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Abstract
This study concentrates on the security of high-entropy volumes, where entropy–encoded mul-
timedia files or compressed text sequences are the most typical sources. We consider a system
in which the cost of encryption is hefty in terms of some metric (e.g., time, memory, energy,
or bandwidth), and thus, creates a bottleneck. With the aim of reducing the encryption cost
on such a system, we propose a data coding scheme to achieve the data security by encrypting
significantly less data than the original size without sacrifice in secrecy. The main idea of the
proposed technique is to represent the input sequence by not uniquely–decodable codewords. The
proposed coding scheme splits a given input into two partitions as the payload, which consists of
the ambiguous codeword sequence, and the disambiguation information, which is the necessary
knowledge to properly decode the payload. Under the assumed condition that the input data
is the output of an entropy-encoder, and thus, on ideal case independently and identically dis-
tributed, the payload occupies ≈ (d−2)

d , and the disambiguation information takes ≈ 2
d of the

encoded stream, where d > 2 denotes a chosen parameter typically between 6 to 20. We propose
to encrypt the payload and keep the disambiguation information in plain to reduce the amount
of data to be encrypted, where recursive representation of the payload with the proposed coding
can decrease the to-be-encrypted volume further. When 2 · 2d ≤ n ≤ τ · d · 2d, for τ = d−1.44

2 , we
show that the contraction of the possible message space 2n due to the public disambiguation in-
formation is accommodated by keeping the codeword set secret. We discuss possible applications
of the proposed scheme in practice.
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1 Introduction

Achieving security of massive data volumes with less encryption makes sense on platforms
where the cost of encryption defines a bottleneck as being heavy according to some metrics,
e.g., time, memory, energy, or bandwidth. For example, let us assume a system at which
the items in a queue are waiting for the encryption/decryption unit to get processed, and
consequently delays occur. One simple solution might be to increase the number of the
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7:2 Ambiguous Coding For Selective Encryption

serving units, but on the other hand usually the congestion only appears at certain times,
and the expense of the additional unit may not be feasible. While waiting on the queue,
the items can be encoded such that the amount of data to-be-encrypted is reduced, and the
items are processed more quickly in the system. Such a reduction can simply improve the
throughput of a security pipeline without a need to upgrade the infrastructure.

Similarly, in battery-constrained environments such as mobile devices [9], sensor networks
[3], or unmanned aerial vehicles [18], performing less encryption may also help to increase
the battery life. It had been shown that symmetric security algorithms roughly doubles the
energy consumption of normal operation in those environments, and asymmetric security
algorithms increase the energy usage per bit in order of magnitudes (around 5 fold) [14].

Previously, selective encryption schemes [12] have been proposed to reduce the encryption
load, particularly on transmission of video/image files [19, 11, 8]. In selective encryption,
segments of the data, which are assumed to include important information, e.g., the I-frames
in a video stream, are encrypted, while rest of the data is kept plain. We introduce an
alternative approach to reduce the amount of encryption required to secure a source data.
As opposed to the partial security provided by the selective encryption schemes, we aim
to provide the security of the whole data by benefiting from the intrinsic ambiguity of
non-prefix-free (NPF) coding.

In NPF coding a codeword may be a prefix of some others, and thus, the nice self-
delimiting property of the prefix–free schemes [2] does not apply. Therefore, the codeword
boundaries on the encoded stream should be explicitly specified for correct decoding. In
other words, the disambiguation information required to decode an NPF codewords stream
is the identification of the codeword boundaries on that sequence.

The NPF coding has not been addressed much in the literature except a few studies
[4, 10, 1] due to that unique decodability problem, which limits, if not totally removes,
its possible usage in practical applications, particularly in data compression. However, we
consider that this lack of unique decodability in NPF coding may provide us an interesting
opportunity in terms of security. It is noteworthy that the hardness of decoding an encoded
data without the knowledge of the used codeword set had been addressed as early as in 1979
[15], and later by others [6, 7]. More recently, non-prefix-free codes have also been mentioned
[13] in that sense.

The main idea of the proposed technique here is to represent the input sequence by not
uniquely–decodable codewords, which can be summarized as follows. We process the n bit
long input bit sequence in blocks of d bits according to a predetermined d parameter such
that d · 2d ≤ n. Due to some limitations that will be described in the paper, typically d
is expected to be between 6 and 20. We create 2d non-prefix codewords by using a secret
permutation of the numbers [1 . . . 2d], and then replace every d-bits long symbol in the input
with its corresponding NPF codeword of varying bit-length in between 1 to d. We call
the resulting bit stream the payload since it includes the actual information of the source.
This sequence is not decodable without the codeword boundaries. Therefore, we need to
maintain an efficient representation of the codeword boundaries on the payload. This second
stream is referred as the disambiguation information throughout the study. The total space
consumed by the payload and the disambiguation information introduces an overhead of
2(d − 1)/d · 2d ≈ 1

2d−1 bits per each original bit, which becomes negligible as d increases,
for example, it is less than 7 bits per a thousand bit when d = 8. Thus, proposed scheme
actually splits the input into two partitions, which occupy almost the same space.

We prove that the payload occupies ≈ (d−2)
d , and the disambiguation information takes

≈ 2
d of the final volume. When the payload, which is the main source information, is
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encrypted and disambiguation information is stored in plain, the amount of to-be-encrypted
volume decreases by 2/d of the original size, e.g., for d = 8, 25% of the data is not required
to be encrypted. The payload can be subject to the same process recursively, which gives
us the opportunity to tune the size of the encrypted volume with processing power. For
instance, in case d = 8, a second level of encoding of the first level’s payload increases the
gain in encryption from 25% to 43%.

In this scenario, it is important to analyze the information leakage by the plain disambig-
uation information. Since the payload is encrypted, it should not be easier for an attacker to
guess the payload from the disambiguation information rather than breaking the ciphered
payload. When 2 · 2d ≤ n ≤ τ · d · 2d, for τ = d−1.44

2 , we show that the contraction of the
possible message space 2n due to the public disambiguation information is accommodated by
keeping the codeword set secret.

It might have captured the attention of the reader that the analysis assumes the input
bit stream to be uniformly i.i.d., which seems a bit restrictive at a first glance. However, the
target data types of the introduced method are mainly the sources that have been previously
entropy encoded 2 such as the video files in mpeg4 format, sound files in mp3, and similar
others. The output of the compression tools squeezing data down to its entropy actually is
actually quite nice input for our proposal. We support this observation by the experiments
performed on various compressed file types showed that the results on real data is very close
to the theoretical bounds computed by the uniformly i.i.d. assumption.

The outline of the paper is as follows. In Section 2 we introduce the proposed ambiguous
encoding method based on the non–prefix–free codes, and analyze its basic properties mostly
focusing on the space consumption of the partitions. We also provide verification of the
theoretical claims based on uniformly i.i.d. assumption on some files that are already
entropy-encoded. Section 3 focuses on using the ambiguous coding to reduce the number
of encryption operations, and investigates the information leakage by the disambiguation
information, which is proposed to be stored in plain format without encryption. We finalize
our study by summarizing the results and discussing further related research avenues.

2 Ambiguous Data Coding

Let A = a1a2 . . . an denotes a uniformly independently and identically distributed bit
sequence, and d > 1 is a predetermined block length. Without loss of generality we assume
n is divisible by d. Otherwise, it is padded with random bits. A can be represented
as B = b1b2 . . . br, for r = n

d such that each d–bits long bi in B is from the alphabet
Σ = {0, 1, 2, . . . 2d − 1}.

We will first define the minimum binary representation of an integer, and then use this
definition to state our encoding scheme.

I Definition 1. The minimum binary representation (MBR) of an integer i ≥ 2 is its
binary representation without the leftmost 1 bit.

As an example, MBR(21) = 0101 by omitting the leftmost set bit in its binary represent-
ation as 21 = (�10101)2.

2 Any lossless data compression scheme, where each symbol is represented by minimum number of bits
close to the entropy of the symbol according to Shannon’s theorem [17].

SEA 2018
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Σ = 0 1 2 3 4 5 6 7
Σ′ = 6 0 5 1 7 2 4 3

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

w1 w2 w3 w4 w5 w6 w7 w8
W = {000,011,100,111} 0 11 1 {001,010,101,110} 00 10 01

A = 001 110 101 011 010 111 100 000
B = 1 6 5 3 2 7 4 0

NPF (A) = w2 w7 w6 w4 w3 w8 w5 w1
NPF (A) = 0 10 00 1 11 01 101 000

DisInfo(A) = 01 1 1 01 1 1 00 00

Figure 1 A simple sketch of the non-prefix-free coding of an input bit sequence A, where B is the
representation of A with the block length d = 3. Σ′ is a random permutation of the corresponding
alphabet Σ, and W is the non-prefix-free codeword set generated for Σ′ according to Definition 2.
The disambiguation information DisInfo(A) is computed according to Lemma 5.

I Definition 2. Let Σ′ = {ε1, ε2, . . . ε2d} be a permutation of the given alphabet Σ =
{0, 1, 2, . . . , 2d − 1}, and W = {w1, w2, . . . , w2d} is a codeword set such that

wi =


MBR(2 + εi) ,if εi < 2d − 2
{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {0, 3} mod 4} ,if εi = 2d − 2
{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {1, 2} mod 4} ,if εi = 2d − 1

The representation of the input A = B = b1b2 . . . br with the non–prefix–free codeword
setW is shown by NPF (A) = c1c2 . . . cr such that ci = w1+bi

. When a codeword ci has
multiple options, a randomly selected one among the possibilities is used.

The NPF coding of a sample sequence according to the Definitions 1 and 2 with the para-
meter d = 3 is shown in Figure 1. The codewords w1 and w5 are sets as their corresponding
ε1 = 6 and ε5 = 7 values are greater than or equal to 6 = 23 − 2. Thus, when ci = w1 or
ci = w5, a randomly selected codeword respectively from sets w1 or w5, is inserted.

I Proposition 3. In a codeword set W that is generated for a block length d > 1 according
to Definition 2, the lengths of the codewords in bits range from 1 to d, where the number of
`–bits long codewords for each ` ∈ {1, 2, . . . , d− 1} is 2`, and for ` = d there exist 2 sets of
codewords each of which includes 2d−1 elements.

Proof. According to Definition 2, the entities in W are minimum binary representations of
numbers {2, 3, . . . , 2d+1 − 1}. Since the MBR bit-lengths of those numbers range from 1 to
d, there are d distinct codeword lengths in W .

Each codeword length ` ∈ {1, 2, . . . , d− 1} defines 2` distinct codewords, and thus, total
number of codewords defined by all possible ` < d values becomes

∑d−1
i=1 2i = 2d − 2. The

remaining 2 codewords out of the |W | = 2d items require d–bits long bit sequences.
For example, when d = 3, the W includes 2(= 21) codewords of 1-bit long, 4(= 22)

codewords of length 2, and 2(= 23−6) codeword sets of length 3-bits as shown in Figure 1. J

I Lemma 4. The NPF (A) is expected to occupy n·
(
1− 2

d + 2(d+1)
d·2d

)
bits space for a uniformly

i.i.d. input A of length n = r · d bits.

Proof. The total bit length of the NPF codewords is simply
∑d
`=1 C` ·`, where C` denotes the

number of occurrences of the bi values represented by `–bits long codewords in B. Assuming
the uniform distribution of B, each bi ∈ {0, 1, 2, . . . , 2d − 1} appears r

2d times. The number
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Codelength # of occurrences represented by space consumption

d− 1 r
2 = r

2d · 2d−1 1 1 · r2
d− 2 r

4 = r
2d · 2d−2 01 2 · r4

d− 3 r
8 = r

2d · 2d−3 001 3 · r8
. . . . . . . . . . . .

1 r
2d−1 = r

2d · 2 00 . . . 1 (d− 1) · r
2d−1

d r
2d−1 = r

2d · 2 00 . . . 0 (d− 1) · r
2d−1

Total space occupied: r
(
2− 1

2d−2

)
Figure 2 The representation of the codeword lengths to specify the codeword boundaries on the

NPF stream.

of distinct bi values represented by a codeword of length ` is 2` for 1 ≤ ` < d, and two of the
bi values require ` = d bit long codewords as stated in Proposition 3. Thus, C` = r

2d · 2` for
1 ≤ ` < d, and Cd = r

2d · 2. The length of the NPF (B) bit-stream can then be computed by

|NPF (A)| = r

2d ·
(
1 · 2 + 2 · 22 + . . .+ (d− 1) · 2d−1 + d · 2

)
(1)

= r

2d ·
(
2d+

d−1∑
i=1

i · 2i
)

= r

2d ·
(
2d+ 2d · (d− 2) + 2

)
(2)

= r

2d ·
(
2d(d− 2) + 2(d+ 1)

)
(3)

= r · d− r ·
(
2− d+ 1

2d−1

)
(4)

= r ·
(
d− 2 + d+ 1

2d−1

)
(5)

= n

d
·
(
d− 2 + d+ 1

2d−1

)
(6)

= n ·
(
1− 2

d
+ 2(d+ 1)

d · 2d
)

(7)

While computing the summation term in equation (2), we use the formula from basic
algebra that

∑p
i=1 i · 2i = 2p+1(p− 1) + 2, and substitute p = d− 1. J

The input sequence A is originally n bit long, and the NPF coding reduces that space
by n ·

( 2
d −

2(d+1)
2d

)
bits. However, since non-prefix-free codes are not uniquely decodable,

NPF (A) cannot be decoded back correctly in absence of the codeword boundaries. Therefore,
we need to represent these boundary positions on NPF (A). Lemma 5 states an efficient
method to achieve this task.

I Lemma 5. The expected number of bits to specify the codeword boundaries in the NPF (A)
is n ·

( 2
d −

4
d·2d

)
, where |A| = n = r · d.

Proof. Due to Proposition 3 there are 2` distinct codewords with length ` for ` ∈ {1, 2, . . . , d−
1} and 2 codewords (sets) are generated for ` = d. Since each d-bits block has equal probability
of appearance on A, the number of occurrences of codewords having length ` ∈ {1, 2, . . . , d−1}
is r

2d · 2`. The most frequent codeword length is (d − 1), which appears at half of the r
codewords as r

2d · 2d−1 = r
2 . It is followed by the codeword length (d− 2) that is observed

SEA 2018
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Table 1 The payload, disambiguation information, and overhead bits per each original bit
introduced by the proposed ambiguous coding for some selected d values.

d = 4 6 8 10 12 14 16 20
Overhead per bit

d−1
d·2d−1 ≈ 0,094 0,026 0,007 0,002 1.1 · 10−4 4.4 · 10−4 2, 8 · 10−5 1.8 · 10−6

Payload per bit
1− 2

d + 2(d+1)
d·2d ≈ 0.656 0.703 0.759 0.802 0.834 0.857 0.875 0.900

Dis.Info. per bit
2
d −

4
d·2d ≈ 0,438 0.323 0.248 0.200 0.167 0.143 0.125 0.100

r
4 times. When we examine the number of codewords with length ` ∈ {1, 2, . . . , d− 1}, we
see that this distribution is geometric, as depicted in Figure 2. The optimal prefix-free
codes for the codeword lengths are then {1, 01, 001, . . . , 0d−21, 0d−1}, which correspond
to codeword lengths {d − 1, d − 2, d − 3, . . . , 1, d} respectively. Thus, codeword length
` = (d− i) ∈ {1, 2, . . . , d− 1}, which appears r

2d · 2d−i times on A, can be shown by i bits.
We use (d− 1) consecutive zeros to represent the codeword length ` = 2 as the number of
occurrences of d–bits long codewords is equal to the number of 1 bit long codewords on A.
Notice that the representation of the codeword lengths are prefix-free that can be uniquely
decoded.

Total number of bits required to represent the individual lengths of the codewords can be
computed by

r

2d
(
2(d− 1) +

d−1∑
i=1

i · 2d−i
)

= r ·
(2(d− 1)

2d +
d−1∑
i=1

i · 2−i
)

(8)

= r
(d− 1

2d−1 + 2d − d− 1
2d−1

)
(9)

= r
(
2− 1

2d−2

)
(10)

= n

d
·
(
2− 1

2d−2

)
(11)

= n
(2
d
− 4
d · 2d

)
(12)

J

I Theorem 6. The ambiguous encoding of n bit long uniformly i.i.d. input A sequence is
achieved with 2(d−1)

d·2d bits overhead per each original bit.

Proof. Total overhead can be computed by subtracting the original length n from the sum
of the space consumption described in Lemmas 4 and 5. Dividing this value by the n returns
the overhead per bit as shown below.

1
n
·
[
n ·
(
1− 2

d
+ 2(d+ 1)

d · 2d
)

+ n ·
(2
d
− 4
d · 2d

)
− n

]
= d− 1
d · 2d−1 = 2(d− 1)

d · 2d (13)

J

Table 1 summarizes the amount of extra bits introduced by the proposed encoding per
each original bit in A. A large overhead, which seems significant for small d, e.g., d < 8, may
inhibit the usage of the method. However, thanks to the to the exponentially increasing
denominator (2d) in the overhead amount that the extra space consumption quickly becomes
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very small, and even negligible. For instance, when d = 8, the method produces only 6.8
extra bits per a thousand bit. Similarly, the overhead becomes less than 3 bits per 100K
bits, and less than 2 bits per a million bits for the values of d = 16 and d = 20, respectively.
Thus, for d ≥ 8, an input uniformly i.i.d. bit sequence can be represented with a negligible
space overhead by the proposed ambiguous encoding scheme.

2.1 Experimental Verification

During the calculations of the payload and disambiguation information sizes as well as the
overhead, the input data has been assumed to be independently and identically distributed.
In practice, the input to the proposed method is supposed to be the output of an entropy
coder, where the distribution of d–bits long items in such a file may deviate from the perfect
assumptions. We would like to evaluate whether such entropy-encoded files still provide
enough good uniformity close to the theoretical claims based on uniformly i.i.d. assumption.
Therefore, we have conducted experiments on different compressed files to observe how much
these theoretical values are caught in practice.

We have selected 16 publicly available files3 , where the first ten are gzip compressed
data from different sources and the remaining six are multimedia files of mp3, mp4, jpg,
webm, ogv, and flv formats. The first d · 2d bits of each file is inspected for distinct values of
d = {8, 12, 16, 20}, and the corresponding observed payload and disambiguation information
sizes are computed as well as the overhead bits in each case.

Table 2 includes the comparisons of the observed and theoretical values on each analyzed
dimension. The payload size, which is the total length of the concatenated NPF codewords,
and the disambiguation information size, which is the total length of the prefix–free encoded
codeword lengths, are both observed to be compatible with the theoretical claims. This is
also reflected on the overhead bits as a consequence. Thus, in terms of space consumption,
the experimental results on compressed data support the theoretical findings based on perfect
uniformly i.i.d. input data assumption.

3 Data Security with Reduced Encryption Operations

Given a high-entropy input bit-streamM, two secret keys K1 and K2, and a properly chosen
d parameter, the data security scheme S(K1,K2,M, d) aiming reduced encryption operations
starts with generating the permutation Σ′ = {ε1, ε2, . . . , ε2d} via a cryptographically secure
pseudo-random number generator seeded with the secret key K1. The input dataM is then
encoded with the ambiguous coding described in previous section. This encoding generates
the payload, which is the concatenated NPF codewords, and the disambiguation information,
which simply specifies the lengths of individual codewords via an optimal prefix-free code.
The payload is encrypted with some selected encryption algorithm by using the key K2,
where the disambiguation information is kept in plain. Hence, we need to analyze how much
information is revealed by the public disambiguation information, and show that the leakage
by the disambiguation information section does not provide an advantage for an attacker to
break the cipher on the payload.

3 First ten files are available from http://corpus.canterbury.ac.nz. and http://people.unipmn.
it/~manzini/lightweight/corpus/. The multimedia files are from https://github.com/johndyer/
mediaelement-files.
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Table 2 Verification of the theoretical claims on selected files for d = {8, 12, 16, 20}.

File Payload Disambiguation Overhead
name Size Information Size Bits

Thr. Obs. Thr. Obs. Thr. Obs.
chr22 1555 500 7
etext99 1515 533 0
gcc 1491 578 21

howtobwt 1510 538 0
howto 1551 511 14
jdk 1522 540 14
rctail 1535 527 14
rfc 1554 1522 508 526 14 0

sprot34 1538 524 14
w3c2 1529 519 0
mp3 1470 585 7
jpg 1426 636 14
mp4 1415 654 21
webm 1496 566 14
ogv 1456 592 0
flv 1571 484 7

chr22 40961 8213 22
etext99 41103 8060 11
gcc 40764 8410 22

howtobwt 41058 8127 33
howto 41079 8095 22
jdk 41074 8122 44
rctail 41075 8088 11
rfc 40986 40769 8188 8394 22 11

sprot34 41049 8125 22
w3c2 41016 8158 22
mp3 41021 8131 0
jpg 40819 8344 11
mp4 41373 7779 0
webm 40835 8317 0
ogv 40985 8189 22
flv 40796 8367 11

chr22 917579 131027 30
etext99 917289 131302 15
gcc 917397 131209 30

howtobwt 917518 131088 30
howto 917812 130794 30
jdk 917412 131179 15
rctail 917139 131437 0
rfc 917538 917346 131068 131275 30 45

sprot34 918158 130433 15
w3c2 917707 130899 30
mp3 914926 133695 45
jpg 915821 132770 15
mp4 905887 142689 0
webm 917075 131561 60
ogv 916558 132108 90
flv 915335 133286 45

chr22 18873040 2098575 95
etext99 18872686 2098853 19
gcc 18879975 2091602 57

howtobwt 18875332 2096207 19
howto 18875502 2096037 19
jdk 18873190 2098406 76
rctail 18876497 2095042 19
rfc 18874410 18873175 2097148 2098364 38 19

sprot34 18878705 2092891 76
w3c2 18876613 2094945 38
mp3 18863837 2107721 38
jpg 18878914 2092625 19
mp4 18898789 2072826 95
webm 18873348 2098210 38
ogv 18875407 2096208 95
flv 18909861 2061735 76
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I Lemma 7. The number of distinct messages that can be generated from a given disambigu-
ation information is 2n−

2n
d + 4n

d2d by assuming the codeword set W , parameter d, and message
length n are known.

Proof. A codeword length ` = d− i appears r
2i times in the disambiguation information for

i = 1 to d− 1, and represents 2` distinct symbols. The d bit long codewords appear r
2d−1

times, and represent two distinct symbols. Thus, the total number of distinct sequences that
can be generated from a known disambiguation information can be counted by

2
r(d−1)

2 · 2
r(d−2)

4 · . . . · 2
r

2d−1 · 2
r

2d−1 = 2rd
∑d−1

i=1
2−i

· 2r
∑d−1

i=1
i2−i

· 2
r

2d−1 (14)

= 2
rd(2d−1−1)−r(2d−d−1)+1

2d−1 (15)

= 2r(d−2+ 4
2d ) (16)

= 2n−
2n
d + 4n

d2d (17)

J

The result of Lemma 7 is consistent with previous Lemma 5 such that the disambiguation
information is not squeezing the possible message space by more than its size. In other words,
when the codeword set W is known, plain disambiguation information reduces the possible
2n message space to 2n−ε, where ε = n( 2

d −
4

d·2d ).
However, in the proposed scheme, W is private, and we need to investigate whether

that secrecy of W accommodates the loss of information by the public disambiguation data.
Lemma 8 shows that for an attacker using the knowledge revealed by the disambiguation
information does not provide an advantage over breaking the encryption on the payload as
long as the codeword set W is kept secret.

I Lemma 8. The shrinkage in the possible message space due to public disambiguation
information can be accommodated by keeping the codeword set W secret in the ambiguous
coding of n ≤ τ · d · 2d bit long data for τ = d−1.44

2 .

Proof. W is a secret permutation of the set {0, 1, 2, . . . , 2d−1} containing 2d numbers. Thus,
there are 2d! distinct possibilities, which corresponds to log 2d! bits of information. On
the other hand, the amount of revealed knowledge about the n bit long input by the
disambiguation information is n( 2

d −
4

d·2d ) bits. The advantage gained by keeping W secret
should accommodate the loss by making disambiguation information public. This simply
yields the following equation.

log(2d!) ≥ n ·
(2
d
− 4
d · 2d

)
(18)

ln(2d!)
ln 2 ≈ 2d · ln 2d − 2d

ln 2 ≥ n · 2
d

(19)

2d · d · ln 2− 2d

ln 2 ≥ n · 2
d

(20)

2d(d− 1.44) ≥ n · 2
d

(21)

d · 2d ·
(d− 1.44

2

)
≥ n (22)

J
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Table 3 The minimum (d · 2d) and maximum (d · 2d · ( d−1.44
2 ) block sizes that are appropriate

according to the proposed ambiguous coding scheme for selected d values.

Block Size in bits Block Size in bits
d min max d min max
6 384 875 14 230K 144K
8 2K 6.7K 16 1M 7M
10 10K 43K 18 4.7M 39M
12 49K 256K 20 21M 194M

Input

Dis.Info Payload

Dis.Info Payload

Dis.Info. Payload

Figure 3 Sketch of three rounds recursive application of the proposed scheme for further reduction
in encryption amount.

Yet another point not to neglect in practice is to choose d such that 2d! is no smaller than
2K1 . This is to make sure that it should not be easier to try all possible permutations than
breaking the secret key (K1) of the pseudo-random number generator used in creating the
permutation. Assuming the keys used in symmetric encryption schemes are at least 256 bits,
d ≥ 6 seems a lower bound for a security level provided by a 256 bit symmetric encryption
since 26! > 2295 > 2256.

Due to Lemma 8, the choice of d creates an upper bound on the size of the input data
that will be subject to the proposed ambiguous coding scheme. On the other hand, it would
be appropriate to select d such that the input size is at least d · 2d bits to confirm with
the computations in the size arguments of the payload and the disambiguation information,
which assumed all possible 2d symbols are uniformly i.i.d. on the input. The minimum and
maximum block sizes defined by the d parameter are listed in Table 3 considering these facts.
Therefore, given an input bit string A, the ambiguous encoding to be achieved in blocks of
the any preferred size in between these values seems appropriate in practice.

The value of d plays a crucial role both in the security and in the to-be-encrypted data
size. It is good to choose large d for better security with less (even negligible when d > 8)
overhead. On the other hand, the payload size is inversely proportional with d, and thus,
the reduction in the data volume to be encrypted decreases when d increases.

Thus, to achieve better reductions in the encryption amount, the ambiguous coding can
be recursively applied on the payload generated after the first round. Figure 3 sketches
this by considering three rounds and Table 4 lists the percentage of gain for each level. For
instance, when d = 8, the gain in to-be-encrypted volume is around 25 percent. If the
payload, which is roughly 75 percent of the original data at the end of this round, is again
encoded with the proposed scheme, then gain is improved to more than 40 percent. Even
one more round reaches near 60 percent less encryption requirement. Notice that in case
of multiple application of the ambiguous coding, the latest payload is encrypted and the
remaining disambiguation information are kept plain.
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Table 4 Percentages of the disambiguation and payload data with 3 rounds of recursion for various
d values calculated according to the lemmas 4 and 5. The bold values represents the percentage of
the data to be encrypted.

d : 6 8 10 12 14 16
Dis. Info. 32.29 24.80 19.96 16.66 14.28 12.50

1st Round Payload 70.31 75.88 80.21 83.39 85.73 87.50
Overhead 2.60 0.68 0.18 0.04 0.01 0.00
Dis. Info. 22.71 18.82 16.01 13.89 12.25 10.94

2nd Round Payload 49.44 57.58 64.34 69.53 73.49 76.57
Overhead 4.44 1.20 0.32 0.08 0.02 0.01
Dis. Info. 15.96 14.28 12.84 11.58 10.50 9.57

3rd Round Payload 34.76 43.69 51.61 57.98 63.00 67.00
Overhead 5.72 1.60 0.43 0.11 0.03 0.01

4 Conclusions

We have presented an ambiguous coding scheme based on variable–length non–prefix–free
codes that splits an input bit-stream into two as the payload and the disambiguation
information. We have proved that the overhead at the end of this coding becomes negligible,
particularly when d ≥ 8. The encryption of the payload is supposed to be performed by
standard ways, and the disambiguation information is kept plain. Thus, there appears a
gain in the amount to be encrypted, which is equal to the disambiguation information size.
Proposed ambiguous coding can be applied recursively on the payload generated as depicted
in Figure 3 to increase that gain in encryption amount.

We assumed that the input to the ambiguous encoder is uniformly i.i.d. in ideal case, and
empirically verified that the compressed volumes ensures the mentioned results. Actually,
applying entropy coding before the encryption is a common daily practice, which makes the
proposed method to be directly integrated. The mpeg4 video streams, jpg images, compressed
text sequences, or mp3 songs are all typical data sources of high-entropy. Related previous
work [5, 16] had stated that although the perfect security of an input data requires a key
length equal to its size (one-time pad), high-entropy data can be perfectly secured with much
shorter keys. This study addresses another dimension and investigates achieving security of
such volumes by encrypting less than their original sizes by using the introduced ambiguous
coding scheme.

Reducing the amount of data to-be-encrypted can make sense in scenarios where the
encryption process defines a bottleneck in terms of some metrics. Ambiguous coding becomes
particularly efficient on securing large collections over power–limited devices, where the cost
of encryption becomes heavy in terms of energy. This reduction also helps to increase the
throughput of a security pipeline without a need to expand the relatively expensive security
hardware. For instance, let’s assume a case where the data is waiting to be processed by
a hardware security unit. When the amount of data exceeds the capacity of this unit, a
bottleneck appears, which can be resolved by increasing the number of such security units.
However, adding and managing more security units is costly, particularly when the bottleneck
is not so frequent, but only appearing at some time. An alternative solution is to use the
proposed ambiguous coding, where instead of expanding the security units, data can be
processed appropriately while waiting in the queue, and the amount to be encrypted can
be reduced up to desired level by applying the scheme recursively if needed. Notice that as
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opposed to previous selective encryption schemes,ambiguous coding supports the security of
the whole file instead of securing only the selected partitions. Besides massive multimedia
files, small public key files around a few kilobytes that are used in asymmetric encryption
schemes are also very suitable inputs for the ambiguous coding. The exchange of public keys
via symmetric ciphers can also benefit from the reduction introduced.

The non-prefix-free codes have not received much attention in the literature due to their
intrinsic decodability problem. However, such a disadvantage may turn to be an advantage
in terms of security systems as investigated in this study. Further security applications based
on such ambiguous codes have the potential to be out-of-the box solutions particularly in
privacy preserving information retrieval and secure text processing applications.
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