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Abstract
In the present paper, we propose an efficient local search for the minimum independent domin-
ating set problem. We consider a local search that uses k-swap as the neighborhood operation.
Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping
exactly k vertices from S and then by adding any number of vertices to it. We show that, when
k = 2, (resp., k = 3 and a given solution is minimal with respect to 2-swap), we can find an
improved solution in the neighborhood or conclude that no such solution exists in O(n∆) (resp.,
O(n∆3)) time, where n denotes the number of vertices and ∆ denotes the maximum degree. We
develop a metaheuristic algorithm that repeats the proposed local search and the plateau search
iteratively, where the plateau search examines solutions of the same size as the current solution
that are obtainable by exchanging a solution vertex and a non-solution vertex. The algorithm
is so effective that, among 80 DIMACS graphs, it updates the best-known solution size for five
graphs and performs as well as existing methods for the remaining graphs.
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1 Introduction

Let G = (V,E) be a graph such that V is the vertex set and E is the edge set. Let n = |V |
and m = |E|. A vertex subset S (S ⊆ V ) is independent if no two vertices in S are adjacent,
and dominating if every vertex in V \ S is adjacent to at least one vertex in S. Given a
graph, the minimum independent dominating set (MinIDS) problem asks for a smallest
vertex subset that is dominating as well as independent. The MinIDS problem has many
practical applications in data communication and networks [13].

There is much literature on the MinIDS problem in the field of discrete mathematics [8].
The problem is NP-hard [6] and also hard even to approximate; there is no constant ε > 0
such that the problem can be approximated within a factor of n1−ε in polynomial time,
unless P=NP [11].

For algorithmic perspective, Liu and Song [15] and Bourgeois et al. [4] proposed exact
algorithms with polynomial space. The running times of Liu and Song’s algorithms are
bounded by O∗(20.465n) and O∗(20.620n), and the running time of Bourgeois et al.’s algorithm
is bounded by O∗(20.417n), where O∗(·) is introduced to ignore polynomial factors. Laforest
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and Phan [14] proposed an exact algorithm based on clique partition, and made empirical
comparison with one of the Liu and Song’s algorithms, in terms of the computation time.
Davidson et al. [5] proposed an integer linear optimization model for the weighted version
of the MinIDS problem (i.e., weights are given to edges as well as vertices, and the weight
of an edge vx is counted as cost if the edge vx is used to assign a non-solution vertex v to
a solution vertex x; every non-solution vertex v is automatically assigned to an adjacent
solution vertex x such that the weight of vx is the minimum) and performed experimental
validation for random graphs. Recently, Wang et al. [20] proposed a tabu-search based
memetic algorithm and Wang et al. [21] proposed a metaheuristic algorithm based on
GRASP (greedy randomized adaptive search procedure). They showed their effectiveness on
DIMACS instances, in comparison with CPLEX12.6 and LocalSolver5.5.

A vertex subset S is an IDS iff it is a maximal independent set with respect to set-
inclusion [2]. Then one can readily see that the MinIDS problem is equivalent to the
maximum minimal vertex cover (MMVC) problem and the minimum maximal clique problem.
Zehavi [22] studied the MMVC problem, which has applications to wireless ad hoc networks,
from the viewpoint of fixed-parameter-tractability.

For a combinatorially hard problem like the MinIDS problem, it is practically meaningful
to develop a heuristic algorithm to obtain a nearly-optimal solution in reasonable time. In
the present paper, we propose an efficient local search for the MinIDS problem. By the
term “efficient”, we mean that the proposed local search has a better time bound than one
naïvely implemented. The local search can serve as a key tool of local improvement in a
metaheuristic algorithm, or can be used in an initial solution generator for an exact algorithm.
We may also expect that it is extended to the weighted version of the MinIDS problem in
the future work.

Our strategy is to search for a smallest maximal independent set. Hereafter, we may call
a maximal independent set simply a solution. In the proposed local search, we use k-swap for
the neighborhood operation. Given a solution S, k-swap refers to the operation of obtaining
another solution by dropping exactly k vertices from S and then by adding any number of
vertices to it. The k-neighborhood of S is the set of all solutions that can be obtained by
performing k-swap on S. We call S k-minimal if its k-neighborhood contains no S′ such that
|S′| < |S|.

To speed up the local search, one should search the neighborhood for an improved solution
as efficiently as possible. For this, we propose k-neighborhood search algorithms for k = 2
and 3. When k = 2 (resp., k = 3 and a given solution is 2-minimal), the algorithm finds an
improved solution or decides that no such solution exists in O(n∆) (resp., O(n∆3)) time,
where ∆ denotes the maximum degree in the input graph.

Furthermore, we develop a metaheuristic algorithm named ILPS (Iterated Local & Plateau
Search) that repeats the proposed local search and the plateau search iteratively. ILPS is so
effective that, among 80 DIMACS graphs, it updates the best-known solution size for five
graphs and performs as well as existing methods for the remaining graphs.

The paper is organized as follows. Making preparations in Section 2, we present k-
neighborhood search algorithms for k = 2 and 3 in Section 3 and describe ILPS in Section 4.
We show computational results in Section 5 and then give concluding remark in Section 6.
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2 Preliminaries

2.1 Notation and Terminologies
For a vertex v ∈ V , we denote by deg(v) the degree of v, and by N(v) the set of neighbors
of v, i.e., N(v) = {u | vu ∈ E}. For S ⊆ V , we define N(S) = (

⋃
v∈S N(v)) \ S. We denote

by G[S] the subgraph induced by S. The S is called a k-subset if |S| = k.
Suppose that S is an independent set. The tightness of v /∈ S is the number of neighbors

of v that belong to S, i.e., |N(v)∩S|. We call the v t-tight if its tightness is t. In particular, a
0-tight vertex is called free. We denote by Tt the set of t-tight vertices. Then V is partitioned
into V = S ∪ T0 ∪ · · · ∪ Tn−1, where Tt may be empty. Let T≥t denote the set of vertices
that have the tightness no less than t, that is, T≥t = Tt ∪ Tt+1 ∪ · · · ∪ Tn−1.

An independent set S is a solution (i.e., a maximal independent set) iff T0 = ∅. We call
x ∈ S a solution vertex and v /∈ S a non-solution vertex. When a solution vertex x ∈ S and
a t-tight vertex v /∈ S are adjacent, x is a solution neighbor of v, or equivalently, v is a t-tight
neighbor of x.

A k-swap on a solution S is the operation of obtaining another solution (S \D) ∪A such
that D is a k-subset of S and that A is a non-empty subset of V \ S. We call D a dropped
subset and A an added subset. The k-neighborhood of S is the set of all solutions obtained
by performing a k-swap on S. A solution S is k-minimal if the k-neighborhood contains no
improved solution S′ such that |S′| < |S|. Note that every solution is 1-minimal.

If a k-subset D is dropped from S, then trivially, the k solution vertices in D become
free, and some non-solution vertices may also become free. Observe that a non-solution
vertex becomes free if the solution neighbors are completely contained in D. We denote
by F (D) the set of such vertices and it is defined as F (D) = {v ∈ V \ S | N(v) ∩ S ⊆ D}.
Clearly the added subset A should be a maximal independent set in G[D ∪ F (D)]. We have
F (D) ⊆ N(D), and the tightness of any vertex in F (D) is at most k (at the time before
dropping D from S).

2.2 Data Structure
We store the input graph by means of the typical adjacency list. We maintain a solution
based on the data structure that Andrade et al. [1] invented for the maximum independent
set problem. For the current solution S, we have an ordering π : V → {1, . . . , n} on all
vertices in V such that;

π(x) < π(v) whenever x ∈ S and v /∈ S;
π(v) < π(v′) whenever v ∈ T0 and v′ ∈ T≥1;
π(v′) < π(v′′) whenever v′ ∈ T1 and v′′ ∈ T≥2;
π(v′′) < π(v′′′) whenever v′′ ∈ T2 and v′′′ ∈ T≥3.

Note that the ordering is partitioned into five sections; S, T0, T1, T2 and T≥3. In each section,
the vertices are arranged arbitrarily. We also maintain the number of vertices in each section
and the tightness τ(v) for every non-solution vertex v /∈ S.

Let us describe the time complexities of some elementary operations. We can scan each
vertex section in linear time. We can pick up a free vertex (if exists) in O(1) time. We
can drop (resp., add) a vertex v from (resp., to) the solution in O(deg(v)) time. See [1] for
details.

Before closing this preparatory section, we mention the time complexities of two essential
operations.

I Proposition 1. Let D be a k-subset of S. We can list all vertices in F (D) in O(k∆) time.

SEA 2018
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Proof. We let every v ∈ V have an integral counter, which we denote by c(v). It suffices to
scan vertices in N(D) twice. In the first scan, we initialize the counter value as c(u) ← 0
for every neighbor u ∈ N(x) of every solution vertex x ∈ D. In the second, we increase the
counter of u by one (i.e., c(u)← c(u) + 1) when u is searched in the adjacency list of x ∈ D.
Then, if c(u) = τ(u) holds, we output u as a member of F (D) since the equality represents
that every solution neighbor of u is contained in D. Obviously the time bound is O(k∆). J

I Proposition 2. Let D be a k-subset of S. For any non-solution vertex v ∈ F (D), we can
decide whether v is adjacent to all vertices in F (D) \ {v} in O(k∆) time.

Proof. We use the algorithm of Proposition 1. As preprocessing of the algorithm, we set
the counter c(u) of each u ∈ N(v) to 0, i.e., c(u)← 0, which can be done in O(deg(v)) time.
After we acquire F (D) by running the algorithm of Proposition 1, we can see if v is adjacent
to all other vertices in F (D) in O(deg(v)) time by counting the number of vertices u ∈ N(v)
such that τ(u) ∈ {1, . . . , k} and c(u) = τ(u). If the number equals to (resp., does not equal
to) |F (D)| − 1, then we can conclude that it is true (resp., false). J

3 Local Search

Assume that, for some k ≥ 2, a given solution S is k′-minimal for every k′ ∈ {1, . . . , k − 1}.
Such k always exists, e.g., k = 2. In this section, we consider how we find an improved
solution in the k-neighborhood of S or conclude that S is k-minimal efficiently.

Let us describe how time-consuming naïve implementation is. In naïve implementation,
we search all k-subsets of S as candidates of the dropped subset D, where the number of
them is O(nk). Furthermore, for each D, there are O(nk−1) candidates of the added subset
A. The number of possible pairs (D,A) is up to O(n2k−1).

In the proposed neighborhood search algorithm, we do not search dropped subsets but
added subsets; we generate a dropped subset from each added subset. When k ∈ {2, 3}, the
added subsets can be searched more efficiently than the dropped subsets. This search strategy
stems from Proposition 3, a necessary condition of a k-subset D that the improvement is
possible by a k-swap that drops D. We introduce the condition in Section 3.1.

Then in Section 3.2 (resp., 3.3), we present a k-neighborhood search algorithm that finds
an improved solution or decides that no such solution exists for k = 2 (resp., 3), which runs
in O(n∆) (resp., O(n∆3)) time.

3.1 A Necessary Condition for Improvement
LetD be a k-subset of S. If there is a subset A ⊆ F (D) such that A is maximal independent in
G[D∪F (D)] and |A| < |D|, then we have an improved solution (S \D)∪A. The connectivity
of G[D∪F (D)] is necessary for the existence of such A, as stated in the following proposition.

I Proposition 3. Suppose that a solution S is k′-minimal for every k′ ∈ {1, . . . , k − 1} for
some integer k ≥ 2. Let D be a k-subset of S. There is a maximal independent set A in
G[D ∪ F (D)] such that A ⊆ F (D) and |A| < |D| only when the subgraph is connected.

Proof. Suppose that G[D ∪ F (D)] is not connected. Let q be the number of connected
components and D(p) ∪ F (p)(D) be the subset of vertices in the p-th component (q ≥ 2,
p = 1, . . . , q, D(p) ⊆ D, F (p)(D) ⊆ F (D)). Each D(p) is not empty since otherwise there
would be an isolated vertex in F (p)(D). It is a free vertex with respect to S, which contradicts
that S is a solution. Then we have 1 ≤ |D(p)| < k.
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The maximal independent set A is a subset of F (D). We partition A into A = A(1)∪· · ·∪
A(q), where A(p) = A ∩ F (p)(D). Each A(p) is maximal independent for the p-th component.
As |A| < |D|, |A(p)| < |D(p)| holds for some p. Then we can construct an improved solution
(S \D(p)) ∪A(p), which contradicts the k′-minimality of S. J

3.2 2-Neighborhood Search
Applying Proposition 3 to the case of k = 2, we have the following proposition.

I Proposition 4. Let D be a 2-subset of S. There is a non-solution vertex v in F (D) such
that (S \D) ∪ {v} is a solution only when there is a 2-tight vertex in F (D).

We can say more on Proposition 4. The vertex v should be 2-tight since, if not so (i.e., v
is 1-tight), {v} would not be maximal independent for G[D ∪ F (D)]; v is adjacent to only
one of D = {x, y} from the definition of 1-tightness.

In summary, if there is an improved solution (S \D) ∪ {v}, then v is 2-tight and has x
and y as the solution neighbors. Instead of searching all 2-subsets of S, we scan all 2-tight
vertices, and for each 2-tight vertex v, we take D = {x, y} as the candidate of the dropped
set. We have the following theorem.

I Theorem 5. Given a solution S, we can find an improved solution in the 2-neighborhood
or conclude that S is 2-maximal in O(n∆) time.

Proof. Since we maintain the solution by means of the vertex ordering, we can scan all the
2-tight vertices in O(|T2|) time. For each 2-tight v, we can detect the two solution neighbors,
say x and y, in O(deg(v)) time.

Let D = {x, y}. The singleton {v} is maximal independent for G[D ∪ F (D)] and thus
we have an improved solution (S \D) ∪ {v} iff v is adjacent to all other vertices in F (D).
Whether v is adjacent to all other vertices in F (D) is decided in O(∆) time, as we stated in
Proposition 2. If it is the case, then we can construct an improved solution (S \D) ∪ {v}
in O(deg(x) + deg(y) + deg(v)) = O(∆) time as the vertex ordering takes O(deg(x)) time
to drop x from S and O(deg(v)) time to add v to it [1]. Otherwise, we can conclude that
(S \D) ∪ {v} is not a solution because some vertices in F (D) are not dominated.

We have seen that, for each 2-tight vertex v, it takes O(∆) time to find an improved
solution (S \D) ∪ {v} or to conclude that it is not a solution. Therefore, the overall running
time is bounded by O(|T2|∆) = O(n∆). J

3.3 3-Neighborhood Search
We have the following proposition by applying Proposition 3 to the case of k = 3.

I Proposition 6. Suppose that S is a 2-minimal solution and that D = {x, y, z} is a 3-subset
of S. There is a subset A of F (D) such that A is maximal independent in G[D ∪ F (D)] and
|A| < |D| only when either of the followings holds:
(a) there is a 3-tight vertex in F (D) that has x, y and z as the solution neighbors;
(b) there are two 2-tight vertices in F (D) such that one has x and y as the solution neighbors

and the other has x and z as the solution neighbors.

Let us make observation on the added subset. Suppose that, for an arbitrary 3-subset
D ⊆ S, there is A ⊆ F (D) such that A is maximal independent in G[D∪F (D)] and |A| < |D|.
When |A| = 1, the only vertex in A is 3-tight since otherwise some vertex in D would not be
dominated. When |A| = 2, at least one of the two vertices in A is either 2-tight or 3-tight; if
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D

a

F(D)

b

a a b a

b

(i) A = {a} (ii) A = {a, b} (iii) A = {a, b} (iv) A = {a, b}

Figure 1 Illustration of a dropped set D and an added set A for (i) to (iv) in Section 3.3: For
clarity of the figure, we draw only edges that are incident to the vertices a and b. Note that every
vertex in F (D) is adjacent to at least one vertex in D.

both are 1-tight, one vertex of D would not be dominated. Concerning the tightness, the
following four situations are possible:
(i) A = {a} and a is 3-tight;
(ii) A = {a, b}, a is 3-tight, and b is t-tight such that t ∈ {1, 2, 3};
(iii) A = {a, b}, a is 2-tight, and b is 2-tight;
(iv) A = {a, b}, a is 2-tight, and b is 1-tight.
From (ii) to (iv), the vertices a and b are not adjacent. We illustrate (i) to (iv) in Figure 1.

Based on the above, we summarize the search strategy as follows. In order to generate
all 3-subsets D of S such that F (D) satisfies either (a) or (b) of Proposition 6, we scan all
3-tight vertices u (Proposition 6 (a)) and all pairs of 2-tight vertices, say v and w, such that
|(N(v)∪N(w))∩S| = 3 (Proposition 6 (b)). For (a), we take D = N(u)∩S and search F (D)
for a 1- or 2-subset A that is maximal independent in G[D ∪ F (D)], regarding the 3-tight
vertex u as the vertex a in (i) and (ii). Similarly, for (b), we take D = (N(v) ∪N(w)) ∩ S
and search F (D) for a 2-subset A that is maximal independent in G[D ∪ F (D)], regarding
the 2-tight vertex v as the vertex a in (iii) and (iv).

We have the following theorem on the time complexity of 3-neighborhood search. We
omit the proof due to space limitation.

I Theorem 7. Given a 2-minimal solution S, we can find an improved solution in the
3-neighborhood or conclude that S is 3-maximal in O(n∆3) time.

4 Iterated Local & Plateau Search

In this section, we present a metaheuristic algorithm named ILPS (Iterated Local & Plateau
Search) that repeats the proposed local search and the plateau search iteratively.

We show the pseudo code of ILPS in Algorithm 1. The ILPS has four parameters, that
is S, k, δ and ν, where S is an initial solution, k is the order of the local search (i.e., a
k-minimal solution is searched by LocalSearch(S, k) in Line 6), and δ and ν are integers.
The roles of the last two parameters are mentioned in Section 4.2.

The LocalSearch(S, k) in Line 6 is the subroutine that returns a k-minimal solution
from an initial solution S, where k is set to either two or three. When k = 2, it determines a 2-
minimal solution by moving to an improved solution repeatedly as long as the 2-neighborhood
search algorithm delivers one. When k = 3, it first finds a 2-minimal solution, and then runs
the 3-neighborhood search algorithm. If an improved solution is delivered, then the local
search moves to the improved solution and seeks a 2-minimal one again since the solution is
not necessarily 2-minimal. Otherwise, the current solution is 3-minimal.
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Algorithm 1 Iterated Local & Plateau Search (ILPS).
1: function ILPS(S, k, δ, ν)
2: S∗ ← S . S∗ is used to store the incumbent solution
3: ρ← a penalty function such that ρ(v) = 0 for all v ∈ V
4: ρ← UpdatePenalty(S, ρ, δ)
5: while termination condition is not satisfied do
6: S ← LocalSearch(S, k) . The local search returns a k-minimal solution
7: S ← PlateauSearch(S, k) . The plateau search returns a k-minimal solution
8: if |S| ≤ |S∗| then
9: S∗ ← S

10: end if
11: S ← Kick(S∗, ρ, ν) . The initial solution of the next iteration is generated
12: ρ← UpdatePenalty(S, ρ, δ) . The penalty function is updated
13: end while
14: return S∗

15: end function

Below we explain two key ingredients: the plateau search and the vertex penalty. We
describe these in Sections 4.1 and 4.2 respectively. We remark that they are inspired by
Dynamic Local Search for the maximum clique problem [19] and Phased Local Search for the
unweighted/weighted maximum independent set and minimum vertex cover [18].

4.1 Plateau Search
In the plateau search (referred to as PlateauSearch(S, k) in Line 7), we search solutions
of the size |S| that can be obtained by swapping a solution vertex x ∈ S and a non-solution
vertex v /∈ S. Let P(S) be the collection of all solutions that are obtainable in this way.
The size of any solution in P(S) is |S|. We execute LocalSearch(S′, k) for every solution
S′ ∈ P(S), and if we find an improved solution S′′ such that |S′′| < |S′| = |S|, then we do
the same for S′′, i.e., we execute LocalSearch(P, k) for every solution P ∈ P(S′′). We
repeat this until no improved solution is found and employ a best solution among those
searched as the output of the plateau search.

We emphasize the efficiency of the plateau search; all solutions in P(S) can be listed in
O(|T1|∆) time. Observe that (S \ {x}) ∪ {v} is a solution iff v is 1-tight such that x is the
only solution neighbor of v, and v is adjacent to all vertices in F ({x}) other than v. We can
scan all 1-tight vertices in O(|T1|) time. For each 1-tight vertex v, the solution neighbor x is
detected in O(deg(v)) time, and whether the last condition is satisfied or not is identified in
O(∆) time from Proposition 2. Dropping x from S and adding v to S \ {x} can be done in
O(∆) time.

4.2 Vertex Penalty
In order to avoid the search stagnation, one possible approach is to apply a variety of initial
solutions. To realize this, we introduce a penalty function ρ : V → Z+ ∪ {0} on the vertices.
The penalty function ρ is initialized so that ρ(v) = 0 for all v ∈ V (Line 3). During the
algorithm, ρ is managed by the subroutine UpdatePenalty (Lines 4 and 12). When the
initial solution S of the next local search is determined, it increases the penalty ρ(v) of every
vertex v ∈ S by one, i.e., ρ(v)← ρ(v) + 1. Furthermore, to “forget” the search history long
ago, it reduces ρ(v) to bmin{ρ(v), δ}/2c for all v ∈ V in every δ iterations. This δ is the
third parameter of ILPS and called the penalty delay.

SEA 2018
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The ρ is used in the subroutine Kick (Line 11), the initial solution generator, so that
vertices with fewer penalties are more likely to be included in the initial solution. Kick
generates an initial solution by adding non-solution vertices (with respect to the incumbent
solution S∗) “forcibly” to S∗. The added vertices are chosen one by one as follows; in one
trial, Kick picks up one non-solution vertex. It then goes on to the next trial with the
probability (ν − 1)/ν or stops the selection with the probability 1/ν, where ν is the fourth
parameter of ILPS. Observe that ν specifies the expected number of added vertices. In the
first trial, Kick randomly picks up a non-solution vertex that has the fewest penalty. In a
subsequent r-th trial (r = 2, 3, . . . ), let R = {v1, . . . , vr−1} be the set of vertices chosen so
far. Kick samples three vertices randomly from V \ (S∗ ∪R ∪N(R)), and picks up the one
that has the fewest penalty among the three. Suppose that R = {v1, . . . , vr} has been picked
up as the result of r trials. Then we construct an independent set S = (S∗ \ N(R)) ∪ R.
The S may not be a solution as there may remain free vertices. If so, we repeatedly pick up
free vertices by the maximum-degree greedy method until S becomes a solution. We use the
acquired S as the initial solution of the next local search.

5 Computational Results

We report some experimental results in this section. In Section 5.1, to gain insights into what
kind of instance is difficult, we examine the phase transition of difficulty with respect to the
edge density. The next two subsections are devoted to observation on the behavior of the
proposed method. In Section 5.2, we show how a single run of LocalSearch(S, k) improves
a given initial solution. In Section 5.3, we show how the penalty delay δ affects the search.
Finally in Section 5.4, we compare ILPS with the memetic algorithm [20], GRASP+PC [21],
CPLEX12.6 [12] and LocalSolver5.5 [16] in terms of the solution size, using DIMACS graphs.

All the experiments are conducted on a workstation that carries an Intel Core i7-4770
Processor (up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory.
The installed OS is Ubuntu 16.04. Under this environment, it takes 0.25 s, 1.54 s and 5.90 s
approximately to execute dmclique (http://dimacs.rutgers.edu/pub/dsj/clique/) for
instances r300.5.b, r400.5.b and r500.5.b, respectively. The ILPS algorithm is imple-
mented in C++ and compiled by the g++ compiler (ver. 5.4.0) with -O2 option.

5.1 Phase Transition of Difficulty

The phase transition has been observed for many combinatorial problems [7, 9, 10]. Roughly,
it is said that over-constrained and under-constrained instances are relatively easy, and that
intermediately constrained ones tend to be more difficult.

In the MinIDS problem, the amount of constraints is proportional to the edge density
p. We examine the change of difficulty with respect to p. We estimate the difficulty of an
instance by how long CPLEX12.8 takes to solve it.

For each (n, p) ∈ {100, 150, 200} × {0.00, 0.05, . . . , 1.00}, we generate 100 random graphs
(Erdös-Rényi model) with n vertices and the edge density p, i.e., an edge is drawn between
two vertices with probability p. We solve the 100 instances by CPLEX12.8 and take the
averaged computation time. We set the time limit of each run to 60 s. If CPLEX12.8
terminates by the time limit, then we regard the computation time as 60 s.

Figure 2 shows the result. We may say that instances with the edge densities from 0.1 to
0.4 are likely to be more difficult than others. In fact, the experiments in [5, 14] mainly deal
with random graphs with the edge densities in this range.

http://dimacs.rutgers.edu/pub/dsj/clique/
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Figure 2 Computation time of CPLEX12.8 for random graphs.

Table 1 Averaged sizes of random, 2-minimal and 3-minimal solutions in random graphs with
103 vertices.

p = .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99
random 44.57 24.42 16.70 12.50 9.66 7.70 6.12 4.84 3.62 3.00 2.12

2-minimal 37.37 20.36 13.84 10.18 7.86 6.12 4.95 3.95 2.99 2.00 1.95
3-minimal 35.44 19.04 12.74 9.28 7.01 5.64 4.06 3.02 2.15 2.00 1.95

5.2 A Single Run of Local Search
We show how a single run of LocalSearch(S, k) improves an initial solution S. Again
we take a random graph. We fix the number n of vertices to 103. For every p ∈
{0.1, . . . , 0.9, 0.95, 0.99}, we generate 100 random graphs. Then for each graph, we run
LocalSearch(S, k) five times, where we use different random seeds in each time and
construct the initial solution S randomly.

We show the averaged sizes of random, 2-minimal and 3-minimal solutions in Table 1.
We see that, the larger the edge density p is, the fewer the solution size becomes. The
local search improves a random solution to some extent. LocalSearch(S, 3) improves the
solution more than LocalSearch(S, 2). The difference between the two local searches is
the largest when p = 0.1, that is 37.37− 35.44 = 1.93. The difference gets smaller when p
gets larger. In particular, when p > 0.9, we see no difference.

Let us discuss computation time. In the left of Figure 3, we show how the aver-
aged computation time changes with respect to p. We see that the computation time of
LocalSearch(S, 3) is tens to thousands of times the computation time of LocalSearch(S, 2).
However, it does not necessarily diminish the value of the 3-neighborhood search. As will be
shown in Section 5.4, when k = 3, ILPS can find such a good solution that is not obtained
by k = 2.

In general, for a fixed k, it takes more computation time when p is larger. Recall
Theorem 5 (resp., 7); when k = 2 (resp., 3), the k-neighborhood search algorithm finds an
improved solution for the current solution S or concludes that S is k-minimal in O(n∆)
(resp., O(n∆3)) time. Roughly, ∆ is increasing as p gets larger.

For k = 3, we attribute the peak at p = 0.8 to the number of 3-tight vertices. In the
right of Figure 3, We show the averaged numbers of 2- and 3-tight vertices with respect to
3-minimal solutions. The 3-neighborhood search algorithm searches 2- and 3-tight vertices.
The numbers of both vertices are generally non-decreasing from p = 0.1 to 0.8, but when
p > 0.8, the number of 3-tight vertices decreases dramatically. This is due to the solution
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size. The solution size gives an upper bound on the tightness of any non-solution vertex, and
when p > 0.8, the averaged size of a 3-minimal solution is less than three; see Table 1. Since
most of the non-solution vertices are either 1- or 2-tight, we hardly handle the situations (i)
and (ii) in Section 3.3.

5.3 Penalty Delay
We introduced the notion of vertex penalty to control the search diversification. When the
penalty delay δ is larger, more varieties of initial solutions are expected to be tested in ILPS.

To illustrate the expectation, we evaluate how many iterations ILPS takes until all
vertices are covered by the initial solutions, that is, used in the initial solutions at least once.
The solid line in Figure 4 shows the number of iterations taken to cover all vertices. The
graph we employ here is a 10 × 10 grid graph such that each vertex is associated with a
2D integral point (i, j) ∈ {1, . . . , 10}2, and that two vertices (i, j) and (i′, j′) are adjacent
iff |i− i′|+ |j − j′| = 1. For each δ, the number of iterations is averaged over 500 runs of
ILPS with different random seeds, where we fix (k, ν) = (2, 1) and construct the first initial
solution S by the maximum-degree greedy algorithm.

The observed phenomenon meets our expectation; The number is non-increasing with
respect to δ and saturated for δ ≥ 30. In other words, when δ is larger, more varieties of
initial solutions are generated in a given number of iterations.

However, setting δ to a large value does not necessarily lead to discovery of better solutions.
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The dashed line in Figure 4 shows the averaged number of iterations that ILPS takes to find
an optimal solution; we know that the optimal size is 24 since we solve the instance optimally
by CPLEX. When δ ≤ 40, the number is approximately decreasing and takes the minimum
at δ = 40, but a larger δ does not make any improvement. Hence, given an instance, we need
to choose an appropriate value of δ carefully.

5.4 Performance Validation
We run ILPS algorithm for 80 DIMACS instances that are downloadable from [17]. We
generate the first initial solution S by the maximum-degree greedy method, and fix the
parameter ν to three. For (k, δ), all pairs in {2, 3}×{20, . . . , 26} are tested. For each instance
and each (k, δ), we run ILPS algorithm 10 times, using different random seeds. We terminate
the algorithm by the time limit. The time limit is set to 200 s. When k = 3, we modify
Algorithm 1 so that PlateauSearch(S, k) in Line 7 is called only when |S| ≤ |S∗|+ 2 as
the plateau search is rather time-consuming.

We take four competitors from [20] and [21]. The first is MEM, a tabu-search based
memetic algorithm in [20]. The second is GP, the GRASP+PC algorithm in [21]. The third
is CP, which stands for CPLEX12.6 [12] that solves an integer optimization model of the
MinIDS problem. The fourth is LS, which stands for LocalSolver5.5 [16], a general discrete
optimization solver based on local search. MEM is run on a computer with a 2.0GHz CPU
and a 4GB memory, whereas the other competitors are run on computers with a 2.3GHz
CPU and an 8GB memory. The time limit of MEM and GP is set to 200 s, and that of CP
and LS is set to 3600 s.

In Table 2, we show the results on selected instances. The columns “n” and “p” indicate
the number of vertices and the edge density, respectively. The edge density is between 0.1
and 0.5 in all instances except hamming8-2. In our context, the instances are expected to
be difficult. For ILPS, we show the results for (k, δ) = (2, 26) in detail, regarding this pair
as the representative. The columns “Min” and “Max” indicate the minimum/maximum
solution size over 10 runs, and the column “Avg” indicates the average. The column “TTB”
indicates the time to best (in seconds), that is, the average of the computation time that
ILPS takes to find the solution of the size “Min”. The symbol ε represents that the time
is less than 0.1 s. The column “Best” indicates the minimum solution size attained over all
(k, δ) ∈ {2, 3} × {20, . . . , 26}. The rightmost four columns indicate the solution size attained
by the competitors. The symbol ∗ before the instance name indicates that the solution size
attained by CPLEX is optimal.

The table contains only results on the 13 selected instances such that the solutions sizes
attained by “Best”, “MEM” and “GP” are not-all-equal, except hamming8-2. We guarantee
that, for the remaining 67 instances, ILPS’s “Best” is as good as any competitor. The
boldface indicates that the solution size is strictly smaller than those of the competitors.
Then we update the best-known solution size in five graphs. These show the effectiveness of
the proposed local search and the ILPS algorithm.

For hamming8-2, when k = 2, ILPS cannot find a solution of the optimal size 32 for any
penalty delay δ ∈ {20, . . . , 26}. However, when k = 3, ILPS finds an optimal solution with
δ = 20, 21 and 22.

Before closing this section, let us report our preliminary results briefly.
A preliminary version of ILPS happened to find a solution of the size 31 for C2000.9 and
a solution of the size 15 for keller6.
Let us consider a finer swap operation, (j, k)-swap, that obtains another solution by
dropping exactly k vertices from the current one and then by adding exactly j vertices
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Table 2 Selected results from the validation experiments on DIMACS graphs.

n p ILPS [20] [21]
(k = 2, ν = 26) MEM GP CP LS

Min Avg Max TTB Best
brock400_2 400 .25 10 10.0 10 1.1 9 9 10 10 11
C1000.9 1000 .10 27 27.8 29 0.0 26 27 27 29 30
∗C125.9 125 .10 14 14.0 14 0.1 14 14 15 14 14
C2000.9 2000 .10 32 33.6 35 12.1 32 33 33 48 36
C4000.5 4000 .50 7 7.9 8 49.7 7 8 8 - -
C500.9 500 .10 22 22.2 23 92.3 21 22 23 23 22
gen400_p0.9_55 400 .10 20 20.1 21 39.4 20 20 21 22 22
gen400_p0.9_65 400 .10 20 20.7 21 99.0 20 20 21 21 22
∗hamming8-2 256 .03 36 36.0 36 0.0 32 N/A 32 32 32
keller6 3361 .18 18 18.0 18 26.1 16 18 18 32 19
∗san200_0.7_1 200 .30 6 6.1 7 85.9 6 6 7 6 7
∗san200_0.9_1 200 .10 15 15.0 15 16.7 15 15 16 15 16
san400_0.7_3 400 .30 7 7.8 8 106.6 7 7 8 8 9

to it. One can prove that, given a solution S and a constant k, we can improve S by
(1, k)-swap or conclude that it is not possible in O(n∆) time. We implemented (1, k)-swap
in a preliminary version of ILPS, but it does not yield significant improvement even when
k is set to a constant larger than three.
We tested Laforest and Phan’s exact algorithm [14], and found that the algorithm is not
suitable for a task of finding a good solution quickly. The source code is available at
http://todo.lamsade.dauphine.fr/spip.php?article42.
BHOSLIB [3] is another well-known collection of benchmark instances. It contains 36
instances such that n is between 450 and 4000 and that p is no less than 0.82. Hence, the
BHOSLIB instances are expected to be easy in our context. The ILPS with (k, δ) = (2, 26)
finds a solution of the size three for all the instances. We also run CPLEX12.8 for 200 s,
generating an initial solution by the maximum-degree greedy algorithm. CPLEX12.8
finds a solution of the size five for frb100-40, and a solution of the size three for the
other instances. In addition, the solution of the size three is proved to be optimal for 15
instances whose names start with frb30, frb35 and frb40.

6 Concluding Remark

We have considered an efficient local search for the MinIDS problem. We proposed fast
k-neighborhood search algorithms for k = 2 and 3, and developed a metaheuristic algorithm
named ILPS that repeats the local search and the plateau search iteratively. ILPS is so
effective that it updates the best-known solution size in five DIMACS graphs.

The proposed local search is applicable to other metaheuristics such as genetic algorithms,
as a key tool of local improvement. The future work includes an extension of the local search
to a weighted version of the MinIDS problem.
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