
Engineering Motif Search for Large Motifs
Petteri Kaski
Department of Computer Science, Aalto University
Espoo, Finland
petteri.kaski@aalto.fi

Juho Lauri
Nokia Bell Labs
Dublin, Ireland
juho.lauri@nokia-bell-labs.com

Suhas Thejaswi
Department of Computer Science, Aalto University
Espoo, Finland
suhas.muniyappa@aalto.fi

Abstract
Given a vertex-colored graph H and a multiset M of colors as input, the graph motif problem
asks us to decide whether H has a connected induced subgraph whose multiset of colors agrees
with M . The graph motif problem is NP-complete but known to admit randomized algorithms
based on constrained multilinear sieving over GF(2b) that run in time O(2kk2mM(2b)) and with
a false-negative probability of at most k/2b−1 for a connected m-edge input and a motif of size
k. On modern CPU microarchitectures such algorithms have practical edge-linear scalability to
inputs with billions of edges for small motif sizes, as demonstrated by Björklund, Kaski, Kowalik,
and Lauri [ALENEX’15]. This scalability to large graphs prompts the dual question whether it
is possible to scale to large motif sizes.

We present a vertex-localized variant of the constrained multilinear sieve that enables us to
obtain, in time O(2kk2mM(2b)) and for every vertex simultaneously, whether the vertex parti-
cipates in at least one match with the motif, with a per-vertex probability of at most k/2b−1 for
a false negative. Furthermore, the algorithm is easily vector-parallelizable for up to 2k threads,
and parallelizable for up to 2kn threads, where n is the number of vertices in H. Here M(2b) is
the time complexity to multiply in GF(2b).

We demonstrate with an open-source implementation that our variant of constrained multilin-
ear sieving can be engineered for vector-parallel microarchitectures to yield hardware utilization
that is bound by the available memory bandwidth.

Our main engineering contributions are (a) a version of the recurrence for tightly labeled
arborescences that can be executed as a sequence of memory-and-arithmetic coalescent parallel
workloads on multiple GPUs, and (b) a bit-sliced low-level implementation for arithmetic in
characteristic 2 to support (a).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Mathemat-
ics of computing → Probabilistic algorithms, Theory of computation → Parallel algorithms

Keywords and phrases algorithm engineering, constrained multilinear sieving, graph motif prob-
lem, multi-GPU, vector-parallel, vertex-localization

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.28

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement 338077 “Theory and Practice of Advanced Search and Enumeration”.

© Petteri Kaski, Juho Lauri, and Suhas Thejaswi;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:petteri.kaski@aalto.fi
mailto:juho.lauri@nokia-bell-labs.com
mailto:suhas.muniyappa@aalto.fi
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Engineering Motif Search for Large Motifs

Acknowledgements We gratefully acknowledge the use of computational resources provided by
the Aalto Science-IT project at Aalto University and by CSC – IT Center for Science, Finland.

1 Introduction

Computer microarchitectures are increasingly vector-parallel, or, single-instruction-multiple-
data (SIMD) parallel. While such parallelism can be harnessed to an impressive effect in many
applications, a number of applications still remain where vector-parallel algorithm designs
have not yet been deployed in a manner that seeks to utilize the maximum parallel bandwidth
obtainable, especially in terms of memory bandwidth. Problems with (sparse) graph inputs
are a particular case where high-bandwidth vectorization is not immediate, in particular
because traversing the edges of a graph via adjacency lists produces a data-dependent1
pattern of memory accesses that does not vectorize easily, unless the algorithm design is such
that each traversal of an edge involves accesses to one or more long vectors of consecutive
words in memory. The protagonist of this paper is the following NP-complete graph problem,
which we will show admits such vectorizable algorithm designs.

The Graph Motif Problem. The graph motif problem asks, given a vertex-colored graph H
(the host graph) and a multiset M of colors (the motif or the query) as input, whether H has
a connected induced subgraph whose multiset of colors agrees with M . The set of vertices of
such a connected induced subgraph is called a match to the query. The graph motif problem
appears, for example, as a query problem for protein interaction networks in computational
biology (cf. Lacroix, Fernandes, and Sagot [24] and Bruckner, Hüffner, Karp, Shamir, and
Sharan [8]); we postpone a further discussion of earlier work to the end of this section.

Asymptotically the currently fastest algorithm designs for the graph motif problem are
based on algebraic methods. For a connected host graph with m edges and a motif of size k,
constrained multilinear sieving (cf. Björklund, Kaski, and Kowalik [6]) over the finite field
GF(2b) enables a randomized algorithm that runs in time O

(
2kk2mM(2b)

)
and reports a false

negative with probability at most k/2b−1 (cf. Björklund, Kaski, Kowalik, and Lauri [7]). Here
M(2b) = O(b log b) is the time complexity of multiplication in GF(2b), cf. Lin, Al-Naffouri,
Han, and Chung [25].

We observe in particular that the time complexity O
(
2kk2mM(2b)

)
of the Björklund–

Kaski–Kowalik–Lauri design scales linearly in the number of edges m. Conversely, it is
known that the exponential 2k scaling in the motif size is the best possible unless there
is a breakthrough in the complexity of the set cover problem (cf. Björklund, Kaski, and
Kowalik [6, Theorem 6]).2

From a practical engineering perspective, constrained multilinear sieving is known to
scale essentially in an edge-linear manner on modern CPU microarchitectures to graphs with
hundreds of millions to billions of edges on a single compute node, when the motif size is
small (cf. Björklund, Kaski, Kowalik, and Lauri [7]).

The present paper studies the dual question, namely what kind of empirical scalability
can one obtain as a function of increasing motif size k. This question is motivated, for

1 Indeed, while an adjacency list itself is read linearly from consecutive memory addresses, an algorithm
typically must use the outcomes of such reads to address its further memory accesses, for example, to
an array with one entry for each vertex in the graph.

2 More precisely, an O∗((2− ε)k)-time design for some constant ε > 0 for the graph motif problem would
imply a O∗((2− δ)n)-time design for the set cover problem on a universe of size n for some constant
δ > 0.

P. Kaski, J. Lauri, and S. Thejaswi 28:3

example, when one is searching for a group of vertices with a specific color composition, but
these vertices need not be immediately adjacent but rather some uncertain distance away
from each other in the host graph. In this setting, the task can still be formulated as an
instance of the graph motif problem,3 but this instance will have a somewhat larger size
k for the motif. In this situation, theory tells us that it will be difficult to obtain a base
algorithm design with better than 2k scalability in k, so one is essentially forced to seek
efficiency through implementation engineering. Here constrained multilinear sieving is an
excellent base design for vector-parallelization, in particular since the algorithm evaluates
the same multivariate polynomial P (defined by H) at 2k distinct points (defined by the
colors of H and M together with randomization). Furthermore, one can use a small field
size 2b and yet obtain good control on the probability of false negatives.

Our Contributions. Using the open-source CPU-based parallel implementation of Björklund,
Kaski, Kowalik, and Lauri [7] as a starting point, we engineer an implementation of motif
search that runs on compute nodes with one or more GPUs with performance that for large
motif sizes achieves the empirical peak transfer bandwidth of the GPU on-device memory.
Our present implementation is tailored for NVIDIA GPUs, but relies on design principles
that generalize to other vectorized microarchitectures, including CPUs with vector units.

In more detail, our contributions are as follows:
(i) Vertex-localized sieving. We develop a novel variant of the constrained multilinear sieve

that operates simultaneously on a family of multivariate polynomials, one polynomial
Pi for each vertex i ∈ V (H), rather than a single polynomial P as in the original design.
This re-design comes at asymptotically no extra cost and it enables us to localize the
outcome at vertices, that is, with a single run of the sieve, we obtain for every vertex
i the output whether there is at least one match that contains i, with a per-vertex
probability of a false negative of at most k/2b−1. This localization is advantageous in
situations when the motif is large and the host has only isolated4 matches to the motif.

(ii) Coalescent recurrence for tightly labeled arborescences. The most performance-critical
aspect of the constrained multilinear sieve is the recurrence for the 2k evaluations of
each of the n polynomials Pi. We engineer a version of the recurrence that can be
executed on multiple GPUs as a sequence of k workloads. For large k, these workloads
are arithmetic-and-memory coalescent to the length of the available vectorization. A
key principle is to design the memory layout of the recurrence so that each thread can
work with the widest coalesced per-thread load and store instructions supported by the
architecture. This is (i) to saturate the memory pipeline, and (ii) to supply each thread
with enough local work that can be executed in low-latency per-thread registers to
enable effective latency hiding. (Cf. Volkov [35] and Mei and Chu [27] for a discussion
of latency hiding and memory hierarchies on GPUs.)

(iii) Bit-sliced arithmetic in characteristic 2. Constrained multilinear sieving runs over a
finite field GF(2b), which requires a fast implementation for finite-field multiplication.
Asymptotically it is known that one can multiply in time M(2b) = O(b log b), cf. Lin,

3 Potentially with generalization to each vertex being colored with a set of colors instead of a single color,
to enable e.g. wild-card matches to accommodate for uncertainty.

4 In precise terms, when the vertices that are part of at least one match induce a subgraph whose each
connected component is a match. In this situation, one run of the vertex-localized sieve produces all
matches to a query, with total effort that scales linearly in the number of edges m. Indeed, we first run
the vertex-localized sieve, and then run, for example, a depth-first search on the vertices contained in at
least one match to identify the connected components.

SEA 2018

28:4 Engineering Motif Search for Large Motifs

Al-Naffouri, Han, and Chung [25]. Here we look at implementation for small values of
b and rely on independent repetitions of the sieve to decrease the probability of false
negatives. Obtaining a high-performance implementation presents a minor engineering
obstacle due to the fact that the instruction set of e.g. NVIDIA GPUs does not directly
support multiplication in characteristic 2, whereas modern CPUs implement instruction
set extensions with such support (cf. Gueron and Kounavis [16]). We rely on software
techniques and use bit-slicing (cf. Biham [3] and Rudra, Dubey, Jutla, Kumar, Rao,
and Rohatgi [34]) to multiply in parallel in units of 32 elements of GF(28) at a time
using a simplified Mastrovito [26] multiplier implemented with Boolean word operations.
We also experiment with other implementations for arithmetic in characteristic 2, but
bit-slicing is clearly the fastest, yielding multiplication rates of more than 2.4 trillion
GF(28)-multiplications per second on an NVIDIA Tesla V100 SXM2 Accelerator,
cf. Table 4 in the Appendix.

(iv) Open-source implementation. To encourage and ease further contributions, we release
our implementation as open-source software under the MIT License.5

Earlier Work. Motif search on graphs is a hard generalization of jumbled pattern matching
on strings (cf. [9, 14, 15, 18]) that was introduced by Lacroix, Fernandes, and Sagot [24] in a
bioinformatics context. Multiple variants and extensions of the base variant studied in the
present paper have been introduced and studied in a number of works, including Bruckner,
Hüffner, Karp, Shamir, and Sharan [8], Dondi, Fertin, and Vialette [11], Pinter and Zehavi [32,
33, 37], Björklund, Kaski, Kowalik [6], Bonnet and Sikora [12], and Zehavi [38].

From the perspective of parameterized algorithms [10], Fellows, Fertin, Hermelin, and
Vialette [13] established that the graph motif problem (parameterized by the motif size k) is
fixed-parameter tractable using the color-coding technique of Alon, Yuster, and Zwick [1].
The scaling f(k) as a function of the parameter k was improved in a sequence of works
[2, 6, 17, 21, 31], including the randomized O∗(2.54k)-time algorithm of Koutis [21], the
randomized O∗(2k)-time algorithm of Björklund, Kaski, and Kowalik [6], and the deterministic
O∗(5.22k)-time algorithm of Pinter, Scachnai, and Zehavi [31].6

Multilinear sieving and constrained multilinear sieving was developed in a sequence of
works starting from pioneering work by Koutis [20], Williams [36], Koutis and Williams [22],
and Koutis [21] on algebraic fingerprinting in group algebras (cf. Koutis and Williams [22]).
The multivariate polynomial version of the sieve was developed by Björklund [4], Björklund,
Husfeldt, Kaski, and Koivisto [5], and Björklund, Kaski, and Kowalik [6].

The generating polynomial P to capture connected sets of vertices in graphs can be
traced back to Nederlof’s [28] insight on branching walks for space-efficient algebraization of
the Steiner tree problem. Guillemot and Sikora [17] transported this insight to the graph
motif problem. The generating polynomial was further enhanced by Björklund, Kaski, and
Kowalik [6], and Björklund, Kaski, Kowalik, and Lauri [7].

2 Scalar Recurrences for Sieving with Localization

This section details all the scalar recurrences in our vertex-localized algorithm, where by
scalar we mean an element of the finite field F2b of size 2b for a positive integer b. For
an integer n, let us write [n] = {1, 2, . . . , n}. This section only describes the algorithm;

5 Available at: https://github.com/pkaski/motif-localized
6 Here the asymptotic notation O∗(·) suppresses a multiplicative factor polynomial in the input size.

https://github.com/pkaski/motif-localized

P. Kaski, J. Lauri, and S. Thejaswi 28:5

for reasons of space, we will include the mathematical derivation of the algorithm and its
correctness analysis in an extended version of this work.

The input to the algorithm consists of a vertex-colored host graph H and a motifM . Here
H is an undirected simple graph with vertex set V (H) and edge set E(H), the vertex-coloring
is a function c : V (H)→ C for a set of colors C, and the motif is a function M : C → Z≥0
with

∑
q∈C M(q) = k for a positive integer k.

For convenience in what follows, let us assume that the vertices of H are numbered
1, 2, . . . , n; that is, we assume that V (H) = [n]. Let us also introduce a set Sq of shades for
each color q ∈ C, with |Sq| = M(q) and Sq ∩ Sq′ = ∅ for all distinct q, q′ ∈ C. For a vertex
i ∈ [n], let us write ΓH(i) for the set of vertices adjacent to i in H. Since H is simple, for
each j ∈ ΓH(i) there is a unique edge ij ∈ E(H) that joins i and j in H.

The algorithm now consists of the following five steps, where the key vectorizability
property for implementation is highlighted in the main recurrence (d).
(a) Assign Random Values. First, draw an independent uniform random value µi,d ∈ F2b

for each i ∈ [n] and d ∈ Sc(i). Then, draw an independent uniform random value
νd,` ∈ F2b for each d ∈ ∪q∈CSq and ` ∈ [k]. Finally, draw an independent uniform
random value αs,(i,j) ∈ F2b for each s = 2, 3, . . . , k and each orientation (i, j) ∈ [n]× [n]
of an undirected edge ij ∈ E(H) in H.

(b) Label Evaluation. For each i ∈ [n] and ` ∈ [k], compute

ζi,` =
∑

d∈Sc(i)

µi,dνd,` ∈ F2b . (1)

We can parallelize this step over i and ` as appropriate.
(c) Initialize Label-Sum Vectors. For each subset L ⊆ [k], compute the vector

ζL = (ζL
1 , ζ

L
2 , . . . , ζ

L
n) ∈ Fn

2b (2)

given for all i ∈ [n] by

ζL
i =

∑
`∈L

ζi,` ∈ F2b . (3)

We can parallelize this step over L and i as appropriate.
(d) The Main Recurrence. First, for s = 1 and each i ∈ [n] and L ⊆ [k], set

Pi,1(ζL, α) = ζL
i . (4)

Then, for each s = 2, 3, . . . , k, i ∈ [n], and L ⊆ [k], compute

Pi,s(ζL, α) =
∑

j∈ΓH(i)

αs,(i,j)
∑

s1+s2=s
s1,s2≥1

Pi,s1(ζL, α)Pj,s2(ζL, α) . (5)

For each fixed value of s, we can parallelize this recurrence over i and L as appropriate.
Furthermore, the parallelization over L vectorizes. That is, for each of the 2k choices
L ⊆ [k], the index j ranges over precisely the same values in ΓH(i), and thus we can view
the recurrence (5) as a recurrence over vectors of length 2k, where the multiplication by
αs,(i,j) can be viewed as scalar-multiplication applied to a vector obtained as the sum
of element-wise (Hadamard) products of vectors. This vectorizability is the gist of our
GPU implementation described in the next section.

SEA 2018

28:6 Engineering Motif Search for Large Motifs

(e) Sum at Each Vertex. For each i ∈ [n], take the sum over L ⊆ [k] to obtain

Qi,k(µ, ν, α) =
∑

L⊆[k]

Pi,k(ζL, α) . (6)

We can parallelize this recurrence over i and over L as appropriate; parallelization over
L can use routine parallel aggregation techniques.

This algorithm has the property that Qi,k(µ, ν, α) = 0 with probability 1 when there is
no match to M in H that contains the vertex i, and Qi(µ, ν, α) = 0 with probability at
most (2k − 1)/2b when there is a match to M in H that contains the vertex i.

3 Engineering a Vector-Parallel Implementation

This section gives a high-level description of our implementation of the algorithm in §2. We
intentionally avoid low-level details specific to a particular programming API such as CUDA
for NVIDIA microarchitectures, with the understanding that the low-level details can be
found in the accompanying source code. Our focus here is on principles that we believe
generalize and support implementations on current and future vector-parallel architectures.

Workloads and Coalescence. It will be convenient to employ the following framework to
describe at a high level how our implementation is structured.7 Suppose we run a parallel
workload that consists of work by W independent parallel threads, which have been arranged
into a tensor of volume W with r modes, to obtain a tensor of shape8

Wr ×Wr−1 × · · · ×W1

for positive integers W1,W2, . . . ,Wr with W = WrWr−1 · · ·W1.
Each thread t = 0, 1, . . . ,W − 1 in this workload can now be identified with its r-

tuple of coordinates (tr, tr−1, . . . , t1) defined by t =
∑r

j=1 tjWj−1Wj−2 · · ·W1 and tj ∈
{0, 1, . . . ,Wj − 1} for all j = 1, 2, . . . , r. In essence, the tuple (tr, tr−1, . . . , t1) represents
the integer t as a mixed-base r-digit integer in the number system defined by the sequence
(Wr,Wr−1, . . . ,W1), where W1 is the base of the least significant digit, W2 is the base of the
next least significant digit, and so on until Wr, which is the base of the most significant digit.
To utilize vector-parallel hardware effectively, a key design principle is to ensure that the
workload is coalesced, that is, any two threads t and t′ that agree in all but possibly their c
least significant coordinates are at all times executing the same instruction, and when this
instruction is a memory access, the access is to units of memory at either a single constant
address or consecutive addresses across the c least significant coordinates.9

Per-Thread Work Allocation and Memory Layout. When engineering an algorithm design
for vector-parallel hardware with long latencies, among the most important considerations is
to decide precisely what each thread in a parallel workload of W threads is going to do to

7 A reader familiar e.g. with NVIDIA CUDA API should have no difficulty translating this framework to
NVIDIA-specific terminology e.g. in terms of grids of thread blocks.

8 We use the symbol “×” to exclusively refer to Cartesian products and shapes of tensors, never for
multiplication. For basic terminology on tensors, see Kolda and Bader [19].

9 Precisely how large values c and WcWc−1 · · ·W1 one needs depends on the width of the hardware
vectorization. For example, in case of NVIDIA microarchitectures, one usually wants WcWc−1 · · ·W1
to be a positive multiple of 32 to ensure coalescent execution of warps.

P. Kaski, J. Lauri, and S. Thejaswi 28:7

saturate the hardware and to hide latency (cf. Volkov [35]). Three key objectives underlying
such a decision are to
(i) expose sufficient parallelism in the design to enable a large W to saturate the hardware;
(ii) ensure coalescent execution by a careful ordering of modes in the workload; and
(iii) make sure each thread works with enough local data to make use of low-latency storage

available to each thread and/or to select groups of threads.10

Interleaved with the question of per-thread work allocation is the question how to
implement the memory layout of the algorithm across the memory hierarchy so that
(iv) local storage with lowest latency is the most frequently accessed type of storage;
(v) when accessing high-latency storage, as much data as possible should be accessed with

a single access to saturate the pipeline; and
(vi) accesses to memory are coalesced.

Design Choices for Vertex-Localized Sieving. Let us now turn to how we implement the
recurrences in §2 as parallel workloads together with their memory layouts. For reasons
of space, we focus only on the GPU-side workloads; the CPU-side workloads are those
of Björklund, Kaski, Kowalik, and Lauri [7], with only minor modifications to support
vertex-localization.
Top-Level Structure. We execute the random assignment step (a) and the label evaluation

step (b) on the host CPU(s), with parallelization over i. The subsequent steps (c,d,e)
each vector-parallelize over the 2k evaluations indexed by L ⊆ [k], and these steps will be
offloaded for execution on the available GPU(s) using a sequence of parallel workloads.

Workloads on the GPU. Since label-sum initialization (c) and the main recurrence (d) both
vector-parallelize over L ⊆ [k], it is natural to design the workloads so that a divisor D of
2k appears in the least significant mode of each workload to enable coalescent execution
when k is large enough.11 Furthermore, since we want simultaneous localization at each
i ∈ [n], it follows that n is a natural mode of the workload.12 Indeed, although execution
along this mode will not be coalesced, each of the D threads working with the same
vertex will follow the same pattern of data-dependent memory accesses when traversing
the adjacency list associated with the vertex i to obtain each vertex j ∈ ΓH(i) in (5).
Finally, to ensure sufficient local data for low-latency computations (cf. (iii) in §3), we
design the workload so that each thread that implements (5) works with S out of the 2k

scalars, where S divides 2k. Thus, we will execute workloads of shape

n×D ,

where each thread will work with S scalars, so that SD divides 2k.13 When furthermore
we have M devices (GPUs) available, where MSD divides 2k, we execute workloads of
shape

M × n×D .

10Here the registers locally available to each thread form the lowest-latency storage, whereas e.g. the
shared memory available to each block of threads executing in a streaming multiprocessor in NVIDIA
microarchitectures would form the next-lowest level of latency above the register file. Cf. Mei and
Chu [27] for an empirical study of GPU memory architectures and their latency considerations.

11For example, on NVIDIA microarchitectures it is desirable to have D ≥ 32.
12We furthermore assume that n has been rounded up to the closest power of 2 by inserting isolated

vertices.
13For example, our bit-sliced implementation for arithmetic on GF(28) discussed in what follows assumes
S = 32. With D ≥ 32, we thus need k ≥ 10 for coalescent execution.

SEA 2018

28:8 Engineering Motif Search for Large Motifs

with the mode of length M parallelized over the GPUs. That is, for each of the M GPUs
we perform the following (asynchronously and in parallel on each GPU): First, we upload
the evaluated labels (the output of (b)) from host memory to on-device memory on
each GPU. Then, we iterate 2k

MSD sequences of workloads, where each sequence consists
of label-sum initialization (c) implemented with a single workload of shape n×D, the
main recurrence (d) implemented using a sequence of k workloads of shape n×D, and
the per-vertex sum (e) implemented as a standard batch-parallel sum that aggregates
the nDS scalars output by (d) to n scalars. Finally, we download the n scalars to host
memory. This results inMn scalars downloaded fromM GPUs in host memory, which we
aggregate on the host to obtain n scalars, one scalar at each vertex, with parallelization
over the vertices. The iteration over 2k

MSD such sequences produces the final output (6)
at each vertex i ∈ [n].

Memory Layout on Each GPU. We now describe the memory layout used on each GPU.
Since we execute workloads of n×D threads, and each thread works with S scalars, we
want to access such S-scalar units of data with as-efficient-as-possible coalesced accesses
(cf. §3 (v) and (vi)). Towards this end, suppose that S scalars occupy U words of memory
and suppose the maximum amount of memory one thread can access (with a single load
or store instruction) is A words, where A divides U . Then, to obtain coalesced memory
accesses, we use a memory layout of shape

U

A
× n×D ×A

and execute the loads/stores of S scalars per thread in groups of U
A instructions that each

load/store A words of data.14 Adjacency lists of vertices and scalar associations with
(oriented) edges are implemented as simple contiguous arrays of words. Due to the n×D
workload to implement (5), each group of D threads working on a vertex i ∈ [n] will
access the same element j of an adjacency list or oriented-edge-associated scalar αs,(i,j),
implying coalescent execution for large enough D.

4 Experiments and Conclusion

This section reports on experiments with our algorithm implementation that extends the
CPU implementation of Björklund, Kaski, Kowalik, and Lauri [7] with a vector-parallel
GPU implementation of our vertex-localized sieve (cf. §2 and §3). Our implementation is
prepared with CUDA C [29] using the OpenMP API [30] for host-side parallelization and to
enable parallelization across multiple GPUs. The running times of CPU experiments are
measured using OpenMP wall-clock time interface and the running time of GPU experiments
are measured using CUDA event API. Memory usage is tracked using wrapper functions
for the standard memory allocation interfaces. Memory bandwidth is tracked by computing
the total amount of memory read/written in bytes by each recurrence and dividing by the
measured running time. Arithmetic bandwidth is tracked by computing the number of scalar
multiplications in each recurrence and dividing by the measured running time.

Our experiments use one CPU and four GPU configurations with a full hardware and
software description provided in Appendix A. Here we give a short overview of the CPU
node and the main GPU node in the experiments:

14 In concrete terms, for NVIDIA microarchitectures and our bit-sliced arithmetic for GF(28) we choose
S = 32, A = 4 and U = 8, measured in 32-bit words. That is, at CUDA level each thread reads/writes
data in groups that consist of two coalesced uint4-accesses to global memory.

P. Kaski, J. Lauri, and S. Thejaswi 28:9

Table 1 Speedup obtained with a single GPU and eight GPUs compared with a CPU-only
implementation as we increase the motif size k. We perform experiments on five independent
d-regular random graphs for each n = 210 fixed, d = 20 fixed and k = 10, 11, . . . , 20. The CPU-only
experiments are performed on the CPU compute node with the 64 × GF(28) bit-packed line type
configured for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-localization.
The GPU experiments with our implementation are configured with the 32 × GF(28) bit-sliced line
type and executed on the V100 GPU compute node (single V100 device and eight V100 devices).
All the running times are in seconds. The column “CPU” displays in each row the minimum time
over the five graphs, whereas the columns “GPU V100” and “8 × GPU V100” displays in each row
the maximum time over the five graphs. The column “Speedup (GPU)” displays the ratio of the
columns “CPU” and “GPU V100”, while the column “Speedup (Multi-GPU)” is the ratio of column
“CPU” and “8 × GPU V100”.

k CPU GPU V100 8 × GPU V100 Speedup (GPU) Speedup (Multi-GPU)
10 0.0352 s 0.0432 s 0.0957 s 0.81 0.37
11 0.0828 s 0.0416 s 0.1180 s 1.99 0.70
12 0.1553 s 0.0696 s 0.0938 s 2.23 1.66
13 0.3808 s 0.0585 s 0.1046 s 6.51 3.64
14 0.7768 s 0.1062 s 0.1025 s 7.31 7.58
15 1.7244 s 0.1847 s 0.1111 s 9.33 15.52
16 3.9035 s 0.3968 s 0.1474 s 9.84 26.48
17 8.7340 s 0.8377 s 0.1906 s 10.43 45.82
18 19.3674 s 1.8950 s 0.3564 s 10.22 54.34
19 42.9873 s 4.1417 s 0.6480 s 10.38 66.34
20 94.2593 s 9.1468 s 1.2425 s 10.31 75.86

CPU compute node. An Apollo 6000 XL230a G9 blade server with two 2.6-GHz Intel Xeon
E5-2690v3 CPUs (Haswell microarchitecture, 24 cores, 12 cores/CPU, no hyper-threading,
30 MiB L3 cache/CPU) and 128 GiB of main memory (8 × 16 GiB DDR4-2133 HP
752369-081).

V100 GPU compute node (NVIDIA DGX-1). An NVIDIA Tesla V100 SXM2 Accelerator
device with one 1312-MHz NVIDIA GV100 GPU (Volta microarchitecture, 5120 cores, 80
SMs, 64 cores/SM) and 16384 MiB of on-device 4096-bit HBM2 with ECC enabled. The
host is an NVIDIA DGX-1 with two 2.2-GHz Intel Xeon E5-2698v4 CPUs (Broadwell mi-
croarchitecture, 40 cores, 20 cores/CPU, hyper-threading enabled, 50 MiB L3 cache/CPU)
and 512 GiB of main memory (16 × 32 GiB DDR4-2133 Samsung M393A4K40BB1-CRC).
The host contains eight V100 devices.

Input Graphs. We use three synthetic graph topologies (regular, clique, and power-law) for
our experiments, making use of the random graph generator from Björklund, Kaski, Kowalik,
and Lauri [7]. The generator produces identical graph instances across all configurations
to enable comparison between configurations. In addition, we use natural graph topologies
obtained from the Koblenz Network Collection [23]. The following specific natural graphs
from the Koblenz collection are considered in our experiments: Google [web-Google], Douban
[douban], WordNet [wordnet-words], Stack Overflow [stackexchange-stackoverflow], Dis-
cogs [discogs_affiliation], MovieLens 10M [movielens-10m_rating], Hamsterster friend-
ships [petster-friendships-hamster], Adolescent health [moreno_health], and Human
protein (Stelzl) [maayan-Stelzl]; click on the text in brackets to follow the hyperlink. Each
natural graph is preprocessed as in [7], i.e. (i) the vertices are randomly relabeled and (ii) to
guarantee a unique match, a vertex is chosen uniformly at random and a monochromatic
motif is placed on the first k vertices expanded by a depth-first search.

SEA 2018

http://konect.uni-koblenz.de/networks/web-Google
http://konect.uni-koblenz.de/networks/douban
http://konect.uni-koblenz.de/networks/wordnet-words
http://konect.uni-koblenz.de/networks/stackexchange-stackoverflow
http://konect.uni-koblenz.de/networks/discogs_affiliation
http://konect.uni-koblenz.de/networks/movielens-10m_rating
http://konect.uni-koblenz.de/networks/petster-friendships-hamster
http://konect.uni-koblenz.de/networks/moreno_health
http://konect.uni-koblenz.de/networks/maayan-Stelzl

28:10 Engineering Motif Search for Large Motifs

10-2

10-1

100

101

102

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

CPU compute node
GPU V100

10-2

10-1

100

101

102

103

104

 10 15 20 25 30

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

CPU compute node
GPU V100

Figure 1 Scalability and speedup of the vertex-localized implementation. We compare the
running time of CPU-only and single-GPU implementations as we increase the number of edges
m (left) for five independent d-regular random graphs for each n = 210, 211, . . . , 220, with d = 20
fixed and k = 10 fixed. We observe that our implementation scales linearly, as expected, with little
variance between inputs except for small input sizes. For n = 220 with k = 10, our implementation
on a single V100 GPU device is at least fourteen times faster than the CPU-only implementation
on the CPU compute node. We compare the running time of the CPU-only and single-GPU
implementations as we increase the motif size k (right) for five independent d-regular random graphs
for each n = 220 fixed, d = 20 fixed and k = 10, 11, . . . , 30. We observe that our implementation
scales exponentially with respect to the motif size, as expected, with little variance between inputs.
For n = 210 and k = 20, our implementation on a single V100 GPU device is at least ten times
faster than the CPU-only implementation on the CPU compute node. The CPU-only experiments
are executed on the CPU compute node with the 64 × GF(28) bit-packed line type configured
for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-localization. The GPU
experiments with our implementation are configured with the 32 × GF(28) bit-sliced line type and
executed on the V100 GPU compute node, using a single V100 device.

Scalability and Speedup. Our first set of experiments studies the scalability of our imple-
mentation and compares our implementation with the CPU-only parallel implementation of
Björklund, Kaski, Kowalik, and Lauri [7]. We report the running time as a function of, (i)
number of edges m, and (ii) the motif size k. The results of the experiments are displayed in
Figures 1 and 2. In Table 1, we observe speedups of several tenfolds for a sufficiently large k
for the GPU and multi-GPU implementations over the CPU-only implementation. Table 5
in Appendix A reports the speedup of GPU and multi-GPU implementations with respect to
the CPU-only implementation for increasing number of edges, while Table 6 considers the
speedup of the multi-GPU over the GPU implementation for even larger k. We observe a
substantial benefit both from (a) offloading from the host to a GPU device, and (b) offloading
to multiple GPU devices compared with a single device.

Topology-Invariance. Our final set of experiments studies the effect of graph topology
to scaling. Figure 3 displays the running times for regular, clique, power-law and natural
topologies as a function of increasing m and increasing k. We observe that the running time is
essentially invariant across topologies for increasing k. However, for increasing m, we observe
differences in performance between topologies, with the worst performance occurring for
power-law topologies with small exponent α. This is due to our design choice to use an n×D
workload for the main recurrence (d), whereby the n groups of (length-D-vectorized) threads
operating on different vertices have running times that are proportional to the degree of
each vertex. When many groups of high-degree vertices get scheduled on the same streaming
multiprocessor (SM) of the GPU, this produces an uneven distribution of work across SMs

P. Kaski, J. Lauri, and S. Thejaswi 28:11

10-3

10-2

10-1

100

101

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

1 x GPU V100
8 x GPU V100

 0

 500

 1000

 1500

 2000

104 105 106 107

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Number of edges (m)

1 x GPU V100
8 x GPU V100

 0

 200

 400

 600

 800

 1000

 1200

104 105 106 107

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Number of edges (m)

1 x GPU V100
8 x GPU V100

10-2

10-1

100

101

102

103

104

 10 15 20 25 30

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

1 x GPU V100
8 x GPU V100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 15 20 25 30

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

1 x GPU V100
8 x GPU V100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 15 20 25 30

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Motif size (k)

1 x GPU V100
8 x GPU V100

Figure 2 Scaling of our vertex-localized implementation as we increase the number of edges
m (top row) and the motif size k (bottom row). For both rows, we display the runtime (left),
memory bandwidth (middle), and arithmetic bandwidth (right). The experiments are configured
with the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. Top row
experiments are run for five independent d-regular random graphs for each n = 210, 211, . . . , 210,
d = 20 fixed and k = 10 fixed. For n = 220 with k = 10, the multi-GPU implementation executed
on a configuration with eight V100 GPU devices is at least two times faster than the single-GPU
implementation executed on a single V100 GPU device. We observe that the multi-GPU speedup
becomes systematic only for large-enough m. For n = 220 and k = 10, with a single V100 device
we obtain a memory bandwidth of at least 677 GiB/s and a simultaneous arithmetic bandwidth
of more than 430 billion GF(28)-multiplications per second. With eight V100 devices, we observe
the results have more variance. For n = 220 and k = 10, we obtain at least 1567 GiB/s of memory
bandwidth, and a simultaneous arithmetic bandwidth of at least 1003 billion GF(28)-multiplications
per second. Bottom row experiments are run for five independent d-regular random graphs for
each n = 210, d = 20 fixed and k = 10, 11, . . . , 30. For n = 210 and k = 20, our implementation on
a single V100 GPU device is at least ten times faster than the CPU-only implementation on the
CPU compute node. For n = 210 and 20 ≤ k ≤ 27, the multi-GPU implementation executed on
a configuration with eight V100 GPU devices is at least seven times faster than the single-GPU
implementation executed on a single V100 GPU device. For n = 210 and k = 27, with a single
V100 device we obtain a memory bandwidth of at least 835 GiB/s and a simultaneous arithmetic
bandwidth of more than 480 billion GF(28)-multiplications per second. With eight V100 devices,
we obtain at least 6680 GiB/s of memory bandwidth, and a simultaneous arithmetic bandwidth of
at least 3820 billion GF(28)-multiplications per second. We observe that for large k these memory
bandwidths noticeably exceed the measured peak transfer bandwidth for on-device global memory
in Table 3, which we believe is caused by the relatively small value of n and in-SM-caching of the
Pi,s1 (ζL, α)-values when executing the recurrence (5) across different j ∈ ΓH(i).

and delays the completion of the workload. Thus, our present implementation has topology-
dependent performance, with the best performance obtained on graphs with a uniform
distribution of vertex degrees. With nonuniform vertex degrees, a random permutation of
the vertices (or, for example, a greedy bin-packing of the vertices by degree to the SMs) can
be used to balance the load across SMs. Such load-balancing was not considered for the
present implementation.

SEA 2018

28:12 Engineering Motif Search for Large Motifs

10-4

10-3

10-2

10-1

100

101

105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

Regular
Clique

Powlaw d– 0.5

Powlaw d– 1.0

Google
Douban

WordNet
StackOverflow

Discogs
MovieLens

10-2

10-1

100

101

102

 10 12 14 16 18 20

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

Regular
Clique

Powlaw d– 0.5

Powlaw d– 1.0

Hamsterster friendships
Adoloscent health

Human protien (Stelzl)

Figure 3 Topology-invariance. We display the runtime of our vertex-localized implementation
with respect to number of edges (left) with different graph topologies: (a) five independent synthetic
graphs for each value of n; and (b) five random relabelings for each natural graph. Regular graphs
with n = 214, 215, . . . , 220, d = 20 fixed; cliques with n = 213, 214, . . . , 219, d = 40 fixed; power-law
graphs with n = 214, 215, . . . , 220, D = 20, w = 100 for both α = −0.5 and α = −1.0. All instances
have k = 10. We display the runtime of our implementation with respect to the motif size (right)
for different graph topologies: (a) five independent synthetic graphs for eack value of k; and (b)
five random relabelings of natural graph for each value of k. Regular graphs with n = 210, d = 20;
cliques with n = 210, d = 40; power-law graphs with n = 210, D = 20, w = 100 for both α = −0.5
and α = −1.0. The motif size varies from k = 10, 11, . . . , 20. The experiments are configured with
the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. All experiments
use a single V100 device. For the motif-size scaling, the running times are essentially invariant, as
expected. However, for scaling with respect to number of edges m, power-law graphs with α = −1.0
consume approximately three times the running time of the clique graphs, and this ratio becomes
more systematic with increasing m. In particular we observe that our present implementation is
not completely topology-invariant; graphs with uniform degree distribution have relatively better
performance than the graphs with non-uniform degree distribution (cf. §4).

More Data and Experiments in the Appendix. The Appendix contains a more extensive
set of experiments.15 For example, Figure 7 in Appendix A displays the running time
of vertex-localization and decision-only variants. We observe that the overhead caused by
vertex-localization is, as expected, negligible. In addition, the Appendix presents performance
for our hardware configurations (Tables 2 and 3), arithmetic bandwidth measurements with
different implementations of finite-field arithmetic (Table 4 and Figures 4, 5, and 6), and
more detailed speedup tables (Tables 5 and 6).

Conclusion. This paper presented a vertex-localized variant of constrained multilinear
sieving that enables algorithm engineering for vector-parallel microarchitectures such as
single-GPU and multi-GPU configurations ranging from thousands to tens of thousands of
cores, with tenfold to several tenfold speedups for large motif sizes compared with a carefully
optimized parallel multi-CPU implementation [7]. The two key aspects of the present
algorithm design that enable scalability are (i) the vectorization of the data-dependent
memory accesses so that each traversal of an edge along an adjacency list results in memory
accesses to long vectors of words at consecutive accesses when evaluating the main recurrence
(cf. §2(d)), and (ii) the vectorization of the finite-field arithmetic in characteristic 2 through
bit-slicing.

15 Caveat on false negatives. The current set of experiments is still lacking an experiment that studies the
empirical false negative rate compared with the theoretical per-vertex probability of at most (2k− 1)/2b

for a false negative. Such an experiment is warranted since our implementation uses b = 8 and thus
independent repetitions of the sieve must be used when one seeks to control the false negative rate over
the vertices.

P. Kaski, J. Lauri, and S. Thejaswi 28:13

References

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
2 Nadja Betzler, Michael R. Fellows, Christian Komusiewicz, and Rolf Niedermeier. Para-

meterized algorithms and hardness results for some graph motif problems. In Proceedings
of the 19th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 5029
of Lecture Notes in Computer Science, pages 31–43. Springer, 2008.

3 Eli Biham. A fast new DES implementation in software. In Proceedings of the 4th Inter-
national Workshop on Fast Software Encryption (FSE), volume 1267 of Lecture Notes in
Computer Science, pages 260–272. Springer, 1997.

4 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014.

5 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017.

6 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Constrained multilinear detection
and generalized graph motifs. Algorithmica, 74(2):947–967, 2016.

7 Andreas Björklund, Petteri Kaski, Łukasz Kowalik, and Juho Lauri. Engineering motif
search for large graphs. In Proceedings of the 17th Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 104–118. SIAM, 2015.

8 Sharon Bruckner, Falk Hüffner, Richard M. Karp, Ron Shamir, and Roded Sharan.
Topology-free querying of protein interaction networks. Journal of Computational Biology,
17(3):237–252, 2010.

9 Ferdinando Cicalese, Travis Gagie, Emanuele Giaquinta, Eduardo Sany Laber, Zsuzsanna
Lipták, Romeo Rizzi, and Alexandru I. Tomescu. Indexes for jumbled pattern matching in
strings, trees and graphs. In Proceedings of the 20th International Symposium on String
Processing and Information Retrieval (SPIRE), volume 8214 of Lecture Notes in Computer
Science, pages 56–63. Springer, 2013.

10 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Riccardo Dondi, Guillaume Fertin, and Stéphane Vialette. Maximum motif problem in
vertex-colored graphs. In Proceedings of the 20th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 5577 of Lecture Notes in Computer Science, pages 221–
235. Springer, 2009.

12 Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the struc-
ture of the input graph. Discrete Applied Mathematics, 231:78–94, 2017.

13 Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane Vialette. Upper and
lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci.,
77(4):799–811, 2011. doi:10.1016/j.jcss.2010.07.003.

14 Travis Gagie, Danny Hermelin, Gad M. Landau, and Oren Weimann. Binary jumbled
pattern matching on trees and tree-like structures. In Proceedings of the 21st Annual
European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer
Science, pages 517–528. Springer, 2013.

15 Emanuele Giaquinta and Szymon Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14-16):538–542, 2013.

16 Shay Gueron and Michael E. Kounavis. Intelr Carry-Less Multiplication Instruction and
its Usage for Computing the GCM Mode - Rev 2.02. Intel Corporation, April 2014. [Link].

17 Sylvain Guillemot and Florian Sikora. Finding and counting vertex-colored subtrees. Al-
gorithmica, 65(4):828–844, 2013.

18 Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient indexes for
jumbled pattern matching with constant-sized alphabet. In Proceedings of the 21st Annual

SEA 2018

http://dx.doi.org/10.1016/j.jcss.2010.07.003
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode

28:14 Engineering Motif Search for Large Motifs

European Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer
Science, pages 625–636. Springer, 2013.

19 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Rev., 51(3):455–500, 2009.

20 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming (ICALP),
volume 5125 of Lecture Notes in Computer Science, pages 575–586. Springer, 2008.

21 Ioannis Koutis. Constrained multilinear detection for faster functional motif discovery. Inf.
Process. Lett., 112(22):889–892, 2012. doi:10.1016/j.ipl.2012.08.008.

22 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, 2016.

23 Jérôme Kunegis. KONECT: the Koblenz network collection. In Proceedings of the 22nd
International World Wide Web Conference (WWW), pages 1343–1350, 2013. [Link].

24 Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs:
Application to metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform.,
3(4):360–368, 2006. doi:10.1109/TCBB.2006.55.

25 Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung. Novel
polynomial basis with fast Fourier transform and its application to Reed-Solomon erasure
codes. IEEE Trans. Inform. Theory, 62(11):6284–6299, 2016.

26 Edoardo Mastrovito. VLSI Architectures for Computations in Galois Fields. PhD thesis,
Department of Electrical Engineering, Linköping University, 1991.

27 Xinxin Mei and Xiaowen Chu. Dissecting GPU memory hierarchy through microbench-
marking. IEEE Trans. Parallel Distrib. Syst., 28(1):72–86, 2017.

28 Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013.

29 NVIDIA Corporation. CUDA C Programming Guide, Version 9. [Link].
30 OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 4.5

– November 2015. [Link].
31 Ron Y. Pinter, Hadas Shachnai, and Meirav Zehavi. Deterministic parameterized al-

gorithms for the graph motif problem. Discrete Applied Mathematics, 213:162–178, 2016.
32 Ron Y. Pinter and Meirav Zehavi. Partial information network queries. In Proceedings of

the 24th International Workshop on Combinatorial Algorithms (IWOCA), volume 8288 of
Lecture Notes in Computer Science, pages 362–375. Springer, 2013.

33 Ron Y. Pinter and Meirav Zehavi. Algorithms for topology-free and alignment network
queries. J. Discrete Algorithms, 27:29–53, 2014.

34 Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, and
Pankaj Rohatgi. Efficient Rijndael encryption implementation with composite field arith-
metic. In Proceedings of the 3rd International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), volume 2162 of Lecture Notes in Computer Science, pages
171–184. Springer, 2001.

35 Vasily Volkov. Understanding Latency Hiding on GPUs. PhD thesis, Electrical Engineering
and Computer Sciences, University of California at Berkeley, 2016. Technical Report No.
UCB/EECS-2016-143.

36 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–
318, 2009. doi:10.1016/j.ipl.2008.11.004.

37 Meirav Zehavi. Parameterized algorithms for module motif. In Proceedings of the 38th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS), volume
8087 of Lecture Notes in Computer Science, pages 825–836. Springer, 2013.

38 Meirav Zehavi. Parameterized algorithms for the module motif problem. Inf. Comput.,
251:179–193, 2016.

http://dx.doi.org/10.1016/j.ipl.2012.08.008
http://konect.uni-koblenz.de/networks/
http://dx.doi.org/10.1109/TCBB.2006.55
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1016/j.ipl.2008.11.004

P. Kaski, J. Lauri, and S. Thejaswi 28:15

A Additional Experimental Results

Additional Hardware Configurations. Our experiments use one CPU and four GPU con-
figurations. The hardware configurations of CPU compute node and V100 GPU compute
node are reported in Section 4. Each experiment documents the hardware configuration and
the number of GPU devices used for the experiment.
K40 GPU compute node. An NVIDIA Tesla K40t Accelerator device with one 745-MHz

NVIDIA GK110B GPU (Kepler microarchitecture, 2880 cores, 15 SMs, 192 cores/SM)
and 12288 MiB of on-device GDDR5-3004 memory with ECC enabled. The host is a
Bullx B715 DLC blade server with two 2.1-GHz Intel Xeon E5-2620v2 CPUs (Ivy Bridge
microarchitecture, 12 cores, 6 cores/CPU, no hyper-threading, 15 MiB L3 cache) and
32 GiB of main memory (8 × 4 GiB DDR3-1600 Samsung M393B5273DH0-CMA). The
host and the GPU are connected by a 16-lane PCI Express 3.0 bus. The host contains
two K40t devices.

K80 GPU compute node. An NVIDIA Tesla K80 Accelerator device with two 875-MHz
NVIDIA Tesla GK210 GPUs (Kepler microarchitecture, 2496 cores, 13 SMs, 192 cores/SM),
12288 MiB of on-device GDDR5-3004 memory with ECC enabled. The host is a Dell
PowerEdge C4130 machine with two 2.4-GHz Intel Xeon E5-2620v3 CPUs (Haswell
microarchitecture, 12 cores, 6 cores/CPU, no hyper-threading, 15 MiB L3 cache/CPU)
and 128 GiB of main memory (16 × 8 GiB DDR4-2133 Hynix HMA42GR7AFR4N-TF).
The host and the GPU are connected by a 16-lane PCI Express 3.0 bus. The host contains
four K80 devices.

P100 GPU compute node. An NVIDIA Tesla P100 Accelerator device with one 1189-MHz
NVIDIA GP100 GPU (Pascal microarchitecture, 3584 cores, 56 SMs, 64 cores/SM) and
16384 MiB of on-device 4096-bit HBM2 with ECC enabled. The host is a Dell PowerEdge
C4130 with two 2.54-GHz Intel Xeon E5-2680v3 CPUs (Haswell microarchitecture, 24
cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache/CPU) and 256 GiB of main
memory (16 × 16 GiB DDR4-2133 Hynix HMA82GR7MFR8N-UH). The host and the
device are connected by a 16-lane PCI Express 3.0 bus. The host contains four P100
devices.

Baseline Performance. Tables 2, 3, and 4 in Appendix A report the empirical baseline
performance of the hardware. The host (CPU) memory bandwidth is measured by operating
on a two gibibyte array of 64-bit words. Each experiment is executed five times and the
average of five iterations is reported. Arithmetic bandwidth16 is measured for different
implementations of arithmetic in lines of S scalars per thread (cf. §3). The bit-sliced 32
× GF(28) line type has the best bandwidth, and this line type is used in our subsequent
experiments. The on-device (GPU) and device–host (device-to-host and host-to-device)
memory transfer rates are measured using the bandwidth-test tool distributed in the CUDA
Examples package using a single device at a time.

16The number of scalar multiplications per second.

SEA 2018

28:16 Engineering Motif Search for Large Motifs

Table 2 Memory bandwidths of CPU compute node, P100 GPU compute node (host) and V100
compute node (host).

Benchmark Single core All cores
CPU compute node
Read from linear addresses (consecutive 64-bit words) 9.13 GiB/s 46.93 GiB/s
Write to linear addresses (consecutive 64-bit words) 5.69 GiB/s 21.92 GiB/s
Read from random addresses (individual 64-bit words) 0.29 GiB/s 5.28 GiB/s
Read from random addresses (full cache lines) 1.46 GiB/s 19.94 GiB/s
P100 GPU compute node (host memory)
Read from linear addresses (consecutive 64-bit words) 10.34 GiB/s 41.07 GiB/s
Write to linear addresses (consecutive 64-bit words) 8.43 GiB/s 22.91 GiB/s
Read from random addresses (individual 64-bit words) 0.52 GiB/s 5.53 GiB/s
Read from random addresses (full cache lines) 1.55 GiB/s 19.80 GiB/s
V100 GPU compute node (host memory)
Read from linear addresses (consecutive 64-bit words) 9.58 GiB/s 36.39 GiB/s
Write to linear addresses (consecutive 64-bit words) 7.78 GiB/s 19.27 GiB/s
Read from random addresses (individual 64-bit words) 0.46 GiB/s 5.20 GiB/s
Read from random addresses (full cache lines) 1.45 GiB/s 20.14 GiB/s

Table 3 Memory bandwidth of the P100 and V100 GPU compute nodes, using one of the four
P100 devices and one of the eight V100 devices, respectively.

Node Host to device Device to host Device to device
P100 GPU compute node 12.16 GiB/s 12.87 GiB/s 498.15 GiB/s
V100 GPU compute node 10.79 GiB/s 12.17 GiB/s 720.77 GiB/s

Table 4 Arithmetic bandwidth of the P100 and V100 GPU compute nodes with different line
implementations, using one of the P100 devices and one of the eight V100 devices, respectively.

Line type Line multiplication Scalar multiplication
P100 GPU
1 × GF(28) bit-packed line 82.04 GHz 82.68 GHz
4 × GF(28) bit-packed line 328.20 GHz 331.09 GHz
16 × GF(28) bit-packed line 348.30 GHz 348.30 GHz
32 × GF(28) bit-sliced line 1462.62 GHz 1500.70 GHz
1 × GF(28) lookup table 65.23 GHz 85.58 GHz
4 × GF(28) lookup table 64.59 GHz 86.64 GHz
16 × GF(28) lookup table 64.56 GHz 84.54 GHz
32 × GF(28) lookup table 64.80 GHz 84.52 GHz
V100 GPU
1 × GF(28) bit-packed line 159.58 GHz 159.72 GHz
4 × GF(28) bit-packed line 638.25 GHz 638.88 GHz
16 × GF(28) bit-packed line 652.86 GHz 723.69 GHz
32 × GF(28) bit-packed line 661.59 GHz 719.31 GHz
32 × GF(28) bit-sliced line 2486.54 GHz 2441.10 GHz
1 × GF(28) lookup table 410.52 GHz 496.94 GHz
4 × GF(28) lookup table 408.91 GHz 510.29 GHz
16 × GF(28) lookup table 409.91 GHz 531.27 GHz
32 × GF(28) lookup table 409.93 GHz 528.28 GHz

P. Kaski, J. Lauri, and S. Thejaswi 28:17

Table 5 Speedup obtained with a single GPU and eight GPUs compared with a CPU-only
implementation as we increase the number of edges m. We perform experiments on five independent
random d-regular graphs for each n = 210, 211, . . . , 220, with d = 20 fixed and k = 10 fixed. The
CPU-only experiments are performed on the CPU compute node with the 64 × GF(28) bit-packed
line type configured for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-
localization. The GPU experiments with our implementation are configured with the 32 × GF(28)
bit-sliced line type and executed on the V100 GPU compute node (single V100 device and eight
V100 devices). All the running times are in seconds. The column “CPU” displays in each row
the minimum time over the five graphs, whereas the columns “GPU V100” and “8 × GPU V100”
displays in each row the maximum time over the five graphs. The column “Speedup (GPU)” displays
the ratio of the columns “CPU” and “GPU V100”, while the column “Speedup (Multi-GPU)” is the
ratio of column “CPU” and “8 × GPU V100”.

n CPU GPU V100 8 × GPU V100 Speedup (GPU) Speedup (Multi-GPU)
210 0.0456 s 0.0353 s 0.1009 s 1.29 0.45
211 0.0923 s 0.0344 s 0.0924 s 2.68 1.00
212 0.1042 s 0.0363 s 0.1081 s 2.87 0.96
213 0.2199 s 0.0586 s 0.1204 s 3.75 1.83
214 0.3339 s 0.0685 s 0.1242 s 4.88 2.69
215 0.6859 s 0.1014 s 0.1109 s 6.76 6.18
216 1.5949 s 0.1752 s 0.1842 s 9.10 8.66
217 4.7021 s 0.3292 s 0.2171 s 14.28 21.66
218 10.6986 s 0.6302 s 0.4022 s 16.98 26.60
219 20.7284 s 1.2187 s 0.6465 s 17.01 32.06
220 38.8648 s 2.6742 s 1.1552 s 14.53 33.64

10-2

10-1

100

101

102

103

103 104 105 106 107 108

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

 0

 100

 200

 300

 400

 500

 600

103 104 105 106 107 108

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Number of edges (m)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

 0

 50

 100

 150

 200

 250

 300

 350

 400

103 104 105 106 107 108

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Number of edges (m)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

10-2

10-1

100

101

102

103

 10 12 14 16 18 20 22

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

 0

 200

 400

 600

 800

 1000

 1200

 10 12 14 16 18 20 22

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

 0

 100

 200

 300

 400

 500

 600

 700

 10 12 14 16 18 20 22

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Motif size (k)

CPU vs multi-GPU

CPU compute node
2 x Tesla K40t

4 x Tesla GK210
8 x Tesla GK210

Figure 4 Performance of the vertex-localized implementation in older GPU microarchitectures
as we increase, (i) the number of edges m, and (ii) the motif size k. In the top row, we display
the running time (left), memory bandwidth (center) and arithmetic bandwidth (right) for five
independent d-regular random graphs with n = 210, 211, . . . , 210, d = 20 fixed and k = 10 fixed.
In bottom row, we display the running time (left), memory bandwidth (center) and arithmetic
bandwidth (right) for five independent d-regular random graphs with n = 210 fixed, d = 20 fixed
and k = 10, 11, . . . , 22. Each configuration is reserved exclusively for the experiments at hand. The
GPU experiments with our implementation are configured with the 32 × GF(28) bit-sliced line type.
The CPU-only experiments use the Björklund–Kaski–Kowalik–Lauri [7] implementation with the 64
× GF(28) bit-packed line type.

SEA 2018

28:18 Engineering Motif Search for Large Motifs

Table 6 Speedup obtained with eight GPUs compared with a single GPU as we increase the
motif size k. We perform experiments on five independent graph inputs for each n = 210 fixed,
d = 20 fixed and k = 21, 22, . . . , 30. The GPU experiments with our implementation are configured
with the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. All the
running times are in seconds. The column “GPU V100” displays in each row the minimum time over
the five graphs when using a single V100 device, whereas the column “8 × GPU V100” displays
in each row the maximum time over the five graphs when using four V100 devices. The column
“Speedup” displays the ratio of the columns “GPU V100” and “8 × GPU V100”.

k GPU V100 8 × GPU V100 Speedup
21 20.1962 s 2.6556 s 7.61
22 44.4414 s 5.6852 s 7.82
23 97.2945 s 12.3074 s 7.91
24 212.3904 s 26.6797 s 7.96
25 461.7525 s 57.8421 s 7.98
26 1000.1718 s 125.0891 s 8.00
27 2160.4430 s 270.0623 s 8.00
28 - 581.5915 s -
29 - 1249.4652 s -
30 - 2676.9140 s -

Bit-packed Look-up table Bit-sliced

10-2

10-1

100

101

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

10-2

10-1

100

101

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

10-2

10-1

100

101

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

32 x GF(28)

 0

 100

 200

 300

 400

 500

104 105 106 107

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 100

 200

 300

 400

 500

104 105 106 107

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 100

 200

 300

 400

 500

104 105 106 107

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Number of edges (m)

32 x GF(28)

 0

 50

 100

 150

 200

 250

 300

 350

104 105 106 107

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 50

 100

 150

 200

 250

 300

 350

104 105 106 107

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Number of edges (m)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 50

 100

 150

 200

 250

 300

 350

104 105 106 107

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Number of edges (m)

32 x GF(28)

Figure 5 Performance comparison of different scalar line types with increasing number of edges
m. We display the runtime (top row), memory bandwidth (middle row) and arithmetic bandwidth
(bottom row) of five independent d-regular random graphs for each n = 28, 29, . . . , 220, d = 20 fixed
and k = 10 fixed. The experiments are configured with each line type and executed on the P100
GPU compute node. All experiments use a single P100 device. The bit-sliced 32 × GF(28) line type
has the best performance.

P. Kaski, J. Lauri, and S. Thejaswi 28:19

Bit-packed Look-up table Bit-sliced

10-2

10-1

100

101

102

 10 12 14 16 18 20

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

10-2

10-1

100

101

102

 10 12 14 16 18 20

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

10-2

10-1

100

101

102

 10 12 14 16 18 20

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

32 x GF(28)

 0

 100

 200

 300

 400

 500

 600

 10 12 14 16 18 20

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 100

 200

 300

 400

 500

 600

 10 12 14 16 18 20

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(232)

 0

 100

 200

 300

 400

 500

 600

 10 12 14 16 18 20

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

32 x GF(28)

 0

 50

 100

 150

 200

 250

 300

 350

 10 12 14 16 18 20

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(28)

 0

 50

 100

 150

 200

 250

 300

 350

 10 12 14 16 18 20

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Motif size (k)

1 x GF(28)
4 x GF(28)

16 x GF(28)
32 x GF(232)

 0

 50

 100

 150

 200

 250

 300

 350

 10 12 14 16 18 20

M
ul

tip
lic

at
io

n
ra

te
 [

G
H

z
]

Motif size (k)

32 x GF(28)

Figure 6 Performance comparison of different scalar line types with increasing motif size k.
We display the runtime (top row), memory bandwidth (middle row) and arithmetic bandwidth
(bottom row) for five independent d-regular random graphs for each n = 210 fixed, d = 20 fixed and
k = 10, 11, . . . , 20. The experiments are configured with each line type and executed on the P100
GPU compute node. All experiments use a single P100 device. The bit-sliced 32 × GF(28) line type
has the best performance.

10-3

10-2

10-1

100

101

102

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

Decision only
Vertex localization

10-3

10-2

10-1

100

101

102

 10 12 14 16 18 20

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

Decision only
Vertex localization

Figure 7 Overhead of vertex-localization. Here we compare our vertex-localized implementation
against a separately prepared GPU implementation that uses the original Björklund–Kaski–Kowalik–
Lauri design [7] without vertex-localization. We show scaling as a function of the number of edges
(left) and the motif size (right). The left plot is the running time of five independent d-regular
random graphs for each configuration of n = 210, 211, . . . , 220, d = 20 fixed and k = 10 fixed. The
right plot is the running time of five independent d-regular random graphs for each n = 210 fixed,
d = 20 fixed and k = 10, 11, . . . , 20. The experiments are configured with the 32 × GF(28) bit-sliced
line type and executed on the P100 GPU compute node. All experiments use a single P100 device.
We observe that the overhead of vertex-localization is negligible, as expected.

SEA 2018

	Introduction
	Scalar Recurrences for Sieving with Localization
	Engineering a Vector-Parallel Implementation
	Experiments and Conclusion
	Additional Experimental Results

