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There are several low frequency vibration phenomena which can be observed in automotive
disk brakes. Creep groan is one of them provoking noise and structural vibrations of the
car. In contrast to other vibration phenomena like brake squeal, creep groan is caused by
the stick-slip-effect. A fundamental investigation of creep groan is proposed in this paper
theoretically and experimentally with respect to parameter regions of the occurrence. Creep
groan limit cycles are observed while performing experiments in a test rig with an idealized
brake. A nonlinear model using the bristle friction law is set up in order to simulate the limit
cycle of creep groan. As a result, the system shows three regions of qualitatively different
behavior depending on the brake pressure and driving speed, i.e. a region with a stable
equilibrium solution and a stable limit cycle, a region with only a stable equilibrium solution,
and a region with only a stable limit cycle. The limit cycle can be interpreted as creep groan
while the equilibrium solution is the desired vibration-free case. These three regions and
the bifurcation behavior are demonstrated by the corresponding map. The experimental
results are analyzed and compared with the simulation results showing good agreement.
The bifurcation behavior and the corresponding map with three different regions are also
confirmed by the experimental results. At the end, a similar map with the three regions is
also measured at a test rig with a complete real brake.
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1. Introduction

Creep groan is a low frequency vibration phenomenon in automotive disk brakes occurring in
particular, when the brake is slowly released while the car starts moving (Abdelhamid, 1995;
Abdelhamid and Bray, 2009; Zhao et al., 2016, 2017; Brecht et al., 1997; Brecht, 2000; Crowther
and Singh, 2007, 2008). The frequency range is up to 500Hz and it is caused by the stick-slip-
effect. Like other brake noise problems, such as brake squeal (Cantoni et al., 2009; von Wagner
et al., 2007), creep groan is mainly a comfort problem resulting in possible warranty claims and
additional costs for the manufacturer.

The simplest usual way to describe the stick-slip-effect is to use Coulomb’s friction law.
A general study on friction induced vibrations has been performed by Ibrahim giving also an
overview about contact mechanics and friction forces (Ibrahim, 1994a,b). With respect to creep
groan, Brecht et al. (1997) and Brecht (2000) measured its vibration characteristics and studied
the corresponding stick-slip limit cycle. Crowther and Singh (2007, 2008) modeled the creep
groan phenomenon in terms of two dynamic sub-systems coupled with Coulomb’s friction law.
Vadari and Jackson (1999) considered the relationship of creep groan to vehicle dynamics by
looking at the suspension response. A more complex nonlinear model with 7 degree-of-freedom
(DOF) with Coulomb’s friction law was utilized for studying the mechanism of creep groan by
Wu and Jin (2014).
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However, the models using Coulomb’s friction law cannot explain all effects occurring during
creep groan. In order to overcome this deficiency, Hetzler et al. (2007) presented an analytical in-
vestigation on stability and bifurcation behavior of stick-slip motions, where a friction coefficient
depended on the relative velocity between the two contact partners.

Since friction induced vibrations are naturally highly related to the frictional contact, some
works are concentrating on studying the characteristics of the involved pad materials. A study
performed by Jang et al. (2001) on the creep groan propensity of different friction materials
resulted in the conclusion that creep groan can be reduced when the friction material contains
a small difference between the static and dynamic friction coefficients. Similar results can be
obtained when considering elementary friction oscillators. Fuadi et al. (2009, 2010) studied creep
groan by considering a caliper-slider experimental model, and derived a map showing necessary
conditions for avoiding creep groan. Results of creep groan vehicle tests were shown by Neis et
al. (2016) and their relation with stick-slip in laboratory tests was investigated. However, most
of those works were experimental investigations, and a model showing high agreement with
experimental results is still to be developed.

The present paper extends the prior work of the same authors (Zhao et al., 2016, 2017)
performing the fundamental work with minimal models for creep groan using the bristle friction
law. Creep groan is first measured in a test rig with an idealized brake, which is in most parts
similar to a real brake system but with less hard-to-model components. After that, creep groan
is studied fundamentally through (compared to Zhao et al., 2016, 2017) an extended minimal
model using also the bristle friction law. The bristle friction law proposed by De Wit et al.
(1995) and Johanastrom and De Wit (2008) includes the Stribeck effect, hysteresis and spring-
like characteristics for stick. By analyzing the bifurcation behavior of the resulting nonlinear
model, three regions of qualitatively different behavior depending on the parameters can be
identified. The main focus of this paper is to describe the detailed bifurcation behavior and the
corresponding map with three different regions according to the occurrence and absence of creep
groan, while experiments testified the existence of them in the test rig with the idealized brake.
Furthermore, a similar map is also measured from the test rig with a real brake.

2. Test rig with an idealized brake

For the experimental investigation of creep groan, a test rig with an idealized brake has been
designed and assembled at MMD TU Berlin. This set-up (Fig. 1) imitates the brake system of
an automotive vehicle. The intention of the design was to concentrate on the pad-disk friction
contact and to avoid other hard-to-model parts. In the real brake, there are additional hard-
to-model parts, such as complicated structure of the carrier and its coupling with the caliper
via bushings. These parts may also have an influence on the creep groan behavior but are
considered to have minor influence compared to the frictional contact between the pad and the
disk. Therefore, a carrier consisting of two L-shaped steel plates with high stiffness in the in-plane
direction (but comparable order of stiffness similar to the real brake carrier) and low stiffness
in the out-of-plane direction replaces the real brake carrier. The pads (from a serial brake) are
fixed on the long legs of the carrier while its short legs are fixed to the base plate. A caliper
from the same serial brake is attached to the long legs of the carrier providing the pressure force.
The disk is driven by an AC motor coupled with a reduction gearbox, which can provide a low
revolution speed (starting from 0.1 rad/s i.e. approximately 0.12 km/h) with a high torque. A
drive shaft connects the gear box and the brake disk. This set-up is almost similar with a real
brake system, since the pads, the disk, the drive shaft and the caliper of the test rig are taken
from a real vehicle. Moreover, the set-up has advantages for the experimental investigation of
creep groan, such as: 1. The set-up has a simple structure of the components and, therefore, its
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parameters are easy to identify; 2. The set-up is easy to assemble with different types of sensors
since the disk is directly driven by the shaft. In contrast to this, in industrial dynos, the disk is
usually driven via wheel bolts, which complicates accessibility to the brake for measurements.

Fig. 1. Test rig with an idealized brake at MMD TU Berlin

The following sensors have been assembled to the set-up. A strain sensor is placed on the dri-
ve shaft measuring its torsional angle. It is calibrated through a static measurement (Muschalle,
2015). A turning angle transmitter (power supply 5V DC, maximum sample rate 40 kHz, reso-
lution 14 bit) is connected to the disk which allows for the measurement of the absolute angle
and angular velocity of the disk. The pressure of the brake can be read from a pressure me-
ter. An accelerometer (PCB 4507 ICP accelerometers, frequency range 0.3Hz-6 kHz, sensitivity
101.2mV/g) is attached to the long leg of the carrier, which measures the acceleration of the
pad in the vertical direction. The measured signals are conditioned and subsequently driven
into a data acquisition module (featuring eight 24-bit simultaneously sampled A/D channels,
maximum sample rate 80 kHz, and analogue anti-aliasing filter).
The measured torsional angle ∆θ of the shaft describing the difference between the rotation

angle of the drive and the rotation angle of the disk (defined in Section 3), and the pad accele-
ration ẍ are displayed in Fig. 2 without creep groan and Fig. 3 in the case of creep groan. One
can differ the creep groan case from the non-creep groan case, where ∆θ has large vibrations
and impulses can be found in the acceleration signal ẍ during creep groan. The kurtosis value,
which is based on a scaled version of the fourth moment of the signal, can be used to detect
creep groan from the non-creep groan case. A higher kurtosis is the result of extreme deviations,
which is characteristic for non-stationary signals (Antoni, 2006; Antoni and Randall, 2006). For
the non-creep groan case, the kurtosis value of the pad acceleration signal is shown in Fig. 2b
is 2.85, while this kurtosis value increases to 7.06 when creep groan occurs as shown in Fig. 3b.

Fig. 2. Torsional angle of the shaft ∆θ (a) and acceleration of the pad ẍ (b) without creep groan

The frequency spectra of the signals during creep groan are exhibited in Fig. 3c,d by pursued
Discrete Fourier transformations. The set-up consists of non-rotating parts in terms of the brake
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Fig. 3. Torsional angle of the shaft ∆θ (a) and acceleration of the pads ẍ (b), and their frequency
spectra (c), (d) during creep groan

pads, the caliper, and the carrier, as well as rotating parts in terms of the disk, the drive shaft
and the motor. In the rotating parts, the spectrum of ∆θ shows a single peak at 36.25 Hz,
which is the frequency related to the period of the stick-slip motion. In the non-rotating parts,
the spectrum of ẍ shows a lot of frequency peaks, also at much higher frequencies than the
frequency of the stick-slip motion, and this vibration is what the human hear/feel during creep
groan. According to the measured signals from both parts, it is clear that stick-slip happens
during creep groan, and the creep groan is the resulted vibration of the brake system.

3. Fundamental theoretical investigations of creep groan

The chosen minimal model for the investigation of creep groan is shown in Fig. 4. It is considered
as a two DOF system. Minimal models for creep groan with comparable low number of degrees
of freedom are, as already mentioned in the introduction, discussed by Brecht (2000) with three
degrees of freedom, in (von Wagner et al., 2007) and (Ibrahim, 1994a) by Crowther and Singh
(2007, 2009) with four degrees of freedom or by Fuadi et al. (2010) with two degrees of freedom.
With our model, we focus on the stability and bifurcation analysis of the nonlinear model in
comparison with our experimental results.
As we are in the low frequency range, the disk is considered as a rigid body which is connected

to the motor by the drive shaft. During creep groan, the pads and the caliper move synchro-
nously. Thus, the brake pads together with the caliper are considered as a rigid body and are
connected to the base frame through the carrier. As the disk can only perform rotation but no
wobbling motion, the number of pads can be reduced from two to one without any influence on
the qualitative behavior of the model. The drive shaft is modeled as a rotational spring with
stiffness kθ and damping dθ. With θ being the disk rotation angle and Ω0t the rotation angle of
the drive with constant Ω0, the equation of motion of the disk is given by

Iθ̈ + dθ(θ̇ −Ω0) + kθ(θ −Ω0t) = −FRr (3.1)

where r is the radius of the point the pads act on the disk, I is the moment of inertia of the
disk and FR is the friction force in the contact between the disk and pads. Introducing ∆θ as
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the difference between the rotation angle of the drive Ω0t and the disk rotation angle θ, with
∆θ = Ω0t− θ, this equation of motion of the disk reads

I∆θ̈ + dθ∆θ̇ + kθ∆θ = FRr (3.2)

The carrier is considered as a spring with stiffness kx and damping dx, m is the mass of the pads
with the caliper, and x is the displacement of the pads. The equations of motion of the system
can then be described by

MŸ +CẎ +KY = F

Y =

[
∆θ

x

]
M =

[
I 0
0 m

]
C =

[
dθ 0
0 dx

]

K =

[
kθ 0
0 kx

]
F =

[
FRr

FR

]
(3.3)

Due to its definition, ∆θ has in general due to the influence of the friction force a positive
nonzero mean value.

Fig. 4. Model of the test rig with an idealized brake

For the determination of FR, the bristle friction law is used in the following. By imagining that
two rigid bodies are in contact through elastic bristle surfaces (De Wit et al., 1995; Johanastrom
and De Wit, 2008), the friction force FR is generated by deformation of the bristle. The dynamic
friction force FR can in general be expressed as

FR = σ0z + σ1ż (3.4)

where σ0 is the contact stiffness coefficient, σ1 is the contact damping coefficient. z is the average
deflection of the bristles described by

ż = φ(∆θ̇, ẋ, z) = Ω0r −∆θ̇r − ẋ−
z

g0
|Ω0r −∆θ̇r − ẋ| (3.5)

Herein, g0 is a scaling factor which includes the Stribeck effect. g0 is given as

g0 =
1

σ0

(
Nµd +N(µs − µd) exp

(
−
∣∣∣
(Ω0 −∆θ̇)r − ẋ

vs

∣∣∣
α)
)

(3.6)

where vs is Stribeck velocity, N is the brake normal force, µs and µd are the static and dynamic
friction coefficients, α is an empirical parameter which can be measured in experiments. In our
test rig, the value α = 1 is chosen as the more reasonable approach (Johanastrom and De Wit,
2008; Tustin, 1947), since α = 1 leads to better agreement between experimental and simulation
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results. The bristle friction law can be described in such a way that the bristles will deflect like
springs at a tangential force, which gives rise to the friction force. If the force is so large that
some of the bristles deflect, slip occurs. This bristle friction law includes the Stribeck effect,
hysteresis, pre-sliding characteristics of friction. The complete dynamic equations of the entire
model can be, therefore, written as a set of first order ordinary differential equations

Ẏ =




∆θ̇

ẋ

−
dθ

I
∆θ̇ −

kθ

I
∆θ +

r

I
σ0z +

r

I
σ1φ(∆θ̇, ẏ, z)

−
dx

m
ẋ−
kx

m
x+
1

m
σ0z +

1

m
σ1φ(∆θ̇, ẏ, z)

φ(∆θ̇, ẏ, z)




Y =
[
∆θ x ∆θ̇ ẋ z

]T

φ(∆θ̇, ẏ, z) = Ω0r −∆θ̇r − ẋ−
z

g0
|Ω0r −∆θ̇r − ẋ|

g0 =
1

σ0

(
Nµd +N(µs − µd) exp

(
−
∣∣∣
(Ω0 −∆θ̇)r − ẋ

vs

∣∣∣
α)
)

(3.7)

where Y is the vector of state variables of the system.

The equilibrium solution of equations (3.7), which is the equilibrium position of the system,
is expressed as

Ẏeq = 0

Yeq =

[
rA

kθ
0
A

kx
0
A

σ0

]T (3.8)

where A = Nµd +N(µs − µd)e
−Ω0r/vs .

Linearizing equation (3.7)1 under its equilibrium position, we get

Ẏ = AY
(3.9)

A =




0 1 0 0 0

−
kθ

I
−
dθ

I
+
rσ1

I

∂φ̃

∂∆θ̇
0

rσ1

I

∂φ̃

∂ẋ

rσ0

I
+
rσ1

I

∂φ̃

∂z
0 0 0 1 0

0
σ1

m

∂φ̃

∂∆θ̇
−
kx

m
−
dx

m
+
σ1

m

∂φ̃

∂ẋ

σ0

m
+
σ1

m

∂φ̃

∂z

0
∂φ̃

∂∆θ̇
0

∂φ̃

∂ẋ

∂φ̃

∂z




where

∂φ̃

∂∆θ̇
=
∂φ(∆θ̇, ẋ, z)

∂∆θ̇
=

(µs − µd)r
2Ω0

vs

(
µs − µd + µdeΩ0r/vs

)

∂φ̃

∂ẋ
=
∂φ(∆θ̇, ẋ, z)

∂ẋ
=

(µs − µd)rΩ0

vs

(
µs − µd + µdeΩ0r/vs

)

∂φ̃

∂∆z
=
∂φ(∆θ̇, ẋ, z)

∂∆z
=

−rσ0Ω0
Nµd +N(µs − µd)e−Ω0r/vs
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and A is the corresponding system matrix. The eigenvalue of the matrix can be calculated as

λ = eig(A) (3.10)

The Lyapunov stability of the equilibrium solution can be analyzed by eigenvalues λ. The equ-
ilibrium solution is asymptotically stable, when the real parts of all the eigenvalues are negative.
In contrast, the equilibrium solution is unstable when any of the real parts of eigenvalues is
positive. With respect to the nonlinear behavior, we call an isolated periodic solution in a self-
excited system a limit cycle (Hagedorn, 1978). The limit cycle of Eq. (3.7) is calculated in a
transient analysis by using numerical integration.
According to the conditions for the existence of the stick-slip limit cycle and the stability of

the equilibrium solution, the system has three different regions with different types of solutions.
Corresponding results are shown exemplarily in Fig. 5 if both the speed Ω0 and brake pressure p
are varied. Detailed comparison with the experimental results is performed in Section 4. When
the system has a stable equilibrium solution but no a stick-slip limit cycle, creep groan cannot
occur in this parameter region, and this region is labeled as region I (white region in Fig. 5). When
a stable stick-slip limit cycle and a stable equilibrium solution exist simultaneously, occurrence or
absence of creep groan depends on its initial condition. We labeled this region as region II (green
region in Fig. 5). When the system has a stable stick-slip limit cycle and an unstable equilibrium
solution, creep groan will always occur, and this region is labeled as region III (yellow region
in Fig. 5). Figure 5 exhibits also, for a constant Ω0 with varying p and for a constant p with
varying Ω0, respectively, the largest real part of the eigenvalues Re(λ) of the system matrix A
(red line), and the torsional angle limit cycle amplitude ALC (blue line). The boundary between
regions II and III is defined as a curve, where the largest real part of the eigenvalues Re(λ) of the
system matrix is equal to 0. The way to determine the boundary between regions I and II is given
as follows: for varying brake pressure and speed, the solution of the nonlinear system can be
calculated by a numerical time integration of Eq. (3.7) with initial conditions in the stick region.
If the solution is still the stick-slip limit cycle after a while, the stick-slip limit cycle is considered
to exist and be asymptotically stable. In addition, due to the system with the negative real parts
of the eigenvalues, its equilibrium solution is asymptotically stable and we have coexistence of
the stable equilibrium solution and the limit cycle, i.e. we are in region II. If the solution diverges
from the limit cycle and converges to the equilibrium solution, a stable stick-slip limit cycle is
considered not to exist, i.e. we are in region I. By varying the brake pressure and driving speed,
regions I and II as well as the boundary between them can be determined.

Fig. 5. Map of solution regions depending on the parameters Ω0 and p: I only stable equilibrium
solution, II coexistence of the stable equilibrium solution and the limit cycle solution, III only stable
limit cycle solution. The largest real part of the eigenvalues Re(λ) of the system matrix A (red line)
and the limit cycle amplitude ALC (blue line) for a constant Ω0 with varying p and for a constant p

with varying Ω0, respectively
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4. Comparison between experimental and simulation results

Experimental and theoretical results will be compared in this Section. Due to the simple structure
of the idealized brake in the test rig, its physical parameters can comparably easy be identified
by experiments. The stiffness and damping of the drive shaft and the carrier are determined
by modal analyses. The mass of the disk and the caliper with the pads can be measured by a
weighting device. The friction coefficients are estimated from comparison of the experimental
and simulation limit cycle results. The chosen parameters are given in Table 1.

Table 1. Parameters of the system

Parameters Values

I 0.2025 kgm2

kθ 1.036 · 104 Nm

dθ 2Nms

kx 9.87 · 106N/m

dx 1.5 · 103 Ns/m

r 0.15m

µd 0.325

µs − µd 0.009

σ0 3.97 · 108N/m

σ1 3.84 · 105Ns/m

vs 0.025m/s

Fig. 6. Simulated and measured torsional angle and torsional velocity of the shaft (a), (b), simulated
acceleration of the pad (c) and a simulated friction force (d) with a brake pressure 9 bar and

speed 0.2 rad/s

Figures 6a and 6b show the measured and simulated torsional angle and torsional velocity of
the drive shaft, with brake pressure 9 bar and driving speed 0.2 rad/s. The red line denotes the
simulation results and the blue line presents the experimental results, where both of them show
good agreement. The simulated acceleration of the brake pads and the corresponding friction
force are proposed in Figs. 6c and 6d. When the system converts from the stick region to the
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slip region, the friction force changes suddenly and a large impulse appears in the acceleration
signal. The same effect can also be observed in the measured acceleration on the carrier shown
in Fig. 2b. Figure 7 exhibits the simulated and measured stick-slip limit cycles in the phase
plot with ∆θ̇ as a function of ∆θ. At a constant driving speed, the amplitude of the limit cycle
increases with an increase in the brake pressure. The measured and simulated stick-slip limit
cycles at 5, 7, and 9bar are plotted in Fig. 7.

Fig. 7. Limit cycle of experimental results (a) and simulation results (b)

The map of the parameter regions is drawn in Fig. 8 with the identified parameters. Its
horizontal axis is the speed of the motor and the vertical axis is the brake pressure, which is
proportional to the normal brake force. This map shows different critical conditions of creep
groan during accelerating and decelerating of a vehicle. If the operation starts with parameters
in region III, creep groan must occur, as the equilibrium solution is unstable. Creep groan will
proceed also in region II if we move slowly within this parameter map until the system enters
in parameter region I, since the limit cycle does not exist in region I. Following the dotted line
in Fig. 8, this is usually the case when the vehicle is accelerated. If the vehicle is decelerated,
different things will happen, as shown in Fig. 8 with the solid line. In region I, the silent solution
without creep groan is the only stable solution. The system will stay in the attractor of the silent
solution even though it enters region II, and no creep groan is occurring. Creep groan will then
occur once region III is entered, as the limit cycle is the only stable solution. This can explain
that creep groan is more serious in the accelerating process than in the decelerating process,
which agrees with the driving experience.

Fig. 8. Map of creep groan, the red point represents the measured boundary between regions II (green)
and III (yellow), while the blue point represents the measured boundary between regions I (white)

and II (green)

The determination of the critical velocities Ωc12 and Ωc23 is described in the following. The
brake pressure is constant (8 bar) and the speed of the motor is varied. The corresponding
experimental results are shown in Fig. 9. The red line describes the driving speed, while the
blue line represents the torsional vibrations ∆θ̃, where ∆θ̃ = ∆θ−∆θeq. The torsional vibration
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of the drive shaft becomes large when creep groan appears. In the accelerating process, the
speed is slowly increased from 0.1 rad/s to 0.8 rad/s, creep groan occurs at a low speed but
disappears when the speed is higher than the critical speed Ωc12 (0.62 rad/s with 8 bar), which
is the boundary point between regions I and II. In the decelerating process, the speed is slowly
decreased from 0.8 rad/s to 0.1 rad/s. Creep groan does not occur at a high speed but appears
when the speed is lower than the other critical speed Ωc23 (0.42 rad/s with 8 bar), which is the
boundary point between regions II and III. It should be noted here that similar boundary points
can also be measured by varied pressure with a constant speed (Zhao et al., 2017). For a constant
speed with the increasing pressure, the onset of creep groan will occur at a higher brake pressure
than the stopping of creep groan will happen when decreasing the brake pressure. This case is
considered in Section 5 for the complete real brake.

Fig. 9. Experiment: occurrence of creep groan with variation in the speed. Creep groan is always present
in region III (yellow) and does not occur in region I (white), while creep groan occurs in

region II (green) in the accelerating process (a) but not in the decelerating process (b) cf. Fig. 8

Fig. 10. The equilibrium solution and the stick-slip limit cycle with different driving speeds,
(a) in region III with the stick-slip limit cycle, (b) in region II with coexistence of two stable solutions,

(c) in region I with just an equilibrium solution

Figure 10 shows the limit cycles and the equilibrium solutions of the system with different
speeds in the phase plot. When the speed is higher than Ωc12 (Fig. 10c), only the equilibrium
solution can be measured in both accelerating and decelerating processes. The system under
current conditions stays in region I and creep groan cannot occur. When the speed is lower
than Ωc23 (Fig. 10a), only the stick-slip limit cycle can be measured in both processes, meaning
that the system is in region III and creep groan always occurs. When the speed is higher thanΩc23
but lower thanΩc12 (Fig. 10b), creep groan can be measured in the accelerating process but not in
the decelerating process, meaning that the system is in region II with both the stable equilibrium
solution and the stable limit cycle, and the occurrence and absence of creep groan depends on its
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initial conditions. The difference between these two limit speed values (Ωc12 and Ωc23) actually
prooves the existence of region II with the coexistence of two stable solutions.

The main result therefore is that a linear stability analysis is not sufficient for the deter-
mination of the boundary of creep groan as thereby one can only calculate Ωc23. E.g., in the
acceleration case, which is in fact compared to the deceleration case, the one being more suspi-
cious for creep groan, the boundary Ωc12 for that undesired vibration phenomenon can only be
determined by performing a nonlinear analysis. The same holds in the case of brake pressure
variation.

5. Creep groan bifurcation experimental behavior of a complete real brake

In this Section, some results on the test rig with a complete real brake will be expressed and
compared to the results of the idealized brake. The set-up consists of a real brake system, a
suspension system, as well as the same drive system as before, shown in Fig. 11. The similar

Fig. 11. Test rig with a complete real brake including the suspension

Fig. 12. Occurrence of creep groan with variation of the brake pressure during the pressure decreasing
process (a) and pressure increasing process (b). Limits for the stopping and the onset of creep groan
(pc12 and pc23, respectively) are different prooving the existence of region II with two stable solutions,

while region III (yellow) and region I (white) contain only one stable solution

experimental method has been used to identify the bifurcation behavior and the corresponding
map of creep groan of the complete real brake. According to the above analysis, the boundary
between regions I and II is critical for stopping of creep groan in the acceleration process, which
is the more suspicious case for creep groan. The boundary between regions II and III is critical
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for the occurrence of creep groan starting from the equilibrium position which is the case while
decelerating. We can choose the speed of motor and vary the brake pressure arbitrarily in the
test rig and, therefore, the boundaries could be determined. The result for a single test run with
decreasing and respectively increasing brake pressure is shown in Fig. 12. Again the boundaries
for the stopping and the onset of creep groan are not the same, which prooves the existence
of region II with the coexistence of a stable limit cycle and a stable equilibrium solution. The
measured boundary points as well as the polynomial regression boundary curves are exhibited
in Fig. 13.

Fig. 13. Map of creep groan identified by experiments, the red points represent the measured boundary
points between regions II and III while the blue points represent the measured boundary points between
regions I and II, the red line and the blue line are polynomial regression curves of the measured

boundary points

Compared to the map measured from the idealized brake, both maps show the same three
regions I, II and III, and the boundaries among regions have the same qualitative behavior. It
is, therefore, confirmed that the bifurcation behavior observed for the simplified brake can be
conveyed in the complete real brake system.

6. Conclusions

In this paper, fundamentals of creep groan have been studied theoretically and experimentally.
In order to concentrate on the friction contact between the disk and pads, a test rig with an
idealized brake has been designed and assembled. Creep groan is measured for this set-up and
for the test rig with a complete real brake including suspension.

A nonlinear model with the bristle friction law is proposed to explain the experimental
results. Based on the model, creep groan is simulated through a minimal model. Furthermore,
the bifurcation behavior and the corresponding map of creep groan are studied. Three parameter
regions of the solutions exist in this map at varied brake pressure and driving speed. The
parameter regions are denoted as follows: region I with no stick-slip limit cycle but a stable
equilibrium solution, region II with both the stable stick-slip limit cycle and the equilibrium
solution, and region III with a stable stick-slip limit cycle and an unstable equilibrium solution.
The limit cycle can be interpreted as creep groan while the equilibrium solution is the desired
vibration free case. In region I, no creep groan can occur, while in region III creep groan is
always present. In region II, the occurrence or absence of creep groan depends on the initial
conditions. From that, it can be concluded that a linear stability analysis is not sufficient for
the determination of the boundary of creep groan. E.g., in the acceleration case, which is in fact
compared to the deceleration case, the one being more suspicious for creep groan, the boundary
for that undesired vibration phenomenon can only be determined by performing a nonlinear
analysis.
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Experimental results confirm the existence of the map with three regions, and the boundaries
of the regions can be identified theoretically and experimentally. The simulation results show
good agreement with the experimental results. At the end, a similar map is measured in the test
rig with a complete real brake, which confirmed that the bifurcation behavior observed for the
simplified brake can be conveyed to the complete real brake system.
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