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Abstract
An elastic-degenerate string is a sequence of n sets of strings of total length N . It has been
introduced to represent multiple sequence alignments of closely-related sequences in a compact
form. For a standard pattern of length m, pattern matching in an elastic-degenerate text can be
solved on-line in time O(nm2 +N) with pre-processing time and space O(m) (Grossi et al., CPM
2017). A fast bit-vector algorithm requiring time O(N · dm

w e) with pre-processing time and space
O(m·dm

w e), where w is the size of the computer word, was also presented. In this paper we consider
the same problem for a set of patterns of total length M . A straightforward generalization of
the existing bit-vector algorithm would require time O(N · dM

w e) with pre-processing time and
space O(M · dM

w e), which is prohibitive in practice. We present a new on-line O(N · dM
w e)-time

algorithm with pre-processing time and space O(M). We present experimental results using both
synthetic and real data demonstrating the performance of the algorithm. We further demonstrate
a real application of our algorithm in a pipeline for discovery and verification of minimal absent
words (MAWs) in the human genome showing that a significant number of previously discovered
MAWs are in fact false-positives when a population’s variants are considered.
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1 Introduction

A set of closely-related sequences can be represented in different ways to reduce its size and
improve search performance. DNA sequences of the same species or closely-related species can
be combined into a pan-genome [17, 24, 13, 20], the result of a multiple sequence alignment
(MSA) of these sequences. Most regions in the DNA sequences are in consensus but they
exhibit differences at some positions consisting of letter substitutions, insertions or deletions.
Various data structures have been proposed for storing pan-genomes [8, 2, 22, 24] – many
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16:2 Dictionary Matching in Elastic-Degenerate Texts

designs are realized from observing the result of aligning the related sequences in an MSA
fashion. Consider the following example.

ATGCAACGGGTA--TTTTA
ATGCAACGGGTATATTTTA
ATGCACCTGG----TTTTA

The first five columns of the MSA all match, so when this is compacted, it creates a
deterministic segment with a single string: ATGCA. The next letter in the MSA is A for the
first and second sequence but C for the third, making it the site of a variant. The second
variant in the example is similarly a single-base substitution variant. But the third variant
site consists of insertions and deletions. These are represented differently in state-of-the-art
data structures for the purpose of storage and indexing for on-line pattern searches.

Some researchers choose to represent the variants in the combined sequence in the form
of De Bruijn graphs [24] or specialized implementations of the data structure – Variation
Graphs [22]. Other researchers use Trie-based data structures such as the Bloom Filter Trie
in [8] or compressed Suffix Tree data structures [2]. All of these are indexes constructed
mainly for fast searching of patterns; and thus much effort has gone into solving this off-line
version of the problem through pre-processing the set of similar sequences [9, 14, 22, 15].
Less research to-date has gone into the on-line version of this problem [19, 12, 7, 3, 18].

A text-based, on-line searchable representation for a set of similar sequences was suggested
in [12], namely, the notion of elastic-degenerate string (ED string). Specifically, aligned
sequences can be compacted into one sequence made up of deterministic and non-deterministic
(or degenerate) segments. Deterministic segments contain letters that are in perfect conformity
among the different sequences, meaning all the letters match, while degenerate segments
mark polymorphic sites containing substitutions, insertions or deletions.

The MSA above can be converted into an ED string by representing the first deterministic
segment with the single string ATGCA, and representing the next segment, which happens to
be degenerate, with the set {A,C}. An empty string marker ε is used to represent a deletion,
as is done for the third degenerate site in the MSA, consisting of the set {TA,TATA,ε}. The
resulting ED string of the MSA above example is as follows.

T̃ =
{

ATGCA
}
·
{

A
C

}
·
{

C
}
·
{

G
T

}
·
{

GG
}
·


TA

TATA
ε

 · { TTTTA
}

The motivation for solving the on-line version of the problem is to remove the burden of
building disk-based indexes or rebuilding them with every update in the sequences. Indexes
are often cumbersome, take a lot of time and space to build, and require lots of disk space
to be stored. Their usage carries the assumption that the data is static or changes very
infrequently. Solutions to the on-line version can be beneficial for a number of reasons:
(a) efficient on-line solutions can be used in combination with partial indexes as practical
trade-offs; (b) efficient on-line solutions for exact pattern matching can be applied for fast
average-case approximate pattern matching, similar to standard strings; (c) on-line solutions
can be useful when one wants to search for a few patterns in many ED texts.

Variant Call Format (VCF) is a file format that has become the standard way of storing
variants for pan-genomes and in next-generation sequencing. These specially-formatted, often
compressed text files, in combination with a reference genome, are able to document all
insertions, deletions and substitutions that occur in a population. While it is possible – for
the purpose of searching for patterns – to recreate the genome of all individuals (samples)
in the pan-genome as deterministic strings, it is very impractical and requires a lot of



S. P. Pissis and A. Retha 16:3

processing power and disk space. It also defeats the purpose of storing the information in
the VCF format in the first place. We were motivated to make it possible to do on-line
searching of one or more patterns in a pan-genome without extracting sample sequences.
Our solution takes the position of variants in the VCF file and encodes them as degenerate
segments of an ED text. In this way, we are able to search a pan-genome on-line given the
reference sequence and the associated VCF files. We created a tool EDSO (available at https:
//github.com/webmasterar/edso) for creating ED files which are directly searchable.

Our Contributions. Our focus in this paper is extending existing solutions for exact on-line
pattern matching in ED texts, specifically, the algorithm of [7] through adding the ability to
search for multiple patterns simultaneously. Grossi et al. [7] presented an algorithm requiring
time O(N · dm

w e) with pre-processing time and space O(m · dm
w e), where m is the length of

the single pattern and w is the size of the computer word. A straightforward generalization
of the existing bit-vector algorithm for a set of patterns of total length M would require time
O(N · dM

w e) with pre-processing time and space O(M · dM
w e), which is prohibitive in practice.

In this paper we present a new algorithm requiring time O(N · dM
w e) with pre-processing

time and space O(M). We present experimental results using both synthetic and real data
demonstrating the performance of our algorithm. Finally, we present a real application of
our algorithm’s use as part of identifying and verifying minimal absent words (MAWs) in the
Homo sapiens pan-genome with data in the VCF taken from the 1000 Genomes Project [23].
Specifically, we show that a significant number of previously discovered MAWs are in fact
false-positives when a population of genomes is considered.

2 Definitions and Notation

2.1 Strings

We begin with a few definitions from [4]. An alphabet Σ is a non-empty finite set of letters of
size σ = |Σ|. A (deterministic) string on a given alphabet Σ is a finite sequence of letters of
Σ. For this work, we assume that the alphabet is fixed, i.e. σ = O(1). The length of a string
x is denoted by |x|. For two positions i and j on x, we denote by x[i . . j] = x[i] . . x[j] the
factor (sometimes called substring) of x that starts at position i and ends at position j (it is
empty if j < i), and by ε we denote the empty string. The set of all strings on an alphabet
Σ (including the empty string ε) is denoted by Σ∗. For any string y = uxv, where u and v
are strings, if u = ε then x is a prefix of y. Similarly, if v = ε then x is a suffix of y. If u and
v are non-empty strings, we call x an infix of y. We say that x is a proper factor of y if x is
a factor (resp. prefix/suffix) of y distinct from y.

We say that the string x is an absent word of string y if x does not occur in y. We
consider absent words of length at least 2 only. An absent word x of length m, m ≥ 2, of y
is minimal if and only if all its proper factors occur in y. This is equivalent to saying that a
minimal absent word (MAW) of y is of the form aub, a, b ∈ Σ, u ∈ Σ∗, such that au and ub
are factors of y but aub is not.

I Example 1. Let y = ABAACA. Its factors of lengths 1 and 2 are A, B, C, AA, AB, AC,
BA, and CA. The set of MAWs of y is obtained by combining the aforementioned factors:
{BB, BC, CB, CC, AAA, AAB, BAB, BAC, CAA, CAB, CAC}.

SEA 2018

https://github.com/webmasterar/edso
https://github.com/webmasterar/edso


16:4 Dictionary Matching in Elastic-Degenerate Texts

2.2 Elastic-Degenerate Strings
An elastic-degenerate string (ED string) X̃ = X̃[0]X̃[1] . . . X̃[n − 1], of length n, on an
alphabet Σ, is a finite sequence of n degenerate letters. Every degenerate letter X̃[i], for all
0 ≤ i < n, is a non-empty set of strings X̃[i][j], with 0 ≤ j < |X̃[i]|, where each X̃[i][j] is a
deterministic string on Σ. The total size of X̃ is defined as

N =
n−1∑
i=0

|X̃[i]|−1∑
j=0

|X̃[i][j]|.

Only for the purpose of computing N , |ε| = 1. We remark that, for an ED string X̃, the size
and the length are two distinct concepts.

We say that a string y matches an ED string X̃ = X̃[0] . . . X̃[m′ − 1] of length m′ > 1,
denoted by y ≈ X̃, if and only if string y can be decomposed into y0 . . . ym′−1, yi ∈ Σ∗, such
that:
1. there exists a string s ∈ X̃[0] such that a suffix of s is y0 6= ε;
2. if m′ > 2, there exists s ∈ X̃[i], for all 1 ≤ i ≤ m′ − 2, such that s = yi;
3. there exists a string s ∈ X̃[m′ − 1] such that a prefix of s is ym′−1 6= ε.

Note that, in the above definition, we require that both y0 and ym′−1 are non-empty
to avoid spurious matches at the beginning or end of an occurrence. A string y is said to
have an occurrence ending at position j in an ED string T̃ if there exist i < j such that
T̃ [i] . . . T̃ [j] ≈ y, or, if there exists s ∈ T̃ [j] such that y occurs in s.

I Example 2. Suppose we have a pattern p = ACACA of length m = 5 and an ED string T̃
of length n = 6 and total size N = 18; the first occurrence of p starts at position 1 and ends
at position 2 of T̃ ; and the second one starts at position 2 and ends at position 4.

T̃ =
{

C
}
·
{

A
C

}
·


AC
ACC
CACA

 ·
{

C
ε

}
·
{

A
AC

}
·
{

C
}

We are now in a position to formally define the main problem of this paper.

Multiple Elastic-Degenerate String Matching (MEDSM )
Input: A set P of strings of total length M and an ED string T̃ of length n and total
size N .
Output: All pairs (p, j): an occurrence of string p ∈ P ends at position j in T̃ .

3 Algorithmic Toolbox

3.1 Suffix Tree
Let x be a string of length n > 0. The suffix tree ST x of string x is a compacted trie
representing all suffixes of x. The nodes of the trie which become nodes of the suffix tree are
called explicit nodes, while the other nodes are called implicit. Each edge of the suffix tree
can be viewed as an upward maximal path of implicit nodes starting with an explicit node.
Moreover, each node belongs to a unique path of that kind. Thus, each node of the trie can be
represented in the suffix tree by the edge it belongs to and an index within the corresponding
path. The label of an edge is its first letter. We let L(v) denote the path-label of a node v,
i.e. the concatenation of the edge labels along the path from the root to v. We say that v is
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path-labelled L(v). Additionally, D(v) = |L(v)| is used to denote the string-depth of node
v. Node v is a terminal node if its path-label is a suffix of x, that is, L(v) = x[i . . n − 1]
for some 0 ≤ i < n; here v is also labelled with index i. It should be clear that each factor
of x is uniquely represented by either an explicit or an implicit node of ST x. Once ST x is
constructed, it can be traversed in a depth-first manner to compute D(v) for each node v.

I Fact 3 ([5, 4]). Given a string x of length n, ST x can be constructed in time and space
O(n). Finding all Occp occurrences of a string p of length m in x can be performed in time
O(m+ Occp) using ST x.

3.2 The Shift-And Algorithm

The Shift-And algorithm is an exact pattern matching algorithm that takes advantage of the
parallelism of bitwise operations performed on a computer word [16]. It works by simulating
a Nondeterministic Finite Automaton (NFA) and uses bit-level operations to simultaneously
update the states of the NFA in a single CPU cycle. This offers speed-ups bounded by the
number of bits in a computer word w, where, typically, on modern computer architectures,
we have that w = 64. For short patterns, where m = O(w), searching a text of length n runs
in O(n) time but for longer patterns, the search takes O(n · dm

w e) time. The pre-processing
time of the algorithm is O(σ · dm

w e + m) = O(m) thus making it suitable for small-sized
alphabets and short patterns. The Shift-And algorithm can be easily generalized for a set of
patterns; it is then known as the Multiple Shift-And algorithm [16].

I Fact 4 ([16]). Given a set P of strings of total length M , a string x of length N , and
a computer word of size w, finding all occurrences of the patterns in P in x takes time
O(N · dM

w e) after pre-processing time O(M).

In addition to using the Shift-And algorithm for searching whole patterns, we take
advantage of its ability to compute suffix/prefix overlaps between string s ∈ T̃ [i], where T̃ [i]
is the ith set arriving on-line, and the set P of patterns we are searching for. Given s, we
can find all the prefixes of a pattern p ∈ P of length m by searching s[|s| −m+ 1 . . |s| − 1]
if |s| ≥ m or s[0 . . |s| − 1], otherwise. This updates the NFA to mark any prefixes of the
patterns occurring as suffixes of s. We store the states in a bit vector which we bitwise-OR
to itself for each string s ∈ T̃ [i]. The resulting state bit vector memorizes all the prefixes
ending at position i in T̃ , and we then use Shift-And in the searching stage of the algorithm
to search the (i+ 1)th set to find a suffix, that either completes the match for some pattern
in P , or further extends some prefix of a pattern, in which case the algorithm updates the
search state. We summarize the above description in the following fact.

I Fact 5. Given a set S of strings of total length N =
∑

s∈S |s| and a set P of strings of
total length M =

∑
p∈P |p|, computing the suffix/prefix overlaps of S and P can be done in

time O(N · dM
w e).

4 The Multi-EDSM Algorithm

4.1 Our Data Structure

We define the following auxiliary problem of independent interest.

SEA 2018
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Occurrences Vector Data Structure (OccVec)
Input: A string x of length n.
Query: Given a string α on-line, return a pointer to a bit vector B, with B[i] = 1 if and
only if α occurs at starting position i of x, and otherwise B[i] = 0.

In what follows, we show the following lemma.

I Lemma 6. Given a parameter 1 ≤ τ ≤ dn/we, a data structure of size O(dn/τe · dn/we)
can be constructed in time and space O(dn/τe · dn/we) answering OccVec queries in time
O(|α|+ τ).

Let us denote the data structure of Lemma 6 over string x by Occ-Vectorx. Observe
that, if we set τ = 1, we essentially have the O(n · dn/we)-sized data structure proposed by
Grossi et al in [7], which is constructible in time and space O(n · dn/we).

Construction. We start by constructing the suffix tree ST x of x. By Fact 3, this can be
done in time and space O(n).

We next convert ST x to a binary tree using a standard procedure (see [6], for instance).
We process each explicit node of ST x with out-degree k > 2 as follows. Let v be a node
with children u1, . . . , uk, and k ≥ 3. We replace v with k − 1 new nodes v1, . . . , vk−1; make
u1 and u2 be the left and right children of v1, respectively; and for each ` = 2, . . . , k − 1, we
make v`−1 and u`+1 be the left and right children of v`, respectively. If v is not the root of
ST x then we set the parent of vk−1 to be the parent of v; otherwise, vk−1 is the root. This
procedure can at most double the size of ST x so still is in O(n). For clarity of presentation,
in what follows, we use ST x to refer to the resulting binary tree. (Note that we can keep a
copy of the original ST x and a pointer for each node from the original to its binary version).

We next rely on the classic notion of micro-macro tree decomposition [1]. We apply this
decomposition on (the binary version of) ST x. Let τ be some input parameter, 1 ≤ τ ≤ dn/we.
We decompose ST x in O(n/τ) disjoint subgraphs called micro trees. Each micro tree is of
size at most τ and contains at most two boundary nodes that are adjacent to nodes in other
micro trees. The topmost of these boundary nodes is the root of the whole micro tree, and
the other one is called the bottom boundary node. Such a decomposition is always possible
and can be found in time O(n) (see [1] for more details).

For each boundary node v of a micro tree, we store a bit vector bv, where bv[i] = 1, if the
terminal node representing the ith suffix of x is a descendant of v, and otherwise bv[i] = 0.
For the bottom boundary node v of micro tree t, bv can be computed by merging the bit
vectors from the roots of the micro trees that are adjacent to v and then add manually the
terminal nodes within t for the root boundary node of t. By the above description and
the fact that we have O(n/τ) micro trees, the total size of Occ-Vectorx, and therefore
the time to construct it, are bounded by O(n + dn/τe · dn/we) = O(dn/τe · dn/we), for
1 ≤ τ ≤ dn/we. Occ-Vectorx also includes a linked-list L of integers from [0, n− 1] used
to maintain the bit vectors when a new query arrives. This completes the construction.

Querying. Given a pattern α, we spell the pattern from the root of ST x until we reach the
last explicit node v. This takes time O(|α|) for constant-sized alphabets. There are then two
cases to consider:

If v is a boundary node of some micro tree, we simply return a pointer to bv; this takes
constant time.
If v is not a boundary node, we first need to obtain the starting positions (labels) of all
terminal nodes of the micro tree in the subtree rooted at v, and set the corresponding
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v

u

Figure 1 Three micro trees: the topmost in light blue and the bottommost ones in light red and
light green. If the query reaches node v, then the terminal node in the subtree rooted at v in the
topmost micro tree must be combined with the bit vector stored in the bottom boundary node u.

bits on in the bit vector bu, where u is the bottom boundary node of the micro tree. We
then return a pointer to the updated bu. (If no such node u exists, we simply set these
bits on in an empty bit vector.) The whole process takes time O(τ): traverse the micro
tree and set the bits on. We also need to store these starting positions in L for the next
query. In the beginning of the next query we will need to set the bits at these indices off
from bu and empty L. This maintenance cost requires time O(τ) due to the size of the
micro trees and so we charge it to this query. Inspect Figure 1 in this regard.

Hence any query requires time O(|α|+ τ). By the above description we ultimately arrive
at Lemma 6.

4.2 Pre-Processing Stage
The pre-processing stage of our algorithm consists in pre-processing the set P of our patterns.
We view the set P as the concatenation of its elements to form a new string y of length M .

The first step is the pre-processing of the pattern set P of combined length M in the
Mutiple Shift-And algorithm [16]. We create σ bit vectors of size dM

w e and for each letter
a in Σ we set Ia[i] = 1 if y[i] = a. Therefore this first step requires time and extra space
O(M + σ · dM

w e) = O(M), for constant-sized alphabets.
The second step is a simple application of Lemma 6 over string y of length M with the

additional steps of filtering out non-infix positions and subtracting 1 from the index positions.
This makes it possible to maintain infix extensions during the search stage. We build the
Occ-VectorP data structure by setting τ = dM

w e, thus restricting its size and construction
time to O(M), resulting also in O(|α|+ dM

w e) query time for the search stage.
The total time and space for the pre-processing stage are thus in O(M).

4.3 On-line Searching Stage
After the pre-processing stage, every degenerate letter S of text T̃ can be searched one after
the other in an on-line manner by passing them to the Search function (see Algorithm 1).
We maintain the state of the search in bit vector B in between searches and use temporary

SEA 2018
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Algorithm 1 Multiple Elastic-Degenerate String Matching search function.
1: procedure Search(S)
2: if isFirstSegment(S) then
3: for s ∈ S do
4: if |s| ≥ mmin and s 6= ε then
5: B3 ← 0
6: Multi-Shift-And-Search(s, B3)
7: Report any matches found
8: B ← Overlaps(S)
9: else
10: B1 ← Overlaps(S)
11: if ε ∈ S then
12: B1 ← B1 | B
13: for s ∈ S and s 6= ε do
14: . Pattern suffix completion / full pattern searching
15: B2 ← B

16: Multi-Shift-And-Search(s, B2)
17: Report any matches found
18: . Maintain valid infix positions
19: if |s| ≤ mmax − 2 then
20: B3 ← B & Occ-VectorP (s)
21: B1 ← B1 | Left-Shift(B3, |s|)
22: B ← B1

bit vectors B1, B2 and B3 to update the state during processing. By mmin and mmax we
denote the length of the shortest and longest patterns in pattern set P , respectively.

In the first degenerate letter, for every string s ∈ S of length |s| ≥ mmin, we call the
Multi-Shift-And-Search function with a fresh state to find any patterns that occur in
s. In any case, the Overlaps function is called for computing the suffix/prefix overlaps
between every string s ∈ S and the set P of patterns we are searching for. The function
essentially memorises the prefixes starting in the current segment using B. By Facts 4 and 5,
lines 2-8 require O(||S|| · dM

w e) time. For subsequent degenerate letters, we use the state of B
from the previously searched letter to continue the search with Multi-Shift-And-Search.
This time the function is called regardless of the length of s because it is used to find whole
patterns as well as prefixes of patterns that began in the previously searched letters and
whose suffixes end in the current letter. By Facts 4 and 5, this requires O(||S|| · dM

w e) time.
Then we consider how to handle infixes (see line 19). We only need to process strings short

enough to be considered as infixes of a pattern and we query them with the Occ-VectorP

data structure to mark the positions where each infix starts. Querying Occ-VectorP for
a string s requires O(|s|+ τ) = O(|s|+ dM

w e) time by Lemma 6. We bitwise-AND the bit
vector it returns with B to maintain only the states started or continued from the previous
letter. On the next line, we use the Left-Shift function to update the position of the bits
to reflect the state of the search while ensuring that the bits are not shifted past the end of a
pattern. What bits remain as 1s are bitwise-ORed with B1 to update the state to maintain
partial search states. This takes time O(dM

w e).
The final line of the algorithm saves the final search state of the segment to bit vector

B, ready for the next on-line letter to be sent to the Search function. A full illustrative
example of the search stage is provided below.
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With the above description we arrive at the main result of this paper.

I Theorem 7. Algorithm Multi-EDSM solves the MEDSM problem in an on-line manner in
time O(N · dM

w e). Algorithm Multi-EDSM requires pre-processing time and space O(M).

Notably, our algorithm improves on the pre-processing time and space of [7] by a factor
of O(dm

w e); namely, it improves on the algorithm for a single pattern (EDSM problem [7]).

I Corollary 8. Algorithm Multi-EDSM solves the EDSM problem in an on-line manner in
time O(N · dm

w e). Algorithm Multi-EDSM requires pre-processing time and space O(m).

I Example 9. Given an ED string T̃ as shown below, we wish to search for the patterns
in set P = {ATAT, TAGA} of total length M = 8. A collection I of σ bit vectors are created
during the Shift-And pre-processing stage marking the positions of the letters in Σ of the
concatenated patterns. We also build Occ-VectorP . Note that the bit vectors are read
from right to left and recall that Occ-VectorP subtracts 1 from the index positions.

T̃ =
{

AT
A

}
·
{

AT
TA

}
·
{

TTTA
AGA

} IA 1010 0101
IC 0000 0000
IG 0100 0000
IT 0001 1010

The algorithm starts with T̃ [0], skips the Shift-And search of the strings in the segment
because they are too short, and computes bit vector B = 0001 0011 = Overlaps(T̃ [0]) on
line 8. The Overlaps function memorises the prefixes starting in the current segment using
B.

Then, the next segment is considered; on line 10 we compute the bit vector B1 =
0011 0011 = Overlaps(T̃ [1]). The next step is to check each string s ∈ T̃ [1] and after doing
Multi-Shift-And-Search(AT, B2) with state B (from T̃ [0]) it discovers a match for P [0]
and reports it. This time the Shift-And search function is called regardless of the length of s
because it is used to find whole patterns as well as suffixes of patterns that began in the
previous segments. The function completes the suffix by matching AT at positions IA[2] and
IT[3] to spell out P [0].

Then we consider how to handle infixes on line 19. We only need to process strings short
enough to be considered as infixes of a pattern and we query them with the Occ-VectorP

data structure to mark the positions where each infix starts. Calling Occ-VectorP (AT)
finds infix position 2 and returns 0000 0010. So B3 = 0000 0010 = B & 0000 0010, thus
maintaining the active search state. The Left-Shift function does bitwise left-shift of B3
by |s| positions whilst ensuring no 1s end up at or beyond the ending position of each pattern
in the set. What bits remain as 1s are bitwise-ORed with B1 to update the state to maintain
partial search states, but in this case, the 1 is shifted too far and B1 remains unchanged.

In the next iteration, we do Multi-Shift-And-Search(TA, B2) yielding no match. Then
we call Occ-VectorP (TA) which finds infix position 1 and returns 0000 0001 which we
bitwise-AND with B to take B3 = 0000 0001. Then Left-Shift is performed on B3 and
bitwise-ORing its result with B1 makes B1 = 0011 0111 because no boundaries are crossed.
Having searched all the strings in the segment, we save the state of the search to B on line 22
and observe that we have thus far matched ATA of P [0] spanning across T̃ [0] and T̃ [1].

Now we go ahead and search the final segment T̃ [2] of our example. We compute B1 =
0010 0001 = Overlaps(T̃ [2]) first and then by calling Multi-Shift-And-Search(TTTA,
B2) with the state B2 = B from the previous segment, we complete the partial match and
report finding P [0] in this segment. Calling this function again for the next string in the
segment, Multi-Shift-And-Search(AGA, B2) also completes the suffix for P [1], and we
report it.
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On the very last line of the algorithm we save the final search state of the segment to bit
vector B, ready for the next on-line letter to be sent to the Search function.

5 Experiments

Multi-EDSM code was written in C++ and compiled with g++ version 5.4.0 at optimization
level 3 (-O3) and scripts were written in Python 2.7. A simpler version of the Occ-VectorP

data structure has been implemented in which the user can set a memory limit to be used by
the program and then the analogous number of bit vectors are stored in the explicit nodes of
the suffix tree that are closer to the root. This is because the vast majority of the variation
strings to be queried in real datasets are rather short.

The following experiments were conducted on a desktop computer using one core of
Intel® CoreTM i7-2600S CPU at 2.8GHz and 8GB of RAM under 64-bit GNU/Linux. The
Multi-EDSM application code and generated experimental datasets and scripts are licensed
under the GNU General Public License (GPL-3.0); they are all freely available from https:
//github.com/webmasterar/multi-edsm.

5.1 Time Performance
To test the time performance of Multi-EDSM application, we devised two experiments. In
both experiments we set the memory limit of Multi-EDSM to 4GB for the program to use as
much memory as necessary.

In Figure 2a we measured the processing time when searching a randomly-generated
fixed ED text of length n = 1600000 (N = 5700610) over the DNA alphabet with randomly-
generated pattern sets doubling in length from length M = 1600 to M = 102400. The
text searched contains 10% degenerate segments and within each degenerate segment there
are 2 to 10 random strings of length 1 to 10 each. Similarly, in Figure 2b we measured
the processing time when searching randomly generated ED texts doubling in size from
N = 100000 to N = 6400000 with a fixed set of randomly-generated patterns of length
M = 3000. The text had 10% degenerate positions representing single-base substitutions.
(Uniform distribution has been used in all randomizations.)

As can be seen from the charts, the change in performance, whether it be an increase in
the patterns total length M or the total text size N , causes a linear increase in processing
time, which conforms to our theoretical findings (Theorem 7).

5.2 Comparison to EDSM-BV
To test the performance of Multi-EDSM compared against EDSM-BV [7] we searched the
same randomly-generated ED text of length n = 1600000 (N = 5700610) mentioned above
against multiple sets of randomly-generated patterns of length 40 each. First we tested with
a single pattern of length 40 and then the number of patterns in each set was incremented
in steps of 10 from 10 to 100 patterns of length 40 each. EDSM-BV is only able to search
one pattern at a time so we searched each pattern in a set individually and summed-up the
total time spent. We see from the chart in Figure 3 that for a single pattern the EDSM-BV
algorithm is fast, but it becomes immediately clear that for dictionary searching of even a
handful of patterns, Multi-EDSM becomes orders of magnitude faster.

5.3 Real Application
We designed a three stage pipeline for determining the validity of MAWs discovered in
the human genome. We obtained the GRCh37 chromosome sequences from Ensembl [10]

https://github.com/webmasterar/multi-edsm
https://github.com/webmasterar/multi-edsm
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(a) Processing time with increasing patterns total length on a fixed ED text of length
n = 1600000 (N = 5700610).
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(b) Processing time with increasing ED total text size on a fixed set of patterns of
total length M = 3000.

Figure 2 Time performance of Multi-EDSM.

and the associated phase 3 VCF files were obtained from the 1000 Genomes project [23]
on-line repositories. Phase 3 of the 1000 Genomes project contains 2504 individuals from
26 populations whose variants are encoded in VCF files. The first step in the pipeline was
to use emMAW [11] to extract MAWs of length between 3 and 12 from a concatenated
file of the 22 autosomes and two sex chromosomes. The filtered list of MAWs contained
161565 patterns with combined length M = 1937789. The second stage was to use the tool
EDSO to combine the reference chromosome sequences and the variants in the VCF files into
searchable ED string (EDS) format files. Then Multi-EDSM was used to search each of the
EDS files against the MAW patterns to produce a list of tuples marking the position of the
match and pattern id. The final stage was validation. A script was written to validate each
match, verifying a MAW genuinely exists for an individual at the identified position in the
chromosome. We have found that for each chromosome more than half the MAWs discovered
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Figure 3 Elapsed-time comparison of Multi-EDSM and EDSM-BV with an ED text of total size
N = 5700610 and sets of randomly-generated patterns of length 40 each.

Table 1 Ebola sequences absent from human reference genome but present in human pan-genome.

id sequence position variant id sample id ethnicity
RAW1 TTTCGCCCGACT 6:93819539 rs569027564 NA18606 Han Chinese
RAW2 TACGCCCTATCG 1:74075482 rs578167440 HG02146 Peruvian
RAW3 CCTACGCGCAAA 15:71003880 rs564150197 HG03598 Bengali

using Multi-EDSM exist in one or more individuals and are subsequently disqualified, i.e.
they are not really MAWs. Our compiled summary of the results show that 73% of MAWs
were disqualified, leaving only 43722 of 161565 potential MAWs remaining.

We applied the results of this pipeline to validate the work of Silva et. al. in [21] to
identify MAWs in Ebola virus genomes that are absent from the human genome. They
identify three MAWs of length 12, called RAW1, RAW2 and RAW3, that are not present
in the reference human genome sequence. These MAWs could be used to verify an Ebola
infection in a patient. However, we discovered from our results that each of the three MAWS
do in fact occur in one or more individuals in the 1000 Genomes dataset, although indeed
they are not that common. This means that they cannot be used as perfect identifiers for
Ebola virus infection and perhaps longer unique MAWs should be used instead. In Table 1
we list the position of the discovery of each MAW as well as information about the variant
and the id of one individual they occur in.

6 Final Remarks

It would be relevant [9] to investigate the problem of dictionary matching in elastic-degenerate
texts under the Hamming or edit distance models (see [3] for a single pattern).
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