
A Computational Investigation on the Strength of
Dantzig-Wolfe Reformulations
Michael Bastubbe
Lehrstuhl für Operations Research, RWTH Aachen University,
Kackertstr. 7, D-52072 Aachen, Germany
michael.bastubbe@rwth-aachen.de

Marco E. Lübbecke
Lehrstuhl für Operations Research, RWTH Aachen University,
Kackertstr. 7, D-52072 Aachen, Germany
marco.luebbecke@rwth-aachen.de

Jonas T. Witt
Lehrstuhl für Operations Research, RWTH Aachen University,
Kackertstr. 7, D-52072 Aachen, Germany
jonas.witt@rwth-aachen.de

Abstract
In Dantzig-Wolfe reformulation of an integer program one convexifies a subset of the constraints,
leading to potentially stronger dual bounds from the respective linear programming relaxation.
As the subset can be chosen arbitrarily, this includes the trivial cases of convexifying no and all
constraints, resulting in a weakest and strongest reformulation, respectively. Our computational
study aims at better understanding of what happens in between these extremes. For a collection of
integer programs with few constraints we compute, optimally solve, and evaluate the relaxations
of all possible (exponentially many) Dantzig-Wolfe reformulations (with mild extensions to larger
models from the MIPLIBs). We observe that only a tiny number of different dual bounds actually
occur and that only a few inclusion-wise minimal representatives exist for each. This aligns
with considerably different impacts of individual constraints on the strengthening the relaxation,
some of which have almost no influence. In contrast, types of constraints that are convexified in
textbook reformulations have a larger effect. We relate our experiments to what could be called
a hierarchy of Dantzig-Wolfe reformulations.

2012 ACM Subject Classification Mathematics of computing → Integer programming

Keywords and phrases Dantzig-Wolfe reformulation, strength of reformulations, Lagrangean
relaxation, partial convexification, column generation, hierarchy of relaxations

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.11

1 Motivation

The strength of formulations is a central topic in integer programming, and expressed via
the quality of the dual bound obtained from the respective linear programming relaxation.
It is well-known that a Dantzig-Wolfe (DW) reformulation of an integer program, the
convexification of a subset of the constraints, may yield strong dual bounds. Therefore, such
reformulations have been proposed in the literature for many models stemming from various
applications. Even though a DW reformulation follows a certain mechanics that exploits the
structure of the model, this is by far not unique. Technically, every subset of constraints
gives rise to its own DW reformulation, including the two trivial cases: convexifying no or all
constraints, implying the weakest and strongest possible dual bounds, respectively.

© Michael Bastubbe, Marco E. Lübbecke, and Jonas T. Witt;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 11; pp. 11:1–11:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:michael.bastubbe@rwth-aachen.de
mailto:marco.luebbecke@rwth-aachen.de
mailto:jonas.witt@rwth-aachen.de
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Computational Investigation on the Strength of DW Reformulations

Because of this freedom, speaking of “the” strength of DW reformulations in general is
not useful. Instead, a differentiation is necessary, but theoretical results are very scarce (we
mention two exceptions later). In order to make progress on this topic our study provides
some general computational intuition. To the best of our knowledge, it is the first of its kind.

Brief Background on Dantzig-Wolfe Reformulation

We sketch the basics of DW reformulating an integer linear program (including the mixed-
integer case), mainly to introduce our notation and conventions. We consider

zIP = min cT x

s. t. aT
i x ≥ bi ∀i ∈ I

x ∈ Zn ,

(1)

where I denotes a finite index set, n ∈ Z>0, c, ai ∈ Qn, and bi ∈ Q for i ∈ I. We identify
constraints with their respective index i ∈ I. When we speak of relaxations, we always refer to
the linear programming relaxation, obtained by dropping the integrality requirement on the
variables. We denote the optimum of the relaxation of (1) by zLP . The DW reformulation
(“convexification”) of a subset I ′ ⊆ I of constraints amounts to (implicitly) additionally
require in (1) that x ∈ conv

{
x̃ ∈ Zn : aT

i x̃ ≥ bi ∀i ∈ I ′
}
. It is irrelevant here (but very well

understood) how this is technically achieved (see Vanderbeck [13] for details on Dantzig-Wolfe
reformulation and the relation to Lagrangean relaxation). This reformulation has the same
integer feasible solutions as (1), but the relaxation

zDW (I ′) = min cT x

s. t. aT
i x ≥ bi ∀i ∈ I \ I ′

x ∈ conv
{

x̃ ∈ Zn : aT
i x̃ ≥ bi ∀i ∈ I ′

}
x ∈ Rn

(2)

is potentially stronger than that of (1), i.e.,

zIP ≥ zDW (I ′) ≥ zLP ∀I ′ ⊆ I . (3)

This relation is a main reason for performing a DW reformulation in the first place. For
convenience we identify a DW reformulation of constraints I ′ ⊆ I with I ′ itself. We formally
repeat that both extreme cases zIP = zDW (I) and zLP = zDW (∅) are possible. Therefore,
the notion of strength of a DW reformulation must necessarily relate to I ′ [14]. Geoffrion [7]
gave as necessary condition for zDW (I ′)
 zLP that conv

{
x̃ ∈ Zn : aT

i x̃ ≥ bi ∀i ∈ I ′
}
({

x̃ ∈ Rn : aT
i x̃ ≥ bi ∀i ∈ I ′

}
. The condition is not sufficient; in particular, the actual strength-

ening may depend on the objective function. For the stable set (and related) problems we
recently characterized DW reformulations I ′ ⊆ I for which zIP = zDW (I ′) or zLP = zDW (I ′)
independently of the objective function [14]. A generalization does not seem to be in reach
and nothing is known about what happens “in between.”

Our Approach

For each instance, taken from a set of small models of different problem classes, we compute
the dual bounds zDW (I ′) from all 2|I| DW reformulations I ′ ⊆ I and collect some statistics
about the respective DW reformulations. We then report these statistics for each problem
class. When we plot figures, this is usually only for one representative of each class, because
they look similar for the other problems of this class.

M. Bastubbe, M. E. Lübbecke, and J. T. Witt 11:3

2 Instances and Experimental Setup

In order to keep the task of evaluating all (exponentially many) DW reformulations of an
integer program manageable, we only consider very small models with up to 18 constraints.
We first consider instances of problems where DW reformulation classically applies well
(we call these models structured): bin packing (bpp), vertex coloring, capacitated p-median
(cpmp), single-source capacitated facility location (cflp), generalized assigment (gap), and
capacitated vehicle routing problems with time windows (vrp) problems. We used an instance
generator to create small bin packing problems [12] and created 3 vertex coloring instances on
connected graphs with 2 or 3 vertices (yielding integer programs with up to 15 constraints).
Furthermore, we created 2 instances for the capacitated vehicle routing problem with time
windows consisting of a single depot, 2 customers, and 2 vehicles (yielding mixed integer
programs with up to 18 constraints). For all other problems, we took instances from the
literature [4, 5, 8, 10, 11] and modified them to reduce the number of constraints. We chose
standard textbook formulations for all problems with as few constraints as possible (e.g.,
by using formulations with few but relatively weak coupling constraints). Additionally, we
consider very small and easy-to-solve instances from MIPLIB 3 [3], namely flugpl, mod008,
and p0033. Although the instances markshare1, markshare2, mas74, and mas76 have only
a small number of constraints, they turned out to be too hard to solve in preliminary
experiments. All our instances have a positive integrality gap, i.e., zLP < zIP .

For the experiments, we use a development version of the generic branch-price-and-cut
solver GCG [6], see www.or.rwth-aachen.de/gcg for the current released version 2.1.4. We
implemented a so-called detector that creates, for each instance, all possible DW reformula-
tions I ′ ⊆ I and solve their relaxations optimally by column generation to obtain zDW (I ′).
We turned off separation of cutting planes as well as the internal handling of problems with
integral optimum (this would lead to only integer dual bounds dzDW (I ′)e for I ′ ⊆ I). For
the structured models we also disabled presolving. The MIPLIB instances were presolved,
i.e., the number of constraints and variables can differ from the original instance.

The total computation time spend for optimally solving over one million relaxations by
column generation was approximately 100 hours. These numbers do not include the time
spent for creating the decompositions and evaluating the computations.

3 Number and Frequency of Distinct Dual Bounds

This section is motivated by hierarchies of relaxations which are, roughly speaking, finite
chains of (nested) stronger and stronger relaxations (of the same type), starting from the
linear programming relaxation and arriving at the convex hull of integer feasible solutions.
Several of these hierarchies are known, e.g., the Chvátal-Gomory procedure produces one.

Let I = 2I denote the powerset of I. Consider the partially ordered set P = (I,⊆)
consisting of all 2|I| DW reformulations and their partial order induced by set inclusion.
The empty set ∅ is the unique minimal element and I is the unique maximal element of P .
Every chain ∅ = I0 ⊆ I1 ⊆ · · · ⊆ Im = I in P obviously defines a hierarchy of relaxations
with zLP = zDW (I0) ≤ zDW (I1) ≤ · · · ≤ zDW (Im) = zIP , where the inequalities need not
be (all) strict. That is, a chain may induce fewer than |I|+ 1 dual bounds. We call a DW
reformulation I ′ minimal if there does not exist any I ′′ (I ′ with zDW (I ′′) = zDW (I ′).

Our first experiment reveals for every given instance how many distinct dual bounds
actually occur and in what frequencies. In particular, what is the distribution of dual bounds
in [zLP , zIP] and what can we learn about minimal DW reformulations?

SEA 2018

www.or.rwth-aachen.de/gcg

11:4 Computational Investigation on the Strength of DW Reformulations

Table 1 For each (toy) instance, we state the type (binary, general integer, or mixed integer
variables); the number of constraints (nconss); the number of variables (nvars); the number of DW
reformulations (nrefs); the number of distinct dual bounds (ndbs); the number of minimal DW
reformulations (nmin); as well as the average (cavg), the minimum (cmin), and the maximum (cmax)
number of distinct dual bounds in a chain.

Instance type nconss nvars nrefs ndbs nmin cavg cmin cmax
bpp1 BP 12 42 4096 5 27 3.318 3.0 4.0
bpp2 BP 10 30 1024 5 18 3.375 3.0 4.0
bpp3 BP 14 56 16384 6 38 3.765 3.0 5.0
cflp1 BP 14 45 16384 49 66 5.283 4.0 7.0
cflp2 BP 14 44 16384 77 90 6.400 5.0 7.0
cflp3 BP 14 44 16384 83 86 6.367 5.0 7.0
coloring1 BP 15 12 32768 16 835 4.172 2.0 8.0
coloring2 BP 12 12 4096 7 75 2.399 2.0 4.0
coloring3 BP 6 6 64 4 8 1.800 1.0 3.0
cpmp1 BP 11 30 2048 42 46 5.733 5.0 9.0
cpmp2 BP 11 30 2048 46 52 5.597 5.0 9.0
cpmp3 BP 11 30 2048 31 32 4.481 4.0 6.0
gap1 BP 15 50 32768 26 44 3.122 2.0 6.0
gap2 BP 15 50 32768 28 67 3.016 3.0 7.0
gap3 BP 15 50 32768 40 56 4.441 3.0 9.0
vrp1 MIP 18 18 262144 20 3008 3.828 2.0 8.0
vrp2 MIP 18 18 262144 12 208 3.753 2.0 7.0
flugpl IP 12 14 4096 48 65 4.050 3.0 7.0
mod008 BP 6 319 64 51 51 5.517 4.0 6.0
p0033 BP 13 28 8192 9 9 3.183 2.0 4.0

3.1 Toy Instances

In Table 1, we list some statistics on the instances and their DW reformulations. The
number of distinct dual bounds (ndbs) is usually much smaller than the number of all DW
reformulations, i.e., many I ′ ⊆ I yield the same zDW (I ′). The only exception is MIPLIB
instance mod008 which has a much higher number of variables relative to |I|. Even more
interestingly, also the number of minimal DW reformulations is very small, often not much
larger than ndbs. This could hint at many chains in P with only a small number of distinct
dual bounds, i.e., with many non-minimal DW reformulations. The numbers cmin, cavg,
cmax give some distribution information about the number of distinct dual bounds in a
chain.

Figure 1 shows histograms of the number of distinct dual bounds which often occur
with the same frequencies (and often enough, these are powers of 2). This also supports
the existence of constraints that do not have an influence on the dual bound in most DW
reformulations. For example in the capacitated p-median instance cpmp1, there exist 5 set
partitioning constraints (forcing each location to be assigned to exactly one median) and a
cardinality constraint (forcing to choose exactly p locations as medians). In Section 4 we will
see that often these constraints do not improve the dual bound when added to the set of
convexified constraints, which explains why the frequency 26 = 64 occurs multiple times in
the histogram of the instance cpmp1 in Figure 1(c).

M. Bastubbe, M. E. Lübbecke, and J. T. Witt 11:5

2.465 3.000
dual bounds

0

1000

2000

fre
qu

en
cy

(a) bpp1

1 3
dual bounds

0

5000

10000

15000

fre
qu

en
cy

(b) coloring1

0 108
dual bounds

0

20

40

60

fre
qu

en
cy

(c) cpmp1

331.4 507.2
dual bounds

0

500

1000

1500

fre
qu

en
cy

(d) cflp1

239.75 236.00
dual bounds

0

1000

2000

3000

4000

fre
qu

en
cy

(e) gap3

2 40
dual bounds

0

20000

40000

60000

fre
qu

en
cy

(f) vrp2

1167875 1201500
dual bounds

0

200

400

600

800

fre
qu

en
cy

(g) flugpl

2839.5 3089.0
dual bounds

0

500

1000

1500

2000

fre
qu

en
cy

(h) p0033

291.09 307.00
dual bounds

0.0

0.5

1.0

1.5

2.0

fre
qu

en
cy

(i) mod008

Figure 1 Histogram for the number of DW reformulations with different dual bounds. On the
x-axis we see the (discrete) spectrum of potential dual bounds from weakest zLP to strongest zIP

and the y-axis displays the respective frequencies of dual bounds.

The histograms give the impression that weak(er) dual bounds are more frequent than
strong(er) ones. Therefore, we analyze how many “good” DW reformulations exist. We
normalize the dual bounds, which helps us to compare them across different models: We
define the integrality gap that was closed by DW reformulation I ′ ⊆ I as

gap_cl(I ′) := zDW (I ′)− zLP

zIP − zLP
. (4)

Note that gap_cl(I ′) = 0 ⇐⇒ zDW (I ′) = zLP and gap_cl(I ′) = 1 ⇐⇒ zDW (I ′) = zIP .
In Figure 2, we depict the gaps that were closed for all DW reformulations of a particular

instance. The plots for instances of different problems have some common features. There
are (many) more DW reformulations I ′ ⊆ I that close only a small amount of the gap than
there are DW reformulations with gap_cl(I ′) ≈ 1. This is particularly pronounced for bin
packing, vertex coloring, and vehicle routing instances for which a huge portion of DW
reformulations are weakest possible (for the considered objective function). Note that these
instances are highly symmetric; the experiments suggest that this results in many symmetric
DW reformulations yielding the same dual bound. This statement is endorsed by the fact
that instances of the capacitated p-median and the capacitated facility location problem,
which are more general, less symmetric variants of the bin packing problem, induce more
distinct dual bounds than the bin packing instances.

Nevertheless, we notice that most DW reformulations are “in between” the weakest
and strongest possible DW reformulations, i.e., for most subsets I ′ ⊆ I it holds that
zLP < zDW (I ′) < zIP . Finally, we look at the number of convexified constraints in Figure 2.
The plots illustrate that the pure number |I ′| is not a good indicator for the strength of the
DW reformulation: in the majority of the instances there exist weak DW reformulations with
a relatively large number of convexified constraints. Moreover, as the number of minimal
DW reformulations is usually not much larger than the number of distinct dual bounds, for
each “plateau” of the blue curve there are only few minimal DW reformulations, probably
with relatively few convexified constraints (see lowest brown line for each plateau).

SEA 2018

11:6 Computational Investigation on the Strength of DW Reformulations

1 4096
decompositions

0.0

0.2

0.4

0.6

0.8

1.0
ga

p
clo

se
d

gap closed
nsubconss (right)

0

2

4

6

8

10

12

ns
ub

co
ns

s

(a) bpp1

1 32768
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ns
ub

co
ns

s

(b) coloring1

1 2048
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0

2

4

6

8

10

ns
ub

co
ns

s

(c) cpmp1

1 16384
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0

2

4

6

8

10

12

14

ns
ub

co
ns

s

(d) cflp1

1 32768
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ns
ub

co
ns

s

(e) gap3

1 262144
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5

ns
ub

co
ns

s

(f) vrp2

1 4096
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0

2

4

6

8

10

12

ns
ub

co
ns

s

(g) flugpl

1 8192
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0

2

4

6

8

10

12

ns
ub

co
ns

s

(h) p0033

1 64
decompositions

0.0

0.2

0.4

0.6

0.8

1.0

ga
p

clo
se

d

gap closed
nsubconss (right)

0

1

2

3

4

5

6

ns
ub

co
ns

s

(i) mod008

Figure 2 The x-axis shows for each instance all DW reformulations I ′ ⊆ I, sorted by dual bound
(in case of ties sorted by |I ′|). The gap closed (4) by each DW reformulation is shown on the y-axis.
The secondary y-axis displays the number of convexified constraints of each DW reformulation.

3.2 Extensions to larger Instances?

Our conjecture that |{zDW (I ′) : I ′ ⊆ I}| � 2|I| is impractical to verify on instances with
larger |I|. Unfortunately, there is little hope that we even obtain a statistical statement
from a random sampling of DW reformulations unless we have further information about the
structure of the model: the sample size would need to be too large.

The underlying statistics relates to the distinct elements problem, which in our context
reads as: Given ` randomly drawn DW reformulations (and the corresponding dual bounds)
from the set of all 2|I| DW reformulations, estimate the total number of distinct dual bounds
occurring among all DW reformulations. The minimum sample size ` needed to estimate
this number (with high probability) within a given additive error tolerance ∆ = c2|I| for any
small constant c is in Θ(2|I|

|I|) [15] which is not much smaller than Θ(2|I|).

4 The Influence of Individual Constraints on Dual Bounds

We have seen that the number of minimal DW reformulations is very small and the frequency
of distinct dual bounds is often (close to) a power of 2. This hints at constraints that do
not (or rarely) improve the dual bound when additionally convexified in particular DW
reformulations. This individual impact is analyzed next.

M. Bastubbe, M. E. Lübbecke, and J. T. Witt 11:7

We first introduce some notation. For each constraint i ∈ I, we investigate how the dual
bound zDW (I ′) changes for subsets I ′ ⊆ I with i /∈ I ′ if we add the constraint i to the set I ′

of convexified constraints, i.e., we compare zDW (I ′) and zDW (I ′ ∪ {i}). We define the gain
of a constraint i ∈ I when added to the set of convexified constraints I ′ ⊆ I with i /∈ I ′ as

gain(i, I ′) := zDW (I ′ ∪ {i})− zDW (I ′)
zIP − zLP

. (5)

The normalization to the integrality gap helps again to compare the gains of constraints
from different instances. Correspondingly, we define the average gain of constraint i ∈ I as

gain(i) :=
∑

I′⊆I:i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : i /∈ I ′}|

. (6)

Let DW reformulation I ′ belong to level ` = 0, . . . , |I| if |I ′| = `. We want to analyze the
gain of a constraint when added to the set of convexified constraints of a DW reformulation
in a given level. We define the (average) gain of constraint i ∈ I in level ` = 0, . . . , |I| − 1 as

gain`(i) :=
∑

I′⊆I:|I′|=`,i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : |I ′| = `, i /∈ I ′}|

. (7)

Similarly, the (average) gain of constraint i ∈ I up to level ` = 0, . . . , |I| − 1 is defined as

gain≤`(i) :=
∑

I′⊆I:|I′|≤`,i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : |I ′| ≤ `, i /∈ I ′}|

. (8)

Obviously, all gains defined in (5)–(8) range in [0, 1]. We depict the distribution of gains
(defined in Equation (5)) for all constraints in Figure 3. As additional information, we include
the constraint types as defined in the MIPLIB [9]. Notice that the lines corresponding to
different constraints cross only occasionally. This can be interpreted as follows: Whenever
the highest gain of constraint i is higher than the highest gain of constraint i′, the overall
gain of constraint i is higher than the overall gain of constraint i′. Hence, the average gain
should give a sufficiently accurate view on which constraints have a significant effect on the
dual bounds when considering all DW reformulations. Moreover, we observed that for each
constraint i ∈ I the sum of (average) gains across all levels

∑m−1
`=0 gain`(i) behaves similarly

as the average gain gain(i), which is why we only depict the (average) gain per level including
their sum in Figure 4.

The difference in gain of constraints corresponding to different types of constraints is
remarkably huge, as can be seen in Figure 4. In particular, bin packing (BIN) and knapsack
(KNA) constraints, which are convexified in textbook DW reformulations, have a much larger
gain than the other types. This holds not only for the sum of (average) gains in each level,
but also for the individual gain in each level as well as the overall gain distribution.

Additionally, we observe that a large gain in low levels is a good indicator for a large gain
in higher levels, and hence, a good indicator for a large average gain as well. This correlation
becomes visible in Figure 5. The scale of the x-axis in Figure 5 is not uniform since we are
only interested in whether there is a correlation between the gain in level ` and the average
gain independently for each level ` at all. The correlation in the bin packing and vertex
coloring instances (not shown in Figure 5) is not as high as in the other instances: In several
low levels (the exact number depends on the instance) no constraint has positive gain. We
assume that this is due to the high symmetry in these instances and that in an optimal LP
solution not all bins/colors are used. Apart from this, it seems that the magnitude of the
gain in low levels predicts the average gain quite well, which is rather remarkable.

SEA 2018

11:8 Computational Investigation on the Strength of DW Reformulations

1 2048
decompositions

0.0

0.2

0.4

0.6

0.8

1.0
ga

in
capa_3:BIN
capa_4:BIN
capa_6:BIN
capa_5:BIN
capa_2:BIN
capa_1:BIN
item_2:COV
item_1:COV
item_6:COV
item_4:COV
item_5:COV
item_3:COV

(a) bpp1

1 16384
decompositions

0.0

0.2

0.4

0.6

ga
in

use_1:BIN
use_2:BIN
use_3:BIN
edge_1_2:VBD
edge_1_3:VBD
edge_1_1:VBD
edge_2_1:VBD
edge_2_3:VBD
edge_2_2:VBD
edge_3_2:VBD
edge_3_3:VBD
edge_3_1:VBD
node_1:COV
node_2:COV
node_3:COV

(b) coloring1

1 1024
decompositions

0.0

0.1

0.2

0.3

0.4

0.5

ga
in

capa_2:BIN
capa_1:BIN
capa_3:BIN
capa_4:BIN
capa_5:BIN
loc_4:PAR
loc_3:PAR
loc_2:PAR
loc_1:PAR
loc_5:PAR
pmed_1:CAR

(c) cpmp1

1 8192
decompositions

0.0

0.1

0.2

0.3

0.4

ga
in

capa_2:BIN
capa_7:GEN
capa_6:BIN
capa_4:BIN
capa_3:BIN
capa_1:BIN
capa_5:BIN
cust_2:PAR
cust_3:PAR
cust_1:PAR
cust_6:GEN
cust_7:PAR
cust_4:PAR
cust_5:PAR

(d) cflp1

1 16384
decompositions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ga
in

capa_5:KNA
capa_2:KNA
capa_1:KNA
capa_3:KNA
capa_4:KNA
job_3:PAR
job_9:PAR
job_5:PAR
job_6:PAR
job_4:PAR
job_8:PAR
job_1:PAR
job_2:PAR
job_10:PAR
job_7:PAR

(e) gap1

1 131072
decompositions

0.0

0.2

0.4

0.6

0.8

ga
in

capa_1:KNA
capa_0:KNA
way_1_0:CAR
way_2_0:CAR
way_1_1:CAR
way_2_1:CAR
time_2_1_1:M01
time_1_2_1:M01
time_2_1_0:M01
time_1_2_0:M01
way_0_0:CAR
way_0_1:CAR
visit_1:PAR
visit_2:PAR
time_0_1_0:M01
time_0_1_1:M01
time_0_2_1:M01
time_0_2_0:M01

(f) vrp2

1 2048
decompositions

0.0

0.1

0.2

0.3

0.4

0.5

ga
in

ANZ6:GEN
ANZ3:GEN
STD5:GEN
ANZ4:GEN
STD3:GEN
STD2:GEN
ANZ5:GEN
STD1:VBD
STD4:GEN
UEB2:VBD
UEB4:VBD
UEB5:VBD

(g) flugpl
1 32

decompositions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ga
in

R6.:KNA
R2.:KNA
R5.:KNA
R7.:KNA
R4.:KNA
R3.:KNA

(h) mod008
1 4096

decompositions

0.0

0.2

0.4

0.6

0.8

ga
in

R123:KNA
R125:KNA
R119:M01
R117:PAC
R116:VBD
R121:COV
R122:KNA
R124:KNA
R127:KNA
R126:COV
R118:VBD
R114:PAC
R115:VBD

(i) p0033

Figure 3 For each constraint i ∈ I (a line of a particular color) the DW reformulations I ′ ⊆ I

(on the x-axis) are sorted by non-decreasing gain(i, I ′), which is shown on the y-axis. The legend
lists the constraint’s name and type according to the MIPLIB constraint types [9], separated by a
colon. The cardinality (CAR) constraints in vehicle routing problems are actually flow conservation
constraints (this is called “upgrading” in SCIP/GCG by negating variables).

4.1 Extensions to larger Instances from the MIPLIBs

Figure 5 suggests a correlation between the gain in low levels and the average gain. Since it
is intractable to compute the gains in larger instances even for levels 1 or 2, we focus on the
gain in level 0, i.e., on larger instances we compute gain0(i) for each constraint i ∈ I.

We investigate instances from MIPLIB 2003 and 2010 [1, 9] for which relaxations of DW
reformulations were already computed by column generation in [2]. On 12 out of these 38
instances (we excluded mine-166-5 because some DW reformulations failed to solve) there
exist constraints having positive gain0(i); Figure 6 depicts the number of constraints with
positive gain0(i) as well as the average gain0(i) for each constraint type on these 12 instances.

First of all, we note that set partitioning/packing/covering (PAR/PAC/COV), cardinality
(CAR), and invariant knapsack (IVK) constraints cannot have positive gain in level 0 due to
Geoffrion’s result [7], which can also be seen in Figure 6. For all other types that occur on the
MIPLIB instances there exist some constraints having positive gain in level 0. Furthermore,
bin packing (BIN) and knapsack (KNA) constraints often have positive, relatively large
gain in level 0 compared to other constraints. As in the toy instances, this suggests that
convexifying these constraints might give strong dual bounds.

M. Bastubbe, M. E. Lübbecke, and J. T. Witt 11:9

ca
pa

_3
:B

IN
ca

pa
_4

:B
IN

ca
pa

_6
:B

IN
ca

pa
_5

:B
IN

ca
pa

_2
:B

IN
ca

pa
_1

:B
IN

ite
m

_2
:C

OV
ite

m
_1

:C
OV

ite
m

_6
:C

OV
ite

m
_4

:C
OV

ite
m

_5
:C

OV
ite

m
_3

:C
OV

constraint

0.0

0.5

1.0

1.5
ga

in

(a) bpp1

us
e_

1:
BI

N
us

e_
2:

BI
N

us
e_

3:
BI

N
ed

ge
_1

_2
:V

BD
ed

ge
_1

_3
:V

BD
ed

ge
_1

_1
:V

BD
ed

ge
_2

_1
:V

BD
ed

ge
_2

_3
:V

BD
ed

ge
_2

_2
:V

BD
ed

ge
_3

_2
:V

BD
ed

ge
_3

_3
:V

BD
ed

ge
_3

_1
:V

BD
no

de
_1

:C
OV

no
de

_2
:C

OV
no

de
_3

:C
OV

constraint

0.0

0.5

1.0

1.5

2.0

ga
in

(b) coloring1

ca
pa

_2
:B

IN
ca

pa
_1

:B
IN

ca
pa

_3
:B

IN
ca

pa
_4

:B
IN

ca
pa

_5
:B

IN

lo
c_

4:
PA

R
lo

c_
3:

PA
R

lo
c_

2:
PA

R
lo

c_
1:

PA
R

lo
c_

5:
PA

R
pm

ed
_1

:C
AR

constraint

0

1

2

3

ga
in

(c) cpmp1

ca
pa

_2
:B

IN
ca

pa
_7

:G
EN

ca
pa

_6
:B

IN
ca

pa
_4

:B
IN

ca
pa

_3
:B

IN
ca

pa
_1

:B
IN

ca
pa

_5
:B

IN
cu

st
_2

:P
AR

cu
st

_3
:P

AR
cu

st
_1

:P
AR

cu
st

_6
:G

EN
cu

st
_7

:P
AR

cu
st

_4
:P

AR
cu

st
_5

:P
AR

constraint

0

1

2

3

4

ga
in

(d) cflp1

ca
pa

_5
:K

NA
ca

pa
_2

:K
NA

ca
pa

_1
:K

NA
ca

pa
_3

:K
NA

ca
pa

_4
:K

NA
jo

b_
3:

PA
R

jo
b_

9:
PA

R
jo

b_
5:

PA
R

jo
b_

6:
PA

R
jo

b_
4:

PA
R

jo
b_

8:
PA

R
jo

b_
1:

PA
R

jo
b_

2:
PA

R
jo

b_
10

:P
AR

jo
b_

7:
PA

R

constraint

0

2

4

6

8

ga
in

(e) gap1

ca
pa

_1
:K

NA
ca

pa
_0

:K
NA

wa
y_

1_
0:

CA
R

wa
y_

2_
0:

CA
R

wa
y_

1_
1:

CA
R

wa
y_

2_
1:

CA
R

tim
e_

2_
1_

1:
M

01
tim

e_
1_

2_
1:

M
01

tim
e_

2_
1_

0:
M

01
tim

e_
1_

2_
0:

M
01

wa
y_

0_
0:

CA
R

wa
y_

0_
1:

CA
R

vi
sit

_1
:P

AR
vi

sit
_2

:P
AR

tim
e_

0_
1_

0:
M

01
tim

e_
0_

1_
1:

M
01

tim
e_

0_
2_

1:
M

01
tim

e_
0_

2_
0:

M
01

constraint

0

2

4

ga
in

(f) vrp2

AN
Z6

:G
EN

AN
Z3

:G
EN

ST
D5

:G
EN

AN
Z4

:G
EN

ST
D3

:G
EN

ST
D2

:G
EN

AN
Z5

:G
EN

ST
D1

:V
BD

ST
D4

:G
EN

UE
B2

:V
BD

UE
B4

:V
BD

UE
B5

:V
BD

constraint

0

1

2

3

ga
in

(g) flugpl

R6
.:K

NA

R2
.:K

NA

R5
.:K

NA

R7
.:K

NA

R4
.:K

NA

R3
.:K

NA

constraint

0.0

0.5

1.0

1.5

2.0

2.5

ga
in

(h) mod008

R1
23

:K
NA

R1
25

:K
NA

R1
19

:M
01

R1
17

:P
AC

R1
16

:V
BD

R1
21

:C
OV

R1
22

:K
NA

R1
24

:K
NA

R1
27

:K
NA

R1
26

:C
OV

R1
18

:V
BD

R1
14

:P
AC

R1
15

:V
BD

constraint

0

2

4

6

8

ga
in

(i) p0033

Figure 4 For each constraint (x-axis) the gain summed over all levels is displayed (y-axis). More
precisely, the gains of different levels are stacked by increasing level and depicted in different colors.

5 What we have learned and what lies ahead

Because of Geoffrion’s result [7] one formulates carefully that a DW reformulation potentially
gives a stronger dual bound than zLP . Figure 2 suggests that for most instances a random
DW reformulation will give some improvement over zLP . As the actual improvement depends
on the objective function, repeating our experiments with several (randomly drawn) objective
functions per instance should be interesting.

This is not to say that picking a DW reformulation at random will give one with a strong
dual bound; actually, Figure 2 shows that this is rather unlikely. This is particularly visible
for bin packing, but also for coloring and vehicle routing. It is fair to say that for bin packing
using “the correct” DW reformulation is crucial for obtaining a strong dual bound – and this
is precisely a reformulation that we would find in a textbook.

We started this experiment with the sense that there should be some sort of hierarchy
of DW reformulations (other than the powerset of I). This is strongly supported (much
stronger than we expected) by two experimental results we got: First, only a tiny fraction of
the possible 2|I| distinct dual bounds actually occurs, which is also true for the number of
minimal DW reformulation which is very small (we would love to see geometric/polyhedral
explanations for this). Second, individual (types of) constraints have considerably different
impacts on strengthening an existing DW reformulation. Some of them seem to have almost
no influence at all.

SEA 2018

11:10 Computational Investigation on the Strength of DW Reformulations

0.00 0.02 0.04
gain_0

0.00

0.05

0.10

0.15

0.20

0.25

ga
in

(a) cpmp1: gain≤0 vs. gain

0.000 0.025 0.050 0.075 0.100
gain_1

0.00

0.05

0.10

0.15

0.20

0.25

ga
in

(b) cpmp1: gain≤1 vs. gain

0.00 0.05 0.10 0.15
gain_2

0.00

0.05

0.10

0.15

0.20

0.25

ga
in

(c) cpmp1: gain≤2 vs. gain

0.0 0.1 0.2 0.3
gain_0

0.0

0.1

0.2

0.3

0.4

0.5

ga
in

(d) gap3: gain≤0 vs. gain

0.0 0.1 0.2 0.3
gain_1

0.0

0.1

0.2

0.3

0.4

0.5

ga
in

(e) gap3: gain≤1 vs. gain

0.0 0.1 0.2 0.3 0.4
gain_2

0.0

0.1

0.2

0.3

0.4

0.5

ga
in

(f) gap3: gain≤2 vs. gain

0.010 0.005 0.000 0.005 0.010
gain_0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ga
in

(g) flugpl: gain≤0 vs. gain

0.00 0.02 0.04 0.06
gain_1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ga
in

(h) flugpl: gain≤1 vs. gain

0.00 0.05 0.10
gain_2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ga
in

(i) flugpl: gain≤2 vs. gain

0.0 0.1 0.2 0.3 0.4
gain_0

0.1

0.2

0.3

0.4

0.5

ga
in

(j) mod008: gain≤0 vs. gain

0.0 0.1 0.2 0.3 0.4
gain_1

0.1

0.2

0.3

0.4

0.5

ga
in

(k) mod008: gain≤1 vs. gain

0.0 0.1 0.2 0.3 0.4
gain_2

0.1

0.2

0.3

0.4

0.5

ga
in

(l) mod008: gain≤2 vs. gain

0.0 0.1 0.2 0.3 0.4
gain_0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ga
in

(m) p0033: gain≤0 vs. gain

0.0 0.2 0.4
gain_1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ga
in

(n) p0033: gain≤1 vs. gain

0.0 0.2 0.4
gain_2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ga
in

(o) p0033: gain≤2 vs. gain

Figure 5 For each constraint i ∈ I (colored dots), the gain≤`(i) in levels up to ` = 0, 1, 2 (x-axis)
is plotted against the average gain(i) (y-axis), suggesting a correlation. The colors corresponding to
the constraints are identical to the ones in Figure 3.

M. Bastubbe, M. E. Lübbecke, and J. T. Witt 11:11

VB
D

PA
R

PA
C

CO
V

CA
R

IV
K

BI
N

KN
A

M
01

GE
N

type

0.0

0.1

0.2

0.3

0.4

0.5

po
s.

ga
in

9585 198 471 315 480 27 27 363 235 1388
nconss

(a) Relative number of constraints with positive
gain0(i) (y-axis); the secondary x-axis shows the
total number of each type.

VB
D

PA
R

PA
C

CO
V

CA
R

IV
K

BI
N

KN
A

M
01

GE
N

type

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

ga
in

1 0 0 0 0 0 15 135 49 168
nconss

(b) Average gain0(i) of constraints with positive
gain0(i) (y-axis); the secondary x-axis shows the
total number of each type with pos. gain0(i).

Figure 6 Constraint types (c.f. [9]) that occur in the 12 MIPLIB instances of our testset (from [2])
which contain constraints with positive gain0(i) (x-axis); in particular, BIN is bin packing, KNA is
knapsack, M01 is mixed binary, and GEN is general.

We conjecture that the poset of DW reformulations defined in Section 3 contains a (very)
sparse substructure that “represents” all DW reformulations for a given instance. A starting
point could consist of the set I∗ ⊆ 2I of minimal DW reformulations partially ordered by
set inclusion (remember that in our experiments |I∗| � 2|I|). This again gives a poset
P ∗ = (I∗,⊆) of height at most |I| (and by Dilworth’s theorem of width at least |I∗|/|I|),
but our experiments show that the height can actually be smaller, c.f. numbers cmin, cavg,
cmax in Table 1. Could studying the structure and properties of such a poset yield insights
into DW reformulations and maybe explain the special behavior of bin packing and coloring
instances? Even if we could characterize a meaningful substructure of P , would we be able
to (efficiently) compute it? Are we able to (efficiently) recognize that a DW reformulation is
minimal once we have optimally solved it? Even only answering this for particular problem
classes would be valuable. It is interesting in this context whether there exist pathological
instances (like the Klee-Minty cubes in linear programming) with 2|I| DW reformulations.
If so, one might seek output sensitive algorithms for computing e.g., P ∗ whose complexity
depends on the size of the output (here |P ∗|) to account for the cases (we observed) in which
the number of minimal DW reformulations is small.

Equipped with such questions we are optimistic that our experimental work spawns
mathematical, algorithmic, and computational questions that hopefully guide us to a better
insight into the nature of DW reformulations in general.

References

1 T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Oper. Res. Lett., 34(4):361–372,
2006.

2 M. Bergner, A. Caprara, A. Ceselli, F. Furini, M.E. Lübbecke, E. Malaguti, and E. Traversi.
Automatic Dantzig-Wolfe reformulation of mixed integer programs. Math. Programming,
149(1–2):391–424, 2015.

3 R Bixby, Sebastian Ceria, C McZeal, and M Savelsbergh. An updated mixed integer
programming library: Miplib 3.0, 1996.

4 D.G. Cattrysse, M. Salomon, and L.N. Van Wassenhove. A set partitioning heuristic for
the generalized assignment problem. European J. Oper. Res., 72(1):167–174, 1994.

SEA 2018

11:12 Computational Investigation on the Strength of DW Reformulations

5 P.C. Chu and JE Beasley. A genetic algorithm for the generalised assignment problem.
Comput. Oper. Res., 24(1):17–23, 1997.

6 G. Gamrath and M.E. Lübbecke. Experiments with a generic Dantzig-Wolfe decomposition
for integer programs. In P. Festa, editor, Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA), volume 6049 of Lect. Notes Comput. Sci., pages 239–252,
Berlin, 2010. Springer-Verlag.

7 A.M. Geoffrion. Lagrangean relaxation for integer programming. Math. Programming Stud.,
2:82–114, 1974.

8 Kaj Holmberg, Mikael Rönnqvist, and Di Yuan. An exact algorithm for the capacitated
facility location problems with single sourcing. European J. Oper. Res., 113(3):544–559,
1999.

9 T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Math. Program. Comput., 3(2):103–163, 2011.

10 Anuj Mehrotra and Michael A Trick. A column generation approach for graph coloring.
INFORMS J. Comput., 8(4):344–354, 1996.

11 Rashed Sahraeian and Payman Kaveh. Solving capacitated p-median problem by hybrid
k-means clustering and fixed neighborhood search algorithm. In Proceedings of the 2010
International Conference on Industrial Engineering and Operation Management, pages 1–6,
2010.

12 P. Schwerin and G. Wäscher. The bin-packing problem: A problem generator and some
numerical experiments with ffd packing and mtp. Internat. Trans. Oper. Res., 4(5-6):377–
389, 1997.

13 F. Vanderbeck and M.W.P. Savelsbergh. A generic view of Dantzig-Wolfe decomposition
in mixed integer programming. Oper. Res. Lett., 34(3):296–306, 2006.

14 J.T. Witt and M.E. Lübbecke. Dantzig-Wolfe reformulations for the stable set problem.
repORt 2015–029, Lehrstuhl für Operations Research, RWTH Aachen University, Nov 2015.
URL: http://www.or.rwth-aachen.de/research/publications/2015-DW-stable.pdf.

15 Y. Wu and P. Yang. Sample complexity of the distinct elements problem. ArXiv e-prints,
Dec 2016. arXiv:1612.03375.

http://www.or.rwth-aachen.de/research/publications/2015-DW-stable.pdf
http://arxiv.org/abs/1612.03375

	Motivation
	Instances and Experimental Setup
	Number and Frequency of Distinct Dual Bounds
	Toy Instances
	Extensions to larger Instances?

	The Influence of Individual Constraints on Dual Bounds
	Extensions to larger Instances from the MIPLIBs

	What we have learned and what lies ahead

