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Abstract
Integrated CPU-GPU architecture provides excellent acceleration capabilities for data parallel
applications on embedded platforms while meeting the size, weight and power (SWaP) require-
ments. However, sharing of main memory between CPU applications and GPU kernels can
severely affect the execution of GPU kernels and diminish the performance gain provided by
GPU. For example, in the NVIDIA Jetson TX2 platform, an integrated CPU-GPU architecture,
we observed that, in the worst case, the GPU kernels can suffer as much as 3X slowdown in
the presence of co-running memory intensive CPU applications. In this paper, we propose a
software mechanism, which we call BWLOCK++, to protect the performance of GPU kernels
from co-scheduled memory intensive CPU applications.

2012 ACM Subject Classification Software and its engineering→ Real-time schedulability, Com-
puter systems organization → Heterogeneous (hybrid) systems, Computer systems organization
→ Processors and memory architectures

Keywords and phrases GPU, memory bandwidth, resource contention, CPU throttling, fair
scheduler

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.19

Supplement Material ECRTS Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.4.2.3

Acknowledgements This research is partly supported by NSF CNS 1718880.

1 Introduction

Graphic Processing Units (GPUs) are increasingly important computing resources to accel-
erate a growing number of data parallel applications. In recent years, GPUs have become
a key requirement for intelligent and timely processing of large amount of sensor data in
many robotics applications, such as UAVs and autonomous cars. These intelligent robots
are, however, resource constrained real-time embedded systems that not only require high
computing performance but also must satisfy a variety of constraints such as size, weight,
power consumption (SWaP) and cost. This makes integrated CPU-GPU architecture based
computing platforms, which integrate CPU and GPU in a single chip (e.g., NVIDIA’s Jet-
son [5] series), an appealing solution for such robotics applications because of their high
performance and efficiency [15].
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Figure 1 Performance of histo benchmark on NVIDIA Jetson TX2 with CPU corunners.

Designing critical real-time applications on integrated CPU-GPU architectures is, however,
challenging because contention in the shared hardware resources (e.g., memory bandwidth)
can significantly alter the applications’ timing characteristics. On an integrated CPU-GPU
platform, such as NVIDIA Jetson TX2, the CPU cores and the GPU typically share a single
main memory subsystem. This allows memory intensive batch jobs running on the CPU cores
to significantly interfere with the execution of critical real-time GPU tasks (e.g., vision based
navigation and obstacle detection) running in parallel due to memory bandwidth contention.

To illustrate the significance of the problem stated above, we evaluate the effect of
co-scheduling memory bandwidth intensive synthetic CPU benchmarks on the performance
of a GPU benchmark histo from the parboil benchmark suite [18] on a NVIDIA Jetson TX2
platform (See Table 3 in Section 6 for the detailed time breakdown of histo.) We first run
the benchmark alone and record the solo execution statistics. We then repeat the experiment
with an increasing number of interfering memory intensive benchmarks on the idle CPU
cores to observe their impact on the performance of the histo benchmark with and without
the BWLOCK++ framework, which we propose in this paper. Figure 1 shows the results
of this experiment. As can be seen in ‘Without BWLOCK++’, co-scheduling the memory
intensive tasks on the idle CPU cores significantly increase the execution time of the GPU
benchmark—a 3.3X increase—despite the fact that the benchmark has exclusive access to
the GPU. The main cause of the problem is that, in the Jetson TX2 platform, both CPU and
GPU share the main memory and its limited memory bandwidth becomes a bottleneck. As
a result, even though the platform offers plenty of raw performance, no real-time execution
guarantees can be provided if the system is left unmanaged. In ‘With BWLOCK++’, on
the other hand, performance of the GPU benchmark remains close to its solo performance
measured in isolation.

BWLOCK++ is a software framework designed to mitigate the memory bandwidth
contention problem in integrated CPU-GPU architectures. More specifically, we focus on
protecting real-time GPU tasks from the interference of non-critical but memory intensive
CPU tasks. BWLOCK++ dynamically instruments GPU tasks at run-time and inserts a
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memory bandwidth lock while critical GPU kernels are being executed on the GPU. When the
bandwidth lock is being held by the GPU, the OS throttles the maximum memory bandwidth
usage of the CPU cores to a certain threshold value to protect the GPU kernels. The threshold
value is determined on a per GPU task basis and may vary depending on the GPU task’s
sensitivity to memory bandwidth contention. Throttling CPU cores inevitably negatively
affects the CPU throughput. To minimize the throughput impact, we propose a throttling-
aware CPU scheduling algorithm, which we call Throttle Fair Scheduler (TFS). TFS favors
CPU intensive tasks over memory intensive ones while the GPU is busy executing critical
GPU tasks in order to minimize CPU throttling. Our evaluation shows that BWLOCK++
can provide good performance isolation for bandwidth intensive GPU tasks in the presence of
memory intensive CPU tasks. Furthermore, the TFS scheduling algorithm reduces the CPU
throughput loss by up to 75%. Finally, we show how BLWOCK++ can be incorporated in
existing CPU focused real-time analysis frameworks to analyze schedulability of real-time
tasksets, utilizing both CPU and GPU.

In this paper, we make the following contributions:
We apply memory bandwidth throttling to the problem of protecting GPU accelerated
real-time tasks from memory intensive CPU tasks on integrated CPU-GPU architecture
We identify a negative feedback effect of memory bandwidth throttling when used with
Linux’s CFS [13] scheduler. We propose a throttling-aware CPU scheduling algorithm,
which we call Throttle Fair Scheduler (TFS), to mitigate the problem
We introduce an automatic GPU kernel instrumentation method that eliminates the need
of manual programmer intervention to protect GPU kernels
We implement the proposed framework, which we call BWLOCK++, on a real platform,
NVIDIA Jetson TX2, and present detailed evaluation results showing practical benefits
of the framework 1

We show how the proposed framework can be integrated into the existing CPU focused
real-time schedulability analysis framework

The remainder of this paper is organized as follows. We present necessary background
and discuss related work in Section 2. In Section 3, we present our system model. Section 4
describes the design of our software framework BWLOCK++ and Section 5 presents imple-
mentation details. In Section 6, we describe our evaluation platform and present evaluation
results using a set of GPU benchmarks. In Section 7, we present the analysis framework of
BWLOCK++ based real-time systems. We discuss limitations of our approach in Section 8
and conclude in Section 9.

2 Background and Related Work

In this section, we provide necessary background and discuss related work.
GPU is an accelerator that executes some specific functions requested by a master CPU

program. Requests to the GPU can be made by using GPU programming frameworks such
as CUDA that offer standard APIs. A request to GPU is typically composed of the following
four predictable steps:

Copy data from host memory to device (GPU) memory
Launch the function—called kernel—to be executed on the GPU
Wait until the kernel finishes
Copy the output from device memory to host memory

1 The source code of BWLOCK++ is publicly available at: https://github.com/wali-ku/BWLOCK-GPU
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In the real-time systems community, GPUs have been studied actively in recent years
because of their potential benefits in accelerating demanding data-parallel real-time applica-
tions [11]. As observed in [1], GPU kernels typically demand high memory bandwidth to
achieve high data parallelism and, if the memory bandwidth required by GPU kernels is
not satisfied, it can result in significant performance reduction. For discrete GPUs, which
have dedicated graphic memories, researchers have focused on addressing interference among
the co-scheduled GPU tasks. Many real-time GPU resource management frameworks adopt
scheduling based approaches, similar to real-time CPU scheduling, that provide priority or
server based scheduling of GPU tasks [9, 10, 23]. Elliot et al., formulate the GPU resource
management problem as a synchronization problem and propose the GPUSync framework
that uses real-time locking protocols to deterministically handle GPU access requests [6].
Here, at any given time, one GPU kernel is allowed to utilize the GPU to eliminate the
unpredictability caused by co-scheduled GPU kernels. In [12], instead of using a real-time
locking protocol that suffers from busy-waiting at the CPU side, the authors propose a GPU
server mechanism which centralizes access to the GPU and allows CPU suspension (thus
eliminating the CPU busy-waiting). All the aforementioned frameworks primarily work for
discrete GPUs, which have dedicated graphic memory, but they do not guarantee predictable
GPU timing on integrated CPU-GPU based platforms because they do not consider the
problem of the shared memory bandwidth contention between the CPU and the GPU.

Integrated GPU based platforms have recently gained much attention in the real-time
systems community. In [15, 14], the authors investigate the suitability of NVIDIA’s Tegra X1
platform for use in safety critical real-time systems. With careful reverse engineering, they
have identified undisclosed scheduling policies that determine how concurrent GPU kernels
are scheduled on the platform. In SiGAMMA [4], the authors present a novel mechanism
to preempt the GPU kernel using a high-priority spinning GPU kernel to protect critical
real-time CPU applications. Their work is orthogonal to ours as it solves the problem of
protecting CPU tasks from GPU tasks while our work solves the problem of protecting GPU
tasks from CPU tasks.

More recently, GPUGuard [7] provides a mechanism for deterministically arbitrating
memory access requests between CPU cores and GPU in heterogeneous platforms containing
integrated GPUs. They extend the PREM execution model [16], in which a (CPU) task is
assumed to have distinct computation and memory phases, to model GPU tasks. GPUGuard
provides deterministic memory access by ensuring that only a single PREM memory phase is
in execution at any given time. Although GPUGuard can provide strong isolation guarantees,
the drawback is that it may require significant restructuring of application source code to be
compatible with the PREM model.

In this paper, we favor a less intrusive approach that requires minimal or no programmer
intervention. Our approach is rooted on a kernel-level memory bandwidth throttling mechan-
ism called MemGuard [22], which utilizes hardware performance counters of the CPU cores
to limit memory bandwidth consumption of the individual cores for a fixed time interval on
homogeneous multicore architectures. MemGuard enables a system designer—not individual
application programmers—to partition memory bandwidth among the CPU cores. However,
MemGuard suffers from system-level throughput reduction due to its coarse-grain bandwidth
control (per-core-level control). In contrast, [21] is also based on a memory bandwidth
throttling mechanism on homogeneous multicore architectures but it requires a certain degree
of programmer intervention for fine-grain bandwidth control by exposing a simple lock-like
API to applications. The API can enable/disable memory bandwidth control in a fine-grain
manner within the application source code. However, this means that the application source
code must be modified to leverage the feature.
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Our work is based on memory bandwidth throttling, but, unlike prior throttling based
approaches, focuses on the problem of protecting GPU accelerated real-time tasks on
integrated CPU-GPU architectures and does not require any programmer intervention.
Furthermore, we identify a previously unknown negative side-effect of memory bandwidth
throttling when used with Linux’s CFS scheduler, which we mitigate in this work. In
the following, we start by defining the system model, followed by detailed design and
implementation of the proposed system.

3 System Model

We assume an integrated CPU-GPU architecture based platform, which is composed of
multiple CPU cores and a single GPU that share the same main memory subsystem. We
consider independent periodic real-time tasks with implicit deadlines and best-effort tasks
with no real-time constraints.

Task Model. Each task is composed of at least one CPU execution segment and zero or
more GPU execution segments. We assume that GPU execution is non-preemptible and we
do not allow concurrent execution of multiple GPU kernels from different tasks at the same
time. Simultaneously co-scheduling multiple kernels is called GPU co-scheduling, which has
been avoided in most prior real-time GPU management approaches [10, 6, 12] as well due to
unpredictable timing. According to [15], preventing GPU co-scheduling does not necessarily
hurt—if not improve—performance because concurrent GPU kernels from different tasks are
executed in a time-multiplexed manner rather than being executed in parallel. 2

Executing GPU kernels typically requires copying considerable amount of data between
the CPU and the GPU. In particular, synchronous copy directly contributes to the task’s
execution time, while asynchronous copy can overlap with GPU kernel execution. Therefore,
we model synchronous copy separately. Lastly, we assume that a task is single-threaded with
respect to the CPU. Then, we can model a real-time task as follows:

τi := (Ci, G
m
i , G

e
i , Pi)

where:
Ci is the cumulative WCET of CPU-only execution
Gm

i is the cumulative WCET of synchronous memory operations between CPU and GPU
Ge

i is the cumulative WCET of GPU kernels
Pi is the period

Note that the goal of BWLOCK++ is to reduce Gm
i and Ge

i under the presence of memory
intensive best-effort tasks running in parallel.

CPU Scheduling. We assume a fixed-priority preemptive real-time scheduler is used for
scheduling real-time tasks and a virtual run-time based fair sharing scheduler (e.g., Linux’s
Completely Fair Scheduler [13]) is used for best-effort tasks. For simplicity, we assume a
single dedicated real-time core schedules all real-time tasks, while any core can schedule
best-effort tasks. Because GPU kernels are executed serially on the GPU, as mentioned

2 Another recent study [2] finds that GPU kernels can only be executed in parallel if they are submitted
from a single address space. In this work, we assume that a task has its own address space, whose GPU
kernels are thus time-multiplexed with other tasks’ GPU kernels at the GPU-level.

ECRTS 2018
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Figure 2 BWLOCK++ System Architecture.

above, for GPU intensive real-time tasks, which we focus on in this work, this assumption
does not significantly under-utilize the system, especially when there are enough co-scheduled
best-effort tasks, while it enables simpler analysis.

4 BWLOCK++

In this section, we provide an overview of BWLOCK++ and discuss its design details.

4.1 Overview
BWLOCK++ is a software framework to protect GPU applications on integrated CPU-GPU
architecture based SoC platforms. We focus on the problem of the shared memory bandwidth
contention between GPU kernels and CPU tasks in integrated CPU-GPU architectures. More
specifically, we focus on protecting GPU execution intervals of real-time GPU tasks from the
interference of non-critical but memory intensive CPU tasks.

In BWLOCK++, we exploit the fact that each GPU kernel is executed via explicit
programming interfaces from a corresponding host CPU program. In other words, we can
precisely determine when the GPU kernel starts and finishes by instrumenting these functions.

To avoid memory bandwidth contention from the CPU, we notify the OS before a
GPU application launches a GPU kernel and after the kernel completes with the help of a
system call. Apart from acquiring the bandwidth lock on the task’s behalf, this system call
also implements the priority ceiling protocol [17] to prevent preemption of the GPU using
task. While the bandwidth lock is being held by the GPU task, the OS regulates memory
bandwidth consumption of the best-effort CPU cores to minimize bandwidth contention with
the GPU kernel. Concretely, each best-effort core is periodically given a certain amount of
memory bandwidth budget. If the core uses up its given budget for the specified period,
the (non-RT) CPU tasks running on that core are throttled. In this way, the GPU kernel
suffers minimal memory bandwidth interference from the best-effort CPU cores. However,
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Figure 3 Phases of GPU Application under CUDA Runtime.

throttling CPU cores can significantly lower the overall system throughput. To minimize the
negative throughput impact, we propose a new CPU scheduling algorithm, which we call the
Throttle Fair Scheduler (TFS), to minimize the duration of CPU throttling without affecting
memory bandwidth guarantees for real-time GPU applications.

Figure 2 shows the overall architecture of the BWLOCK++ framework on an integrated
CPU-GPU architecture (NVIDIA Jetson TX2 platform). BWLOCK++ is comprised of three
major components: (1) Dynamic run-time library for instrumenting GPU applications; (2)
the Throttle Fair Scheduler; (3) Per-core B/W regulator. Working together, they protect
real-time GPU kernels and minimize CPU throughput reduction. We will explain each
component in the following sub-sections.

4.2 Automatic Instrumentation of GPU Applications

To eliminate manual programming efforts, we automatically instrument the program binary
at the dynamic linker level. We exploit the fact that the execution of a GPU application
using a GPU runtime library such as NVIDIA CUDA typically follows fairly predictable
patterns. Figure 3 shows the execution timeline of a typical synchronous GPU application
that uses the CUDA API.

In order to protect the runtime performance of a GPU application from co-running memory
intensive CPU applications, we need to ensure that the GPU application automatically holds
the memory bandwidth lock while a GPU kernel is executing on the GPU or performing a
memory copy operation between CPU and GPU. Upon the completion of the execution of
the kernel or memory copy operation, the GPU application again shall automatically release
the bandwidth lock. This is done by instrumenting a small subset of CUDA API functions
that are invoked when launching or synchronizing with a GPU kernel or while performing a
memory copy operation. These APIs are documented in Table 1. More specifically, we write
wrappers for these functions of interest which request/release bandwidth lock on behalf of
the GPU application before calling the actual CUDA library functions. We compile these
functions as a shared library and use Linux’ LD_PRELOAD mechanism [8] to force the GPU
application to use those wrapper functions whenever the CUDA functions are called. In this
way, we automatically throttle CPU cores’ bandwidth usage whenever real-time GPU kernels
are being executed so that the GPU kernels’ memory bandwidth can be guaranteed.

ECRTS 2018
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Table 1 CUDA APIs instrumented via LD_PRELOAD for BWLOCK++.

API Action Description

cudaConfigureCall Update active streams Specify the launch parameters for
the CUDA kernel

cudaMemcpy Acquire BWLOCK++ (Before)
Release BWLOCK++ (After)

Perform synchronous memory copy
between CPU and GPU

cudaMemcpyAsync Acquire BWLOCK++ and up-
date active streams

Perform asynchronous memory
copy between CPU and GPU

cudaLaunch Acquire BWLOCK++ Launch a GPU kernel
cudaDeviceSynchronize Release BWLOCK++ and clear

active streams
Block the calling CPU thread until
all the previously requested tasks
in a specific GPU device have com-
pleted

cudaThreadSynchronize Release BWLOCK++ and clear
active streams

Deprecated version of cudaDevice-
Synchronize

cudaStreamSynchronize Update active streams and re-
lease BWLOCK++ if there are
no active streams

Block the calling CPU thread until
all the previously requested tasks
in a specific CUDA stream have
completed

A complication to the automatic GPU kernel instrumentation arises when the application
uses CUDA streams to launch multiple GPU kernels in succession in multiple streams and
then waits for those kernels to complete. In this case, the bandwidth lock acquired by a GPU
kernel launched in one stream can potentially be released when synchronizing with a kernel
launched in another stream. In our framework, this situation is averted by keeping track of
active streams and associating bandwidth lock with individual streams instead of the entire
application whenever stream based CUDA APIs are invoked. A stream is considered active
if:

A kernel or memory copy operation is launched in that stream
The stream has not been explicitly (using cudaStreamSynchronize) or implicitly (using
cudaDeviceSynchronize or cudaThreadSynchronize) synchronized with

Our framework ensures that a GPU application continues holding the bandwidth lock as
long as it has one or more active streams.

The obvious drawback of throttling CPU cores is that the CPU throughput may be
affected especially if some of the tasks on the CPU cores are memory bandwidth intensive.
In the following sub-section, we discuss the impact of throttling on CPU throughput and
present a new CPU scheduling algorithm that minimizes throughput reduction.

4.3 Throttle Fair CPU Scheduler
As described earlier in this section, BWLOCK++ uses a throttling based approach to enforce
memory bandwidth limit of CPU cores at a regular interval. Although effective in protecting
critical GPU applications in the presence of memory intensive CPU applications, this approach
runs into the risk of severely under-utilizing the system’s CPU capacity; especially in cases
when there are multiple best-effort CPU applications with different memory characteristics
running on the best-effort CPU cores. In the throttling based design, once a core exceeds its
memory bandwidth quota and gets throttled, that core cannot be used for the remainder of



W. Ali and H. Yun 19:9

the period. Let us denote the regulation period as T (i.e., T = 1ms) and the time instant
at which an offending core exceeds its bandwidth budget as t. Then the wasted time due
to throttling can be described as δ = T − t and the smaller the value of t (i.e., throttled
earlier in the period) the larger the penalty to the overall system throughput. The value
of t depends on the rate at which a core consumes its allocated memory budget and that
in turn depends on the memory characteristics of the application executing on that core.
To maximize the overall system throughput, the value of δ should be minimized—that is if
throttling never occurs, t ≥ T ⇒ δ = 0, or occurs late in the period, throughput reduction
will be less.

4.3.1 Negative Feedback Effect of Throttling on CFS
One way to reduce CPU throttling is to schedule less memory bandwidth demanding tasks
on the best-effort CPU cores while the GPU is holding the bandwidth lock. Assuming that
each best-effort CPU core has a mix of memory bandwidth intensive and CPU intensive
tasks, then scheduling the CPU intensive tasks while the GPU is holding the lock would
reduce CPU throttling or at least delay the instant at which throttling occurs, which in turn
would improve CPU throughput. Unfortunately, Linux’s default scheduler CFS [13] actually
aggravates the possibility of early and frequent throttling when used with BWLOCK++’s
throttling mechanism.

The CFS algorithm tries to allocate fair amount of CPU time among tasks by using
each task’s weighted virtual runtime (i.e., weighted execution time) as the scheduling metric.
Concretely, a task τi’s virtual runtime Vi is defined as

Vi = Ei

Wi
(1)

where Ei is the actual runtime and Wi is the weight of the task. The CFS scheduler simply
picks the task with the smallest virtual runtime.

The problem with memory bandwidth throttling under CFS arises because the virtual
run-time of a memory intensive task, which gets frequently throttled, increases more slowly
than the virtual run-time of a compute intensive task which does not get throttled. Due to
this, the virtual runtime based arbitration of CFS tends to schedule the memory intensive
tasks more than the CPU intensive tasks while bandwidth regulation is in place.

4.3.2 TFS Approach
In order to reduce the throttling overhead while keeping the undesirable scheduling of memory
intensive tasks quantifiable, TFS modifies the throttled task’s virtual runtime to take the
task’s throttled duration into account. Specifically, at each regulation period, if there exists
a throttled task, we scale the throttled duration of the task by a factor, which we call TFS
punishment factor, and add it to its virtual runtime.

Under TFS, a throttled task τi’s virtual runtime V new
i at the end of jth regulation period

is expressed as:

V new
i = V old

i + δj
i × ρ (2)

where δj
i is the throttled duration of τi in the jth sampling period, and ρ is the TFS

punishment factor.
The more memory intensive a task is, the more likely the task get throttled in each

regulation period for a longer duration of time (i.e., higher δi). By adding the throttled time
back to the task’s virtual runtime, we make sure that the memory intensive tasks are not

ECRTS 2018
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Table 2 Taskset for Example.

Task Compute Time (C) Period (P) Description

τRT 4 15 Real-time task
τMEM 4 N/A Memory intensive best-effort task
τCP U 4 N/A CPU intensive best-effort task

favored by the scheduler. Furthermore, by adjusting the TFS punishment factor ρ, we can
further penalize memory intensive tasks in favor of CPU intensive ones. This in turn reduces
the amount of throttled time and improves overall CPU utilization. On the other hand, the
memory intensive tasks will still be scheduled (albeit less frequently so) according to the
adjusted virtual runtime. Thus, no tasks will suffer starvation.

Scheduling of tasks under TFS is fair with respect to the adjusted virtual runtime metric
but it can be considered unfair with respect to the CFS’s original virtual runtime metric. A
task τi’s “lost” virtual runtime ∆T F S

i (due to TFS’s inflation) over J regulation periods can
be quantified as follows:

∆T F S
i =

J∑
j=0

δj
i × ρ. (3)

4.3.3 Illustrative Example
We elaborate the problem of CFS and the benefit of our TFS extension with a concrete
illustrative example.

Let us consider a small integrated CPU-GPU system, which consists of two CPU cores
and a GPU. We further assume, following our system model, that Core-1 is a real-time core,
which may use the GPU, and Core-2 is a best-effort core, which doesn’t use the GPU.

Table 2 shows a taskset to be scheduled on the system. The taskset is composed of a
GPU using real-time task, which needs to be protected by our framework for the entire
duration of its execution; and two best-effort tasks (of equal CFS priority), one of which is
CPU intensive and the other is memory intensive.

Figure 4a shows how the scheduling would work when CFS is used to schedule best-effort
tasks τCP U and τMEM on the best-effort core with its memory bandwidth is throttled by
our kernel-level bandwidth regulator. Note that in this example, both OS scheduler tick
timer interval and the bandwidth regulator interval are assumed to be 1ms. At time 0, τCP U

is first scheduled. Because τCP U is CPU bound, it doesn’t suffer throttling. At time 1,
the CFS schedules τMEM as its virtual runtime 0 is smaller than τCP U ’s virtual runtime 1.
Shortly after the τMEM is scheduled, however, it gets throttled at time 1.33 as it has used
the best-effort core’s allowed memory bandwidth budget for the regulation interval. When
the budget is replenished at time 2, at the beginning of the new regulation interval, the
τMEM ’s virtual runtime is 0.33 while τCP U is 1. So, the CFS picks the τMEM (smaller of
the two) again, which gets throttled again. This pattern continues until the τMEM ’s virtual
runtime finally catches up with τCP U at time 4 by which point the best-effort core has been
throttled 66% of time between time 1 and 4. As can be seen in this example, CFS favors
memory intensive tasks as their virtual runtimes increase more slowly than CPU intensive
ones when memory bandwidth throttling is used.

Figure 4b shows a hypothetical schedule in which the execution of τMEM is delayed in
favor of the τCP U while τRT is running (thus, memory bandwidth regulation is in place.)
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Figure 5 Virtual runtime progress of the two synthetic tasks. One is cpu-intensive and the other
is memory-intensive.

In this case, because τCP U never exhausts the memory bandwidth budget, it never gets
throttled. As a result, the best-effort core never experiences throttling and thus is able to
achieve high throughput. While this is ideal behavior from the perspective of throughput, it
may not be ideal for the τMEM as it can suffer starvation.

Figure 4c shows the schedule under the TFS (with a TFS punishment factor ρ = 3). The
TFS works identical to CFS until at time 2, when the BWLOCK++’s periodic timer is called.
At this point, the τMEM ’s virtual runtime (V MEM ) is 0.33ms. However, because it has been
throttled for 0.67ms during the regulation period (δ = 0.67), according to Equation 2, TFS
increases the task’s virtual runtime to 2.34 (V MEM +δ×ρ = 0.33+0.67×3 = 2.34). Because
of the increased virtual runtime, the TFS scheduler then picks τCP U as its virtual runtime is
now smaller than that of τMEM (1 < 2.34). Later, when the τCP U ’s virtual runtime becomes
3 at time 4, the TFS scheduler can finally re-schedule the τMEM . In this manner, TFS
favors CPU intensive tasks over memory-intensive ones, while preventing starvation of the
latter. Note that TFS works at each regulation period (i.e., 1ms) independently and thus
automatically adapts to the task’s changing behavior. For example, if a task is memory
intensive only for a brief period of time, the task will be throttled only for the memory
intensive duration, and the throttled time will be added back to the task’s virtual runtime at
each 1ms regulation period. Furthermore, even for a period when a task is throttled, the task
always makes small progress as allowed by the memory bandwidth budget for the period.
Therefore, no task suffers complete starvation for an extended period of time.

4.3.4 Effects of TFS using Synthetic Tasks

We experimentally validate the effect of TFS in scheduling best-effort tasks on a real system.
In this experiment, we use two synthetic tasks: one is CPU intensive and the other is
memory-intensive. We use Bandwidth benchmark for both of these tasks. In order to make
Bandwidth memory intensive, we configure its working-set size to be twice the size of LLC on
our platform. Similarly, to make Bandwidth compute (CPU) intensive, we make its working
set size one half the size of L1 data cache in our platform. We assign these two best-effort
tasks on the same best-effort core, which is bandwidth regulated with a 100 MB/s memory
bandwidth budget.



W. Ali and H. Yun 19:13

Intense Mild
Process

0

200

400

600

800

1000

758

242

(a) CFS

Intense Mild
Process

0

200

400

600

800

1000

515
485

(b) TFS

Intense Mild
Process

0

200

400

600

800

1000

356

644

(c) TFS-3X

Figure 6 The number of periods during which the two tasks are scheduled. ’Intense’ refers to the
memory-intensive task. ’Mild’ refers to the CPU-intensive task.

Figure 5 shows the virtual runtime progression over 1000 sampling periods of the two
tasks under three scheduler configurations: CFS, TFS (ρ = 1), and TFS-3X (ρ = 3). In
CFS, the memory intensive process gets preferred by the CFS scheduler at each scheduling
instance, because its virtual run-time progresses more slowly. In TFS and TFS-3X, however,
as memory-intensive task’s virtual runtime is increased, CPU-intensive task is scheduled
more frequently.

This can be seen more clearly in Figure 6, which shows the number of periods utilized by
each task on the CPU core, over the course of one thousand sampling periods. Under CFS,
out of all the sampling periods, 75% are utilized by the memory intensive process and only
25% are utilized by the compute intensive process. With TFS, the two tasks get to run in
roughly the same number of sampling periods whereas in TFS-3x, the CPU intensive task
gets to run more than the memory intensive task.

5 Implementation

In this section, we describe the implementation details of BWLOCK++.

5.1 BWLOCK++ System Call
We add a new system call sys_bwlock in Linux kernel 4.4.38. The system call serves two
purposes. 1) It acquires or releases the memory bandwidth lock on behalf of the currently
running task on the real-time core; and 2) it implements a priority-ceiling protocol, which
boosts the calling task’s priority to the system’s ceiling priority, to prevent preemption. We
introduce two new integer fields, bwlock_val, bw_old_priority, in the task control block:
bwlock_val stores the current status of the memory bandwidth lock and bw_old_priority
keeps track of the original real-time priority of the task while it is holding the bandwidth
lock.

Algorithm 1 shows the implementation of the system call. To acquire the memory
bandwidth lock, the system call must be invoked from the real-time system core and the
task currently scheduled on the real-time core must have a real-time priority (line 2 ). At the
time of acquisition of bandwidth lock, the priority of the calling task, which is tracked by
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Algorithm 1: BWLOCK++ System Call.
1 syscall sys_bwlock(bw_val)
2 if smp_processor_id () == RT_CORE_ID ∧ rt_task (current) then
3 rt_core_data := get_rt_core_data ()
4 rt_core_data → current_task := current
5 if bw_val ≥ 1 then
6 current → bwlock_val := 1
7 current → bw_old_priority := current → rt_priority
8 current → rt_priority := MAX_USER_RT_PRIO - 1
9 else

10 current → bwlock_val := 0
11 current → rt_priority := current → bw_old_priority
12 end
13 end
14 return;

the globally accessible current pointer in Linux kernel, is raised to the maximum allowed
real-time priority value (the ceiling priority) for any user-space task to prevent preemption
(line 7 ). The real-time priority value of the the task is restored to its original priority value
when the bandwidth lock is released (line 10 ). In this manner, the system call updates
the state of the currently scheduled real-time task on the real-time system core, which is
then used by the memory bandwidth regulator on best-effort cores to enforce memory usage
thresholds, as explained in the following subsection.

5.2 Per-Core Memory Bandwidth Regulator

The per-core memory bandwidth regulator is composed of a periodic timer interrupt handler
and a performance monitoring counter (PMC) overflow interrupt handler. Algorithm 2 shows
the implementation of the memory bandwidth regulator.

The periodic timer interrupt handler is invoked at a periodic interval (currently every 1
msec) using a high resolution timer in each best-effort core. The timer handler begins a new
bandwidth lock regulation period and performs the following operations:

Unthrottle the core if it was throttled in the last regulation period (line 3 )

Scale the virtual runtime of the task currently scheduled on the core based on the
throttling time in the last period and the TFS punishment factor (line 4-5 )

Determine the new memory usage budget based on the bandwidth lock status of the task
currently scheduled on the real-time system core (line 7-12 )

Program the performance monitoring counter on the core based on the new memory usage
budget for the current regulation period (line 13 ). We use the L2D_CACHE_REFILL
event for measuring the memory bandwidth traffic in ARM Cortex-A57 processor core

The PMC overflow interrupt occurs when the core at hand exceeds its memory usage
budget in the current regulation period. The interrupt handler prevents further memory
transactions from this core by scheduling a high priority idle kernel thread on it for the
remainder of the regulation period (line 17 ).
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Algorithm 2: Memory Bandwidth Regulator.
1 procedure periodic_interrupt_handler(core_data)
2 if core_is_throttled (core_data → core_id) == TRUE then
3 unthrottle_core (core_data → core_id)
4 record_throttling_end_time (core_data → current_task)
5 scale_virtual_runtime (core_data → current_task)
6 end
7 rt_core_data := get_rt_core_data ()
8 if rt_core_data → current_task → bwlock_val == 1 then
9 core_data → new_budget := rt_core_data → throttle_budget

10 else
11 core_data → new_budget := MAX_BANDWIDTH_BUDGET
12 end
13 program_pmc (core_data → new_budget)
14 return;

15 procedure pmc_overflow_handler(core_data)
16 record_throttling_start_time (core_data → current_task)
17 throttle_core (core_data → core_id)
18 return;

6 Evaluation

In this section, we present the experimental evaluation results of BWLOCK++.

6.1 Setup

We evaluate BWLOCK++ on NVIDIA Jetson TX2 platform. We use the Linux kernel
version 4.4.38, which is patched with the changes required to support BWLOCK++. The
CUDA runtime library version installed on the platform is 8.0, which is the latest version
available for Jetson TX2 at the time of writing. In all our experiments, we place the platform
in maximum performance mode by maximizing GPU and memory clock frequencies and
disabling the dynamic frequency scaling of CPU cores. We also shutdown the graphical user
interface and disable the network manager to avoid run to run variation in the experiments.
As per our system model, we designate the Core-0 in our system as real-time core. The
remaining cores execute best-effort tasks only. All the tasks are statically assigned to their
respective cores during the experiment. While NVIDIA Jetson TX2 platform contains two
CPU islands, a quad-core Cortex-A57 and a dual-core Denver, we only use the Cortex-A57
island for our evaluation and leave the Denver island off because we were unable to find
publicly available documentation regarding the Denver cores’ hardware performance counters,
which is needed to implement throttling. In order to evaluate BWLOCK++, we use six
benchmarks from parboil suite which are listed as memory bandwidth sensitive in [18].
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Table 3 GPU execution time breakdown of selected benchmarks.

Benchmark Dataset Copy Timing Breakdown (msec)
(KBytes) Kernel (Ge) Copy (Gm) Compute (C) Total (E)

histo Large 5226 83409 18 0 83428
sad Large 709655 152 654 53 861
bfs 1M 62453 174 72 0 246
spmv Large 30138 69 51 10 131
stencil Default 196608 749 129 9 888
lbm Long 379200 43717 358 2004 46080
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Figure 7 Slowdown of the total execution time of GPU benchmarks due to three Bandwidth
corunners.

6.2 Effect of Memory Bandwidth Contention

In this experiment, we investigate the effect of memory bandwidth contention due to co-
scheduled memory intensive CPU applications on the evaluated GPU kernels.

First, we measure the execution time of each GPU benchmark in isolation. From this
experiment, we record the GPU kernel execution time (Ge), memory copy time for GPU
kernels (Gm) and CPU compute time (C) for each benchmark. The data collected is shown
in Table 3. We then repeat the experiment after co-scheduling three instances of a memory
intensive CPU application as co-runners. We use the Bandwidth benchmark from the
IsolBench suite [19] as the memory intensive CPU benchmark, which updates a big 1-D
array sequentially. The sequential write access pattern of the benchmark is known to cause
worst-case interference on several multicore platforms [20].

The results of this experiment are shown in Figure 7 and they demonstrate how much
the total execution time of GPU benchmarks (E = Ge + Gm + C) suffers from memory
bandwidth contention due to the co-scheduled CPU applications.
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Figure 8 Effect of corun bandwidth threshold on the execution time of histo benchmark.

From Figure 7, it can be seen that the worst case slowdown, in case of histo benchmark,
is more than 250%. Similarly, for SAD benchmark, the worst case slowdown is more than
150%. For all other benchmarks, the slowdown is non-zero and can be significant in affecting
the real-time performance. These results clearly show the danger of uncontrolled memory
bandwidth sharing in an integrated CPU-GPU architecture as GPU kernels may potentially
suffer severe interference from co-scheduled CPU applications. In the following experiment,
we investigate how this problem can be addressed by using BWLOCK++.

6.3 Determining Memory Bandwidth Threshold
In order to apply BWLOCK++, we first need to determine safe memory budget that can
be given to the best-effort CPU cores in the presence of GPU applications. However, an
appropriate threshold value may vary depending on the characteristics of individual GPU
applications. If the threshold value is set too high, then it may not be able to protect the
performance of the GPU application. On the other hand, if the threshold value is set too low,
then the CPU applications will be throttled more often and that would result in significant
CPU capacity loss.

We calculate the safe memory budget for best-effort CPU cores by observing the trend
of slowdown of the total execution time of GPU application as the allowed memory usage
threshold of CPU co-runners is varied. We start with a threshold value of 1-GB/s for each
best-effort CPU core. We then continue reducing the threshold value for best-effort cores by
half and measure the impact of this reduction on the slowdown of execution time (E) of the
benchmark.

Figure 8 shows this trend for the execution time of histo benchmark from the parboil
suite. From the figure, it can be seen that after 64-MBps threshold value for best-effort CPU
cores, further reduction of threshold value does not yield significant improvement in reducing
the slowdown of benchmark. Hence, for histo benchmark, we select 64-MBps as the threshold
value for the best-effort CPU cores. In a similar fashion, we plot this trend for all the selected
benchmarks and determine the value of corun threshold for the best-effort CPU cores.
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Figure 9 BWLOCK++ Evaluation Results.

6.4 Effect of BWLOCK++
In this experiment, we evaluate the performance of BWLOCK++. Specifically, we record the
corun execution of GPU benchmarks with the automatic instrumentation of BWLOCK++.
We call this scenario BW-Locked-Auto. We compare the performance under BW-Locked-Auto
against the Solo and Corun execution of the GPU benchmarks which represent the measured
execution times in isolation and together with three co-scheduled memory intensive CPU
applications, respectively.

To get the data-points for BW-Locked-Auto, we configure BWLOCK++ according to the
allowed memory usage threshold of the benchmark at hand and use our dynamic GPU kernel
instrumentation mechanism to launch the benchmark in the presence of three Bandwidth
benchmark instances (write memory access pattern) as CPU co-runners. The results of this
experiment are plotted in Figure 9. In Figure 9, we plot the total execution time of each
benchmark for the above mentioned scenarios. All the time values are normalized with respect
to the total execution time (Esolo = Csolo + Ge

solo + Gm
solo) of the benchmark in isolation.

As can be seen from this figure, execution under BW-Locked-Auto incurs significantly less
slowdown of the total execution time of GPU benchmarks due to reduction of both GPU
kernel execution time and memory copy operation time.

6.5 Throughput improvement with TFS
As explained in Section 4.3, throttling under CFS results in significant system throughput
reduction. In order to illustrate this, we conduct an experiment in which the GPU benchmarks
are executed with six CPU co-runners. Each CPU core, apart from the one executing the
GPU benchmark, has a memory intensive application and a compute intensive application
scheduled on it. For both of these applications, we use the Bandwidth benchmark with
different working set sizes. In order to make Bandwidth memory intensive, we configure
its working set size to be twice the size of LLC on our evaluation platform. Similarly for
compute intensive case, we configure the working set size of Bandwidth to be half of the
L1-data cache size. We record the total system throttle time statistics with BWLOCK++ for
all the GPU benchmarks. The total system throttle time is the sum of throttle time across
all system cores. We then repeat the experiment with our Throttle Fair Scheduling scheme.
In TFS-1, we configure the TFS punishment factor as one for the memory intensive threads
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Figure 10 Comparison of total system throttle time under different scheduling schemes.

and in TFS-3, we set this factor to three. We plot the normalized total system throttle time
for all the scheduling schemes and present them in Figure 10. It can be seen that TFS results
in significantly less system throttling (On average, 39% with TFS-1 and 62% with TFS-3 )
as compared to CFS.

6.6 Overhead due to BWLOCK++
The overhead incurred by real-time GPU applications due to BWLOCK++ comes from the
following sources:

LD_PRELOAD overhead for CUDA API instrumentation
Overhead due to BWLOCK++ system call

The overhead due to LD_PRELOAD is negligible since we cache CUDA API symbols for
all the instrumented functions inside our shared library; after searching for them only once
through the dynamic linker. We calculate the overhead incurred due to BWLOCK++ system
call by executing the system call one million times and taking the average value. In NVIDIA
Jetson TX2, the average overhead due to each BWLOCK++ system call is 1.84usec. Finally,
we experimentally determine the overhead value for all the evaluated benchmarks by running
the benchmark in isolation with and without BWLOCK++. Our experiment shows that for
all the evaluated benchmarks, the total overhead due to BWLOCK++ is less than 1% of the
total solo execution time of the benchmark.

7 Schedulability Analysis

As we limit the scheduling of real-time tasks on a single real-time core, our system can
be analyzed using the classical unicore based response time analysis for preemptive fixed
priority scheduling with blocking [3], because we model each GPU execution segment as
a critical section, which is protected by acquiring and releasing the bandwidth lock. The
bandwidth lock serializes GPU execution and regulates memory bandwidth consumption of
co-scheduled best-effort CPU tasks. The bandwidth lock implements the standard priority
ceiling protocol [17], which boosts the priority of the lock holding task (i.e., the task executing
a GPU kernel) to the ceiling priority of the lock, which is the highest real-time priority of
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the system, so as to prevent preemption. With this constraint, a real-time task τi’s response
time is expressed as:

Rn+1
i = Ei +Bi +

∑
∀j∈hp(i)

⌈
Rn

i

Pj

⌉
Ej (4)

where hp(i) represents the set of higher priority tasks than τi and Bi is the longest GPU
kernel or copy duration—protected by the memory bandwidth lock—of one of the lower
priority tasks.

The benefit of BWLOCK++ lies in the reduction of worst-case GPU kernel execution
or GPU memory copy interval of real-time tasks (which would in turn reduce Ei and Bi

terms in Equation 4). As shown in Section 6.2, without BWLOCK++, GPU execution of
a task can suffer severe slowdown (up to 230% slowdown in our evaluation), which would
result in pessimistic WCET estimation for GPU kernel and copy execution times, hampering
schedulability of the system. BWLOCK++ helps reduce pessimism of GPU execution time
estimation and thus improves schedulability.

8 Discussion

Our approach has following limitations. First, we assume that all real-time tasks are scheduled
on a single dedicated real-time core while the rest of the cores only schedule best-effort
tasks. In addition, we assume only real-time tasks can utilize the GPU while best-effort
tasks cannot. While restrictive, recall that scheduling multiple GPU using real-time tasks
on a single dedicated real-time core does not necessarily reduce GPU utilization because
multiple GPU kernels from different tasks (processes) are serialized at the GPU hardware
anyway [15] as we already discussed in Section 3. Also, due to the capacity limitation of
embedded GPUs, it is expected that a few GPU using real-time task can easily achieve high
GPU utilization in practice. We claim that our approach is practically useful for situations
where a small number of GPU accelerated tasks are critical, for example, a vision-based
automatic braking system.

Second, we assume that GPU applications are given a priori and they can be profiled
in advance so that we can determine proper memory bandwidth threshold values. If this
assumption cannot be satisfied, an alternative solution is to use a single threshold value for
all GPU applications, which eliminates the need of profiling. But the downside is that it may
lower the CPU throughput because the memory bandwidth threshold must be conservatively
set to cover all types of GPU applications.

9 Conclusion

In this paper, we presented BWLOCK++, a software based mechanism for protecting the
performance of GPU kernels on platforms with integrated CPU-GPU architectures.

BWLOCK++ automatically instruments GPU applications at run-time and inserts a
memory bandwidth lock, which throttles memory bandwidth usage of the CPU cores to
protect performance of GPU kernels. We identified a side effect of memory bandwidth
throttling on the performance of Linux default scheduler CFS, which results in the reduction
of overall system throughput. In order to solve the problem, we proposed a modification to
CFS, which we call Throttle Fair Scheduling (TFS) algorithm. Our evaluation results have
shown that BWLOCK++ effectively protects the performance of GPU kernels from memory
intensive CPU co-runners. Also, the results showed that TFS improves system throughput,
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compared to CFS, while protecting critical GPU kernels. In the future, we plan to evaluate
BWLOCK++ on other integrated CPU-GPU architecture based platforms. We also plan
to extend BWLOCK++ not only to protect critical GPU tasks but also to protect critical
CPU tasks.
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