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Abstract
Although internal devices (e.g., memory, timers)
and external devices (e.g., sensors, transceivers) sig-
nificantly contribute to the energy consumption of
an embedded real-time system, their impact on the
worst-case response energy consumption (WCRE)
of tasks is usually not adequately taken into ac-
count. Most WCRE analysis techniques only focus
on the processor and neglect the energy consump-
tion of other hardware units that are temporarily
activated and deactivated in the system.

To solve the problem of system-wide energy-
consumption analysis, we present SysWCEC, an
approach that addresses these problems by enabling
static WCRE analysis for entire real-time systems,
including internal as well as external devices. For
this purpose, SysWCEC introduces a novel ab-

straction, the power-state–transition graph, which
contains information about the worst-case energy
consumption of all possible execution paths. To
construct the graph, SysWCEC decomposes the
analyzed real-time system into blocks during which
the set of active devices in the system does not
change and is consequently able to precisely handle
devices being dynamically activated or deactivated.

In this artifact evaluation, which accompanies
our related conference paper, we present easy to re-
produce WCRE analyses with the SysWCEC frame-
work using several benchmarks. The artifact com-
prises the generation of the power-state–transition
graph from a given benchmark system and the
formulation of an integer linear program whose so-
lution eventually yields safe WCRE bounds.

2012 ACM Subject Classification Computer systems organization → Real-time systems
Keywords and phrases energy-constrained real-time systems, worst-case energy consumption (WCEC),
worst-case response energy consumption (WCRE), static whole-system analysis
Digital Object Identifier 10.4230/DARTS.4.2.7
Related Article Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang
Schröder-Preikschat, “Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained
Real-Time Systems”, in Proceedings of the 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), LIPIcs, Vol. 106, pp. 24:1–24:24 , 2018.
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.24
Related Conference 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), July 3–6, 2018,
Barcelona, Spain

∗ This work is supported by the German Research Foundation (DFG), in part by Research Unit FOR1508
under grant no. SCHR603/14-2, Research Grant no. SCHR603/13-1, the CRC/TRR 89 Project C1 (Invasive
Computing), and the Bavarian Ministry of State for Economics under grant no. 0704/883 25.

© Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 4, Issue 2, Artifact No. 7, pp. 7:1–7:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/DARTS.4.2.7
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.24
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


7:2 Whole-System WCEC Analysis (Artifact)

1 Scope

In the following, we first give an overview of the main problems when statically analyzing system-
wide worst-case response energy consumption (WCRE)1 of energy-constrained real-time systems
and outline our SysWCEC approach to tackle these problems (see Section 1.1). Subsequently, we
present the workflow of SysWCEC’s artifact evaluation (see Section 1.2).

1.1 Whole-System Energy-Consumption Analysis
Energy-constrained real-time systems usually use several internal devices, such as timers, or
external peripherals, such as sensors or transceivers, to interact with the environment. In addition
to providing timeliness by using analyzed worst-case execution-time bounds, energy-constrained
real-time systems need to further guarantee that tasks execute within predefined energy-budget
bounds [11, 14]. When these systems are operated under the common preemptive, fixed-priority
scheduling strategy, a task, for example, with lower priority, which temporarily activates a device
and thereby increases the system’s overall power consumption, can be preempted by a task with
higher priority. As a consequence, in order to statically provide sound bounds on the energy
consumption, determining the worst-case energy consumption (WCEC) of both tasks in isolation is
no longer sufficient, due to their mutual influence on each other: The low-priority task’s response
energy consumption is increased by the intermediate execution of the high-priority task and the
high-priority task’s response energy consumption is influenced if the lower task turns on a device
prior to being preempted. In other words, the WCRE analysis needs to consider all preemptions
and device (de-)activations along the feasible program paths of the whole real-time system.

A sound approach to address devices for WCRE analysis is to assume that all devices are
active during the entire runtime. However, this approach leads to overly pessimistic results in
the light of the fact that peripherals are usually switched on for the short timespan when their
service is actually required. In order to solve this problem of pessimistic WCRE estimates, we
decompose the system’s source code into blocks where devices are either active or inactive. For the
system-wide path analysis we use the dOSEK [2] framework, which is both a system analyzer and
an operating-system generator for OSEK-compliant real-time systems. dOSEK is able to explicitly
enumerate all possible system paths and thereby considers possible preemptions by asynchronous
interrupts, synchronous task activations, and the fixed-priority scheduling semantic. We extended
dOSEK to make use of the blocks with temporarily activated devices. After dOSEK’s system-path
enumeration under consideration of the devices’ power state, we obtain an abstraction that now
enables system-wide WCRE analyses: the power-state–transition graph, or PSTG for short.

With the PSTG storing knowledge of all possible system-wide program paths and the active
devices along these paths, we are able to formulate an integer linear program (ILP). This approach
of finding the maximum flow through a directed graph is similar to the well-known implicit path-
enumeration technique [6, 9]. Additionally, SysWCEC is able to safely consider the scheduling
semantic and asynchronous interrupts. In our evaluation, we extended the Platin worst-case
analysis toolkit [8] for the formulation of ILP. Solving the formulated ILP problem by means of
specialized solvers (e.g., lp_solve) eventually yields bounds on the WCRE.

Our implementation relies on several modified frameworks [2, 8, 10]. Furthermore, for the
implementation of SysWCEC, we benefited from our previous work on response-time analysis [4]
and infrastructure around our benchmark generator for worst-case execution-time analysis [5, 13].

1 We use the terms WCEC and WCRE analogous to timing analysis where the worst-case execution time (WCET)
refers to a task in isolation and the worst-case response time (WCRT) to the timespan from the start of a
task until its completion, including all possible interferences (e.g., preemptions).
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Figure 1 Workflow of SysWCEC’s artifact evaluation

1.2 Artifact-Evaluation Workflow
The main goal of our artifact evaluation is the reproduction of evaluation results and the visual
comparison against published values with a single command. Figure 1 gives an overview of the
artifact evaluation’s workflow. We consider several benchmarks in the evaluation, denoted as
system in the figure. The system’s source code together with the configuration (e.g., containing
information on the devices’ power consumption) is input to the dOSEK framework, which analyzes
the system. When executing the command, the dOSEK framework first generates the analyzed
system (including the power-state–transition graph) from the given task implementations and
configurations. dOSEK’s output is input to the modified version of the Platin analysis toolkit.
It formulates the integer linear program, which is solved by lp_solve. In the last processing
step of the evaluation, Platin’s analysis results, which are stored using dataref [3], and a LATEX
template are input to the LuaTeX typesetter, which produces a final PDF document containing
the evaluation results. This document can be directly compared to the published values.

2 Content

The artifact package consists of a virtual-machine image (Lubuntu 16.04, amd64) with all required
software installed. The most importantly required software for SysWCEC are partly modified
versions of the following programs:

Patmos’ LLVM/Clang compiler infrastructure [10]
dOSEK system analyzer/generator [2]
Platin worst-case analyses toolkit [8]
lp_solve ILP solver [1]

3 Getting the Artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition to this, the artifact’s code is
available at SysWCEC’s code-repository website:

https://gitlab.cs.fau.de/syswcec/

The main repository of the artifact evaluation (ecrts18-artifact-evaluation/), also contains
a link to the (latest) virtual machine with the installed programs. For updates, especially
on our future work in the context of SysWCEC, such as state-enumeration and ILP-solving
enhancements (for details see our conference paper [12]), please update the related source-code
repositories (i.e., dOSEK, Platin, the artifact repository itself). The artifact’s repository contains
information on how to execute the commands to follow the workflow (see Section 1.2) in order to
reproduce the provided evaluation results (see README.md).

DARTS

https://gitlab.cs.fau.de/syswcec/
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4 Tested Platforms

To enable a high degree of portability, we installed the required software inside a virtual-machine
image, which can be executed using the VirtualBox hypervisor [7]. Although the size of the
artifact requires around 4GiB of disk space, the self-contained virtual-machine image avoids the
necessity to install and configure the multitude of required tools (e.g., Patmos’ Clang, dOSEK,
Platin). VirtualBox is available for all common platforms.

5 License

GNU General Public License Version 3

6 MD5 Sum of the Artifact

b0c7fd4f2e18757d7fd06c92c40cef75

7 Size of the Artifact

4.2GiB
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