blocked, but that
K4’s task was blocked on the CPU until time (c), even though it issued an “asynchronous”
kernel launch. This reveals a pitfall that can harm real-time analysis that does not consider
the fact that CPU tasks can experience blocking from GPU operations that are launched
from unrelated tasks.

3.2 Overcoming Synchronization-Related Pitfalls

GPU synchronization has two problematic effects – introducing indeterminate amounts of
blocking and reducing GPU concurrency. This means that programmers who develop real-time
systems must understand the pitfalls inherent in explicit and implicit synchronization. This
is especially true if the schedulability of a real-time task system relies on minimizing blocking
or high GPU utilization. Avoiding pitfalls can be accomplished through careful construction
of CUDA programs to, for example, avoid using the NULL stream or freeing memory outside
of certain time intervals. A more robust method would be to adopt middleware that handles
such problems transparently.

Our experiments indicate that GPU synchronization does not extend across GPU-using
tasks that are isolated in separate address spaces. If synchronization is the dominant limiting
factor on schedulability, it may be desirable to place each task in a separate address space
(OS process). As explained in the next section, this organization means that that CUDA
kernels from different tasks can no longer execute concurrently, but it may still be beneficial
overall if synchronization-related blocking is a greater limiting factor.

It turns out that NVIDIA may be aware of this issue. Even though it is not currently
available for embedded platforms such as the TX2, NVIDIA does provide useful middleware
for discrete GPUs: the CUDA Multi-Process Service (MPS). MPS allows kernels from multiple
processes to execute concurrently on a single GPU, while maintaining the desirable property
that GPU synchronization from one process will not affect other processes. We explore the
benefits of MPS further in Sec. 4.
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4 Concurrency and Performance

In prior work, we investigated different GPU scheduling behavior when running GPU-using
real-time task systems in two contexts: (i) each task has its own distinct address space, i.e.,
it runs as an OS process, and (ii) all tasks belong to the same address space, i.e., each task
runs as a schedulable thread within a process. We refer to these two contexts as process-based
and thread-based tasks, respectively.

While process-based tasks have the advantage of memory protection, they do not actually
execute on the GPU concurrently; instead, GPU operations are multiprogrammed in a way
that makes predictable scheduling of GPU-related resources difficult if not impossible to
achieve [1]. When operations are multiprogrammed on a GPU, their execution times depend
on contention for shared GPU resources, making it hard to bound a task’s overall execution
time. Additionally, concurrency among GPU operations may be important in order to avoid
wasting GPU processing cycles, especially when a single kernel cannot fully utilize the GPU’s
resources. Although this may be avoided by running tasks with user-defined streams in
a shared address space, a shared address space may actually reduce concurrency in task
systems where tasks regularly interfere with each other via implicit synchronization (Sec. 3).
Fortunately, NVIDIA provides a third option: middleware called the Multi-Process Service
(MPS) [20].

4.1 Multi-Process Service (MPS)
MPS enables concurrent execution of GPU operations launched by independent CPU address
spaces. It has the potential to combine the advantages of both thread- and process-based
tasks. Programs written using the CUDA API require no changes to use MPS – if MPS
is running, CUDA programs transparently issue requests to MPS rather than directly to a
GPU. Official documentation reports that MPS operates as a server process with its own
CUDA context, and that CUDA API requests are redirected from client processes to the MPS
server. Because the server’s CUDA context is effectively shared, GPU operations launched
by separate processes can execute concurrently on a shared GPU, providing the benefits of
thread-based tasks. However, MPS also continues to preserve the advantage of process-based
tasks: separate processes will not block each other with implicit or explicit synchronization.

It is not clear from available documentation how MPS actually schedules GPU operations
and whether the GPU scheduling rules revealed in prior work [1] are followed under MPS.
For example, the documentation for MPS only mentions possible overlap between kernels
and copy operations.8 Given the documentation flaws discussed in Secs. 3 and 5.2, one could
be skeptical of the veracity of this claim, so we verified experimentally that those scheduling
rules are also followed under MPS. We omit from this paper the experimental methods used
for verifying the scheduling rules; readers can refer to [1].

Maximizing the utilization of GPU resources using streams in thread-based tasks is
suggested by NVIDIA’s “Best Practices Guide” [22]. However, it would be unwise to simply
take this recommendation at face value when choosing between MPS or a process- or thread-
based task organization in a safety-critical system. Additionally, MPS is not yet supported
on embedded ARM platforms like the Jetson TX2, so the other management systems
are still necessary on some systems. Therefore, we conducted a case study on computer-vision
software, demonstrating the performance differences among the available configurations.

8 “MPS allows kernel and memory copy operations from different processes to overlap on the GPU,
achieving higher utilization and shorter running times” [20].
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Table 1 Abbreviations used for our four experimental scenarios.

Multiple Process-based Tasks Multiple Thread-based Tasks
Without MPS MP MT
With MPS MP(MPS) MT(MPS)

4.2 Case Study of Computer-Vision Tasks
Our motivation primarily remains autonomous driving, so we chose to study algorithms
for computer-vision tasks that provide functions commonly used for autonomous driving.
In evaluating the results from this case study, we consider that the real-time tasks that
use GPUs for autonomous driving may have multiple levels of criticality. Some may be
safety-critical with hard deadlines and be provisioned for worst-case execution plus a margin
for safety. Others may have only bounded tardiness requirements, or even be background
work that can be provisioned for average-case execution.

We focus here on five programs from NVIDIA’s provided sample code for VisionWorks:
Video Stabilization. Smooths shaky video content. This is often a preprocessing step
for a computer-vision pipeline.
Feature Tracking. Tracks features between consecutive frames. This algorithm is used
to track the positions of objects in a scene.
Motion Estimation. Estimates the direction of moving pixels, which is fundamental
to calculating trajectories of moving objects, e.g., pedestrians and other vehicles.
Hough Transform. (Hough) A feature-extraction algorithm; the provided sample
detects circles and lines in images.
Stereo Matching. Uses input from two cameras to generate depth information by
matching features in both frames.

Methodology. We adapted NVIDIA’s VisionWorks samples to be compatible with our open-
source experimental framework.9 These samples generally only use a single CUDA stream.
We ran four instances of the same sample program in each experiment. We configured each
instance to process 1,000 frames from a video sequence while recording per-frame response
times. Our framework allows running each program instance in a shared address space
(multiple thread-based tasks, MT) or in independent address spaces (multiple process-based
tasks, MP), both with and without the MPS server active. This produces experiments for
each algorithm in four different scenarios as summarized in Tbl. 1. Experimental results
under MT(MPS) were always similar to MT with slight overheads caused by MPS, so we omit
it in all of our results for clarity. We conducted these experiments on a Maxwell-architecture
discrete GPU with CUDA 9.0. We briefly summarize results on other devices and different
CUDA versions later.

Results. We show cumulative distribution function (CDF) and kernel density estimation
(KDE)10 plots of Hough and feature tracker as representatives in Figs. 5–8. The KDE curve
was produced using the Python package scipy.stats.gaussian_kde. In both the CDF and
KDE plots, each curve represents the recorded response-time data in an experimental scenario.

9 Again, https://github.com/yalue/cuda_scheduling_examiner_mirror.
10KDE is a statistical method for estimating a continuous probability density function (PDF) from a set

of discrete sample values.
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Table 2 Per-frame response time data (in milliseconds) of VisionWorks samples. The fastest
scenario for each time metric is indicated by bold text.

VisionWorks Samples Scenarios Max 99th% 90th% Mean Median

Video Stabilization
MP 17.55 12.88 5.43 3.31 2.69
MP (MPS) 36.73 11.12 5.37 2.81 2.06
MT 17.0 13.87 8.94 4.72 3.63

Feature Tracking
MP 5.64 3.87 1.45 1.08 0.96
MP (MPS) 14.73 6.04 1.51 1.31 1.09
MT 31.11 20.86 11.51 4.68 2.68

Motion Estimation
MP 28.64 21.25 17.33 16.75 17.24
MP (MPS) 33.05 22.66 15.75 14.3 14.89
MT 42.86 26.12 16.53 15.07 15.14

Hough Transform
MP 13.56 11.61 7.28 5.68 5.7
MP (MPS) 18.35 11.66 6.44 3.74 3.18
MT 58.65 22.64 15.82 9.12 8.94

Stereo Matching
MP 75.13 50.54 30.42 24.14 24.77
MP (MPS) 59.73 45.05 26.87 22.59 24.41
MT 125.96 58.82 34.36 20.75 18.95

For example, the curves labeled “x4 MP” in Figs. 5 and 6 represent the per-frame response
time distributions where each of four Hough instances is run in a separate process. Result
data for all five algorithms is summarized in Tbl. 2, which lists the maximum, 99th-percentile,
90th-percentile, mean, and median frame times for each scenario and algorithm.

I Observation 1. MP(MPS) exhibits good average-case performance.

Obs. 1 is supported by the data in Tbl. 2. 90th-percentile, mean, and median performance
under configuration MP(MPS) were consistently good with the top performance for three
of the five algorithms. For Feature Tracking, MP was best in all metrics, and for Stereo
Matching, MT had better mean and median performance. The results for average-case
performance indicate that using MP(MPS) would likely be an attractive option for soft-real-
time systems, e.g., systems that can occasionally drop a video frame without compromising
safety. We conjecture that the average-case performance advantage of MP(MPS) over MP in
most cases is due to improved concurrency and lower GPU context-switching overheads.

Feature Tracking was the most notable exception to Obs. 1. In this case, MP was only
slightly better than MP(MPS) when comparing the 90th-percentile, mean, and median
performance. We conducted additional experiments using NVIDIA’s CUDA-profiling tool,
nvprof, to gain some insight into this behavior. We found that Feature Tracking’s overall
execution time is heavily influenced by a large number of memory transfers, rather than
CUDA kernel executions. This likely means that MPS only provides limited GPU concurrency
benefits to Feature Tracking, which failed to outweigh other MPS-related overheads.

I Observation 2. Worst-case and 99th-percentile runtimes were typically better under MP.

While MP(MPS) largely resulted in average-case improvements, Tbl. 2 shows three of
our five applications (Feature Tracking, Motion Estimation, and Hough Transform) showed
the smallest worst-case and 99th-percentile execution times under MP. This indicates that
MP may be a better option for certain task systems where worst-case performance is more
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Figure 5 Per-frame response time CDFs for
Hough.

1 12 23 34 45 56
Time (milliseconds)

0.0000

0.0958

0.1917

0.2875

0.3833

0.4791

De
ns

ity

x4 MP
x4 MP (MPS)
x4 MT

Figure 6 Per-frame response time KDEs for
Hough.

0 6 12 18 24 30
Time (milliseconds)

0

20

40

60

80

100

%
 <

= 
X

x4 MP
x4 MP (MPS)
x4 MT
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Figure 8 Per-frame response time KDEs for
Feature Tracking.

important than average-case. Our results illustrate why the trade-offs between process-based
and thread-based designs for tasks must be evaluated for individual algorithms.

I Observation 3. MP and MP(MPS) exhibit more predictable execution times than MT.

Obs. 3 is supported by Figs. 6 and 8, where the KDE shows a tight unimodal distribution
for MP and MP(MPS) but not MT. A unimodal distribution function with little dispersion
indicates that the response times exhibit low variance. MT, in contrast, shows both bimodal
(in Fig. 6) and unimodal (in Fig. 8) distributions with significant dispersions (indicating high
variance). Even if specific “spikes” are more difficult to observe in the corresponding CDF
plots, the difference in response-time ranges are also apparent from the endpoints of the
CDF curves in Figs. 5 and 7.

I Observation 4. The MT configuration generally performed poorly.

Obs. 4 is supported by Tbl. 2 and the plots. The only metrics where MT outperformed
the other scenarios were the mean and median times for Stereo Matching, and worst-case
response time for Video Stabilization (where MT was only slightly better than MP).

Other Results. In addition to the results presented above, we also conducted this case study
using CUDA 8.0 on a Maxwell discrete GPU (GTX 860M) and CUDA 9.0 on Pascal discrete
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Listing 1 Causes implicit synchronization.
if (! CheckCUDAError ( cudaMemsetAsync (

state -> device_block_smids , 0,
data_size ))) {
return 0;

}

GPUs (GTX 1050 and GTX 1070). Even though we chose to omit tables of results from
the other GPUs and CUDA versions in this paper, we made similar observations excepting
that the performance of all configurations was better on a Pascal GPU. Additionally, the
experimental results with CUDA 8.0 on the same Maxwell GPU stayed nearly identical to
those using CUDA 9.0.

Summary. Our case study compared the impact of different GPU-sharing approaches on
the performance of computer-vision algorithms. The results we obtained for these algorithms
ran contrary to some of our observations regarding GPU concurrency from prior work [1, 26].

I Pitfall 5. The suggestion from NVIDIA’s documentation to exploit concurrency through
user-defined streams may be of limited use for improving performance in thread-based tasks.

We assumed that enabling concurrent GPU execution was of significant importance for
limiting capacity loss in real-time workloads on embedded systems, and therefore fell victim
to Pitfall 5. Instead, our results show that MT rarely outperforms tasks running as multiple
processes, even without MPS. Additionally, any performance improvement via fine-tuned
stream organization for MT can also be achieved with MP(MPS). That being said, even
though enabling concurrency using MP(MPS) is generally beneficial, it unfortunately is not
an option on ARM-based embedded platforms like the Jetson TX2. We would encourage
NVIDIA to consider this shortcoming in hope that one day it may be addressed.

5 Perils of CUDA Programming for Real-Time Tasks

In the previous sections we presented several specific pitfalls in correctly designing and running
CUDA programs for real-time tasks. Elements of both CUDA’s design and documentation
contribute to this ensemble of perils to avoid. In this section, we discuss some of the broader
categories of pitfalls.

5.1 Synchronous Defaults
As hinted in Sec. 3, one of the primary pitfalls when designing a real-time task system
that uses a GPU is that all possible blocking must be accounted for in analysis. Therefore,
reducing the amount of blocking on both the CPU and GPU is essential. On the GPU, this
requires issuing all CUDA operations to user-defined (non-NULL) streams, and carefully
controlling the use of other API functions, like cudaFree, that cause blocking via implicit
synchronization.

Even though it may seem like an easy task for a programmer to just specify a user-defined
stream as opposed to the NULL stream, we note that simple mistakes in doing so may be
easy to miss. This is particularly true when using the Async versions of CUDA API functions,
such as cudaMemsetAsync. For example, consider the code snippets in Listings 1 and 2,
which present a particular example of Pitfall 6 below.
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Listing 2 Correctly asynchronous.
if (! CheckCUDAError ( cudaMemsetAsync (

state -> device_block_smids , 0,
data_size , state -> stream ))) {
return 0;

}

I Pitfall 6. Async CUDA functions use the GPU-synchronous NULL stream by default.

Listing 1’s call to cudaMemsetAsync is missing a final argument specifying a user-defined
stream, which causes the NULL stream to be used by default. As pointed out in Sec. 3.1.2,
NULL-stream usage causes implicit synchronization and hence blocking. This mistake is
corrected in Listing 2. This specific mistake actually led to months of mystifyingly inconsistent
results in our own experiments – despite our relatively deep experience examining the
subtleties of CUDA behavior (note that these code snippets are parts of much larger listings).
Would an ML application developer catch such a mistake or appreciate its impact? Note that
NVIDIA’s CUDA compiler does not catch this mistake because the compiler is based on the
C++ programming language, which allows default arguments to functions.

Even though the examples in Listings 1 and 2 only use cudaMemsetAsync, Pitfall 6 applies
to other CUDA API functions as well, such as cudaMemcpyAsync. The fact that the CUDA
documentation indicates that these functions cause implicit synchronization, as discussed in
Sec. 3 and Sec. 5.2, makes potential programmer errors even harder to notice in cases where
synchronization is due to NULL-stream usage rather than memory operations.

To summarize this discussion, CUDA provides a brittle programming environment:
difficult-to-spot mistakes can have profound consequences for real-time tasks.

5.2 Flawed Documentation
Another substantial danger stems from the inaccurate official documentation provided by
NVIDIA. While function signatures and data structures seem to receive accurate (but often
sparse) official documentation, scheduling and synchronization remain under-discussed. Our
group’s past work includes demystifying some scheduling rules [1]. In our work to demystify
implicit synchronization (see definition in Sec. 3.1.2), however, we came across not only
missing documentation, but incorrect documentation.

I Pitfall 7. Observed CUDA behavior often diverges from what the documentation states or
implies.

Consider Tbl. 3. In all but one of the cases we investigated, the documentation claims
implicit synchronization will occur when it does not. While this absence of synchronization
may positively benefit performance, it also may cause incorrect timing analysis. Furthermore,
program logic may be broken in the (albeit unlikely) case that the program relies on a
function like cudaMemsetAsync to trigger GPU synchronization.

Unfortunately, the documentation also contains less-benign flaws. Take cudaFree and
cudaFreeHost as an example. Our experiments in Sec. 3 found these functions to not only
cause implicit synchronization, but block other CPU tasks from proceeding while cudaFree
waits on the GPU. Much to our surprise, the documentation mentions neither of these side
effects, leaving the reader to assume that these functions behave similarly to other CUDA
functions and have no side effects.
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Table 3 Observed vs. documented synchronization sources in CUDA. For cudaMemcpyAsync we
distinguish the direction of copy between device and host: (D-D) internal to GPU memory; (D-H)
GPU memory to CPU memory; (H-D) CPU memory to GPU memory. *The documentation is
contradictory for these instances, but the more detailed option indicates that these functions only
cause synchronization if host memory is not page-locked. We were unable to observe this regardless
of whether host memory was page-locked or not.

Observed Behavior Documented Behavior

Source
Blocks Other
CPU Tasks

Implicit Sync.
(Sec. 3.1.2)

Caller Must
Wait for GPU

Implicit Sync.
(Sec. 3.1.2)

Caller Must
Wait for GPU

cudaDeviceSynchronize No No Yes No Yes
cudaFree Yes Yes Yes No (undoc.) No (impl.)

cudaFreeHost Yes Yes Yes No (undoc.) No (impl.)
cudaMalloc ? No No Yes No (impl.)

cudaMallocHost ? No No Yes No (impl.)
cudaMemcpyAsync D-D No No No Yes No
cudaMemcpyAsync D-H No No No Yes* No
cudaMemcpyAsync H-D No No No Yes* No
cudaMemset (sync.) No Yes No Yes No

cudaMemsetAsync No No No Yes No
cudaStreamSynchronize No No Yes No Yes

Our experiments also revealed that cudaMalloc and cudaMallocHost may also cause
cross-task CPU blocking in a similar manner to cudaFree in certain situations, even though
these functions do not trigger implicit synchronization. As we have not yet determined the
specific causes for this behavior, this property is indicated by an entry of ‘?’ in certain cells
in Tbl. 3. In any case, we failed to find any mention of this variant of CPU blocking in the
CUDA documentation, and investigating these functions remains an open topic that we plan
to explore in future work.

An especially worrying pitfall is the following:

I Pitfall 8. CUDA documentation can be contradictory.

In one case, namely cudaMemcpyAsync, we discovered that the CUDA documentation
actively contradicts itself. Section 3.2.5.1 of the CUDA Programming Guide states “The
following device operations are asynchronous with respect to the host: . . . Memory copies
performed by functions that are suffixed with Async,” but Section 2 of the CUDA Runtime
API documentation states “For transfers from device memory to pageable host memory,
[cudaMemcpyAsync] will return only once the copy has completed.” This raises further doubts
about the correctness of other parts of the CUDA documentation.

We note that the CUDA API contains 146 non-deprecated or compatibility-related
functions, and we have only tested a small fraction of these in depth. Therefore, it is likely
that our findings with Pitfalls 7 and 8 apply to other portions of the documentation that we
have yet to observe.

5.3 Unknown Future
All of the pitfalls discussed in this paper, as well as the need to compare the alternatives
considered in Sec. 4 empirically, can be attributed to a single overarching problem: the
black-box nature of current GPU-enabled platforms means that developers do not have a
reliable model of GPU behavior. Much of our group’s prior work has focused on developing
such a model. However, this highlights what is perhaps the most important pitfall:
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I Pitfall 9. What we learn about current black-box GPUs may not apply in the future.

Despite the fact that we validated our experimental results on several of the most recent
CUDA versions and GPU architectures, there is no guarantee that our results will hold after
future GPU-architecture or CUDA-version updates. This applies not only to rules about
scheduling or blocking, but also may apply to performance characteristics like memory-access
times, as we found in prior work [26].

Even though other safety-critical hardware inevitably undergoes changes and updates,
future-proof programs can still be developed against a stable specification. Likewise, the
only way to truly mitigate Pitfall 9 is for GPU manufacturers to release stable, accurate
documentation about their GPU platforms, along, preferably, with giving developers greater
control over GPU scheduling and synchronization. Only then we can have a reliable GPU
model upon which to base real-time analysis and certification. We hope that work such as
ours signals to manufacturers like NVIDIA that greater openness is a desirable feature when
marketing in safety-critical domains.

Unfortunately, there is little indication that NVIDIA plans to move towards open hardware
or software in the immediate future. In the meantime, one of our continuing objectives is
to produce tools, such as our experimental framework, that can be quickly adapted to new
GPU hardware. So far, our tools have allowed us to quickly re-validate our prior results
every time NVIDIA updates its black-box hardware or software.

6 Conclusion

Vehicles on the road today are already running highly complex GPU-accelerated applications.
We anticipate a future where safety-critical autonomous vehicles must be certified, but
this will require a change in the GPU-programming paradigm. Currently, computer-vision
applications are developed with little guidance about how to achieve temporal safety. Even
if a single programmer or application avoids some mistakes, it is increasingly difficult to
avoid all of them, especially as applications and task systems grow in complexity. This
necessitates work such as ours, which seeks to reduce the gap between computer-vision
application developers and those responsible for certifying new systems’ real-time safety.

With little openness in NVIDIA’s hardware and software ecosystem, this paper contributes
a list of potential pitfalls when developing CUDA applications for real-time systems. Reasons
for these pitfalls include GPU synchronization, application performance, and problems with
documentation. We uncovered these pitfalls via microbenchmark experiments, examining the
performance of real-world computer-vision applications, and a careful reading of official GPU
documentation. While there is no guarantee of stability in our observations as NVIDIA’s
hardware and software continues to evolve, we hope that our open-source experimental
system will at least make it apparent when changes do occur.

This paper is part of an ongoing project with the aim of developing an abstract model of
GPU execution. In the future, we plan to continue this investigation and eventually develop
middleware capable of intercepting and reordering or delaying GPU operations. Our hope is
that the control afforded by such middleware will enable us to produce reasonable analytical
bounds on blocking and response times, while maintaining high GPU utilization wherever
possible. However, even with better management, certifiable safety in the face of GPU
sharing requires a guarantee that pitfalls including blocking due to GPU synchronization
are controlled, which is only possible if developers of GPU-using software are aware of the
consequences and how to avoid them. Fortunately, the best practices we have laid out herein
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should alleviate much of the strain on application developers on their first foray into real-time
systems.

In addition to NVIDIA’s GPU, we will also investigate other GPU implementations,
e.g., AMD’s open-source GPU runtime and driver stack. Given the chances of modifying
AMD’s open-source implementation, we are interested in improving the real-time guarantees
of AMD’s GPUs and comparing them with NVIDIA’s GPUs.
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