
This version is available at https://doi.org/10.14279/depositonce-7113.

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

© © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Gemkow, Tim; Conzelmann, Miro; Hartig, Kerstin; Vogelsang, Andreas (2018): Automatic glossary term
extraction from large-scale requirements specifications. In: RE 2018. 26th IEEE International
Requirements Engineering Conference, August 20 - 24, 2018 - Banff, Alberta, Canada. - New York: IEEE.

Gemkow, Tim; Conzelmann, Miro; Hartig, Kerstin; Vogelsang, Andreas

Automatic glossary term extraction from
large-scale requirements specifications

Accepted manuscript (Postprint)Dokumententyp |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/159309234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatic Glossary Term Extraction from
Large-Scale Requirements Specifications

Tim Gemkow, Miro Conzelmann, Kerstin Hartig, Andreas Vogelsang
Technische Universität Berlin, Germany

{tim.gemkow,miro.conzelmann}@campus.tu-berlin.de, {kerstin.hartig, andreas.vogelsang}@tu-berlin.de

Abstract—Creating glossaries for large corpora of requirments
is an important but expensive task. Glossary term extraction
methods often focus on achieving a high recall rate and, therefore,
favor linguistic proecssing for extracting glossary term candidates
and neglect the benefits from reducing the number of candidates
by statistical filter methods. However, especially for large datasets
a reduction of the likewise large number of candidates may be
crucial. This paper demonstrates how to automatically extract
relevant domain-specific glossary term candidates from a large
body of requirements, the CrowdRE dataset. Our hybrid ap-
proach combines linguistic processing and statistical filtering for
extracting and reducing glossary term candidates. In a twofold
evaluation, we examine the impact of our approach on the quality
and quantity of extracted terms. We provide a ground truth for a
subset of the requirements and show that a substantial degree of
recall can be achieved. Furthermore, we advocate requirements
coverage as an additional quality metric to assess the term
reduction that results from our statistical filters. Results indicate
that with a careful combination of linguistic and statistical
extraction methods, a fair balance between later manual efforts
and a high recall rate can be achieved.

Index Terms—Requirements Engineering, Natural Language
Processing, Glossary Term Extraction, Crowd RE

I. INTRODUCTION AND RELEVANCE TO RE
Glossaries are an important tool in Requirements Engineering

(RE). In general, a glossary provides definitions for the
technical terms in a domain. Furthermore, it usually includes
domain-specific information about the synonyms, concepts,
and related terms as well as examples of their application [1].
Glossaries serve to ensure that all stakeholders have a common
understanding of key terms. To this end, it is necessary to
have a set of unambiguous terms that clearly define the key
concepts used in the requirements to minimize the risk of
misinterpretation by any stakeholder [2].

Best practice in RE holds that a glossary should be developed
continuously during the process of requirements elicitation [2].
However, in many real-world projects, this effort is not
expended initially, but a glossary is still needed in later stages of
a project to support requirements comprehension, consolidation,
and management. Hence, we assume that glossary creation
starts from a body of pre-existing requirements.

Creating glossaries for large corpora of requirements is an
expensive process. This paper aims at automating the first key
step of extracting relevant candidates for glossary terms from
a body of existing requirements. The expected result is

• a machine-generated list of glossary term candidates and
• an index linking from each glossary term candidate to the

relevant requirements from which it was acquired.

To extract term candidates, we implement a hybrid approach
that first identifies possible terms by a set of natural language
processing (NLP) steps, and afterwards reduces the number
of terms by two statistical filters. We applied our approach to
the CrowdRE dataset [3], which contains about 3,000 crowd-
generated user stories for smart home applications. The final
generated list contains 326 glossary term candidates. On a
subset of 100 requirements for which term candidates have
been manually derived by us, a recall of 74.9% and a precision
of 73.4% is achieved.

Our paper is the first to report on automatic glossary
term extraction on large-scale requirements specifications,
represented by the CrowdRE dataset, which is 5 to 10 times
larger than datasets that have been used for evaluating related
approaches [2][4]. We investigate the effects of single parts
of our approach (linguistic extraction and statistical filtering)
to the dataset and argue that for large-scale requirements
specifications, statistical filters are inevitable although they
may reduce recall.

We conclude that our approach is generally useful to
support the first, time-intensive step of extracting glossary
term candidates from large scale requirements specifications.

In summary, this paper makes the following contributions:
1) A hybrid approach for automatically extracting relevant

glossary term candidates by combining linguistic extrac-
tion and statistical filtering.

2) A replicable application and analysis of the approach to
a large-scale, public dataset (the CrowdRE dataset [3]).

3) A list of manually extracted glossary term candidates for
a subset of 100 requirements from the CrowdRE dataset.

4) A list of automatically extracted glossary term candidates
for all requirements contained in the CrowdRE dataset.

The last two contributions may help developing a publicly
available benchmark for the problem of glossary term extraction.
We invite authors of similar approaches to compare their work
based on our contributions.

II. THE CROWDRE DATASET

The CrowdRE dataset is the result of an empirical study
conducted by Murukannaiah et al. [3][5] in 2016. The study
investigated the elicitation of requirements in the domain of
smart home applications through crowd-sourcing techniques.
300 participants with various backgrounds were asked to
formulate requirements for smart home applications through
the Amazon Mechanical Turk platform. Each participant was

asked to formulate requirements in form of user stories. In
a second phase, 309 new participants rated the requirements
formulated by other participants on the three dimensions clarity,
usefulness, and novelty. In summary, the CrowdRE dataset
includes 2,966 requirements in the form of user stories with
meta-information attached to each requirement (e.g., tags,
ratings), and meta-information attached to each author (e.g.,
demographics, OCEAN personality traits).

For this paper, the requirements themselves are the primary
data, since we want to extract the relevant glossary terms
directly from the textual data. The following examples illustrate
the format of this data:

• Req. 11: As a worker, I want my smart home to be able
to order delivery food by simple voice command so that
I can prepare dinner easily after a long day at work

• Req. 12: As a home occupant, I want my smart home to
turn on certain lights at dusk so that I can come home to
a well-lit house

We did not use the rating data or the author-specific metadata
in the scope of this paper. The dataset does not contain a
glossary or definitions of central terms, i.e., the dataset does
not contain any ground truth for the problem addressed in this
paper. We will later explain how we evaluated our approach
without this ground truth.

III. AUTOMATIC GLOSSARY TERM EXTRACTION

A. Criteria for Glossary Terms

The International Requirements Engineering Board (IREB)
provides the following definition of a glossary: "A collection
of definitions of terms that are relevant in some domain.
Frequently, a glossary also contains cross-references, synonyms,
homonyms, acronyms, and abbreviations." [6]. Hence, we can
derive the following properties of good glossary terms:

• Relevance: A glossary contains only terms that are
important for understanding the meaning of the documents
(e.g., the requirements) in question.

• Domain specificity: A glossary contains only terms that
need to be defined in the domain-specific context, because
they are either unique to the domain or because the have
a specific meaning in the context of this domain.

B. General Approaches for Glossary Term Extraction

The requirements are provided in the form of natural
language. Current research suggests two complementary ap-
proaches to identify glossary terms in textual data [7]:

• Linguistic approaches characterize glossary term can-
didates by syntactic information. For example, some
approaches extract the noun phrases from a text as glossary
candidates and restrict their further consideration to these
candidates [2]. Some authors claim that for technical
glossaries 99 percent of all relevant terms for technical
glossaries are noun phrases [2].

• Statistical approaches characterize glossary term candi-
dates by the frequency of their occurrence relative to some
benchmark, such as their term frequency relative to the text
size or their term frequency in relation to their frequency

Tokenization

Lemmatization

POS-Tagging

Chunking

Requirement Statement
as user story

Relevance Filtering

Specificity Filtering

Linguistic Processing
using NLP Pipeline

Statistical Filtering

“As a worker I want my smart home … to
watch my favorite shows“

[‘As’,’a’,’worker’,’I’,’want’,’my’,’smart’,...]

[('As', 'IN'), ('a', 'DT'), ('worker', 'NN'), ('I',
'PRP'), ('want', 'VBP'), ('my', 'PRP$'),
('smart', 'Unk'), ('home', 'NN'),...]

['worker'],['I'],['homes'],[‘favorite’,’shows’]

['worker'],['I'],['home'],[‘favorite’,’show’]

['home'],[‘favorite show’]Reduction of Glossary
Term Candidates

Identification of Glossary
Term Candidates

Fig. 1. Hybrid approach to identify and reduce glossary term candidates

in a larger corpus of documents. Other statistical means
include mutual information measures and other factors
related to lexical collocation and semantic similarities [8].

In our analysis, we combine both approaches. First, we
identify all noun phrases in our requirements as glossary term
candidates (analogous to [2]). Subsequently, we use statistical
filters to reduce the list of candidates to a reasonable length
and quality. The implementation is done via a process pipeline
that is described in the next section.

C. Hybrid Approach for Glossary Term Extraction

To automatically extract glossary terms, each requirement
statement is processed in a sequential pipeline. The individual
steps and an example output of each step are displayed in Fig. 1.
The implementation of the pipeline is done with Python, using
the Natural Language Toolkit (NLTK) framework [9]. Since we
have no requirements-specific reference corpus available, we
rely in particular on the Treebank corpus of Wall Street Journal
articles available through NLTK. As a newspaper corpus, it is
characterized by a succinct and relatively formal style which
we consider somewhat related to the style of requirements
documents.

1) Linguistic Processing: The first part of our approach uses
linguistic processing to identify term candidates.
Input: The CrowdRE dataset provides the role, feature, and
benefit for each user story as separate items. We do not process
them separately but reconstruct the full user story sentence
from these three pieces. Using full sentences allows for a better
performance of the PoS tagging step later in the pipeline, which
relies on the grammatical structure of each sentence.
Tokenization: Each sentence is split into individual tokens
while preserving their order. We use the NLTK tokenizer
class nltk.word_tokenizer that separates tokens on whitespace
characters and punctuation. Whitespace gets discarded, while
punctuation is returned as a token itself [10]. This is necessary
because punctuation can convey important information about
sentence structure useful for subsequent tagging.
Part of speech (PoS) tagging: The tokens of each sentence
are tagged according to their syntactical position in the text.
We use the NLTK Tagger nltk.tag.tnt that assigns tags using an
established statistical approach to PoS tagging, the Trigrams

’n’ Tags (TnT) tagger [11]. It relies on classification through a
hidden Markov model, which requires training data for which
the correct output is known. We train our classifier on a
subset of the included Treebank corpus nltk.corpus.treebank
of newspaper articles for which expert-annotated tokens with
POS tags are available.
Chunking: We rely on the class nltk.corpus.treebankchunk,
which uses a statistical approach to chunking and is trained with
the Treebank corpus data for which the correct parse tree has
been determined by human experts. This means that patterns
of POS tags that define a noun phrase (NP) are learned from
the treebank corpus instead of an explicit grammar definition.
The chunker subsequently uses the knowledge obtained from
the training data to recognize sequences of PoS tags that are
characteristic for noun phrases.
Lemmatization: The identified candidate terms are reduced
to their canonical form to simplify statistical analysis. This
allows for the aggregation of different forms of the same word
to a common glossary term. This is implemented using the
nltk.stem.Wordnetlemmatizer that goes back to a language-
specific database (WordNet) to look up a predefined canonical
form for each word. Lemmatization also processes the PoS
tag information for each word, since this can occasionally be
used to resolve ambiguities in choosing the correct canonical
form. We also convert all terms to lower case and remove
individual tokens from our candidate terms that match with a
list of known “stop words”.

2) Statistical Filtering: The second part of our approach uses
two statistical filters to reduce the number of term candidates
and to increase the relevance and domain specificity.
Relevance Filtering: The first filter eliminates all candidate
terms that appear in less than a specific number of requirements
to ensure that all concepts included in our glossary are
sufficiently relevant for the domain in question. The threshold
should be selected to optimize the trade-off between an increase
in precision and a possible loss of coverage (more details on
that in Section V).
Specificity Filtering: With the specificity filter, we want to
ensure that our glossary term candidates are sufficiently specific
to the domain. We determine this by comparing the number
of occurrences of term candidates in our requirements corpus
with the occurrences in a non domain-specific text corpus such
as in newspaper articles. Therefore, we eliminate all candidate
terms that occur less frequently in our requirements than in a
subset of the Treebank newspaper article corpus. This ensures
that all glossary terms included in our set have a minimum
degree of domain specificity.
Export: The results of our pipeline are available as a Python
dictionary for further processing. They are also made available
in structured output formats as csv and Excel file to support
manual inspection. For practical reasons, we also maintain an
index for each candidate glossary term that maps the term to the
requirements that it originated from. This index is used in the
statistical filtering step to determine the number of requirements
covered by each candidate term. It is also made available as
a result of the process to facilitate later Information Retrieval

(IR). This is necessary because a reconstruction of the origin
of term candidates without an index can be expensive: Stop
word removal and lemmatization imply that simple full text
search is not reliable; instead, the pipeline steps would need
to be re-run on the original data.

D. Replication Package
A replication package for our study is available on GitHub1.

It contains (1) the code that implements the proposed NLP
pipeline and instructions how to run the analysis, (2) a csv file
containing a list of manually identified glossary terms for a sub-
set of 100 requirements of the CrowdRE dataset together with
a link to the respective requirements, (3) an xlsx file containing
all automatically extracted glossary term candidates together
with a link to the requirements in which the terms appear and
a quantitative evaluation of the related requirements per term,
and (4) an extended report on the effect of variations of the
NLP pipeline that we tested in the process of our research.

IV. EVALUATION PLAN

To evaluate the quality of the extracted glossary term
candidates, it is necessary to define suitable quality metrics.
A common way to evaluate keyword lists is to work with
reference lists and use precision and recall as metrics. In
practice, candidate term extraction would generally be followed
by a second step, where domain experts formulate authoritative
definitions of the relevant terms to create the actual glossary.
Although these experts benefit from a concise list of terms,
this setup indicates that recall is more critical than precision:
Unnecessary glossary term candidates would be identified
and removed in subsequent manual processing (although this
consumes valuable human effort), while missing glossary
term candidates would likely remain unnoticed and thus hurt
the quality of the ensuing glossary. Unfortunately, a concise
evaluation of precision and recall is difficult in our case, since
the CrowdRE dataset does not contain a reference list of correct
glossary terms (a ground truth).
A. Evaluation of Precision and Recall

Therefore, in a first step, we apply our approach only to
a random subset of 100 requirements, for which we have
manually identified glossary term candidates based on our
intuition of potential glossary terms. We did not generate a
full glossary. Instead, we manually generated ground truth data
at the same level of abstraction achieved by our pipeline, i.e.,
relevant terms extracted directly from the requirements’ texts.
This benchmark dataset allows an estimation of precision and
recall for our pipeline applied to this subset of requirements.
Of course, this benchmark is not very reliable because it is
created by two of the authors who extracted and discussed
potential glossary terms.

Besides precision and recall, we are also interested in the
characteristics of the approach when applied to large scale
requirements specifications. In the light of a missing ground
truth for the entire CrowdRE dataset, we therefore advocate
requirements coverage as another metric for a glossary’s quality.

1https://github.com/tgem/crowdre-glossary

Req 1

Req n

GTC 1

..
.

GTC m

..
.

relevant for three
requirements

relevant for one
requirements

Requirements
Coverage Type

no coverage
single coverage
double coverage
triple coverage

Relevance of GTC

strong weak

Fig. 2. Linking glossary term candidates and requirements: indicator for a
candidate’s relevance and its effect on requirements coverage

B. Evaluation of Requirements Coverage

In a second step, we apply our approach to the entire
CrowdRE dataset (2,966 requirements) to investigate the
number of resulting glossary term candidates and the coverage
of requirements by the extracted glossary terms. On a very basic
level, we expect a good glossary to contain all relevant domain-
specific terms. Additionally, we expect that only very few
requirements cannot be related to any glossary term. Therefore,
we use the percentage of requirements covered by at least
one, two, or three glossary terms, as indicators (see Fig. 2). A
higher coverage should indicate a higher recall, as the available
glossary terms can describe a bigger fraction of all requirements.
However, while higher coverage is generally better, even perfect
coverage does not guarantee a specific level of recall.

V. RESULTS

A. Precision and Recall for Small Subset
We manually identified 251 relevant glossary term candidates

for the subset of 100 requirements. If we solely apply our
linguistic processing steps to these requirements, we automat-
ically identify 258 glossary term candidates containing 189
true positive terms, which accounts for a recall of 75.30%
and a precision of 73.26%. Please note that we also count
short terms that are included as parts of longer terms of the
other set. If we additionally apply the specificity filter, we
can exclude two candidates from the automatically extracted
list, which leads to a slightly reduced recall of 74.90% and
slightly higher precision of 73.44%. Since the relevance filter
aims at enhancing glossary term extraction especially for large
datasets, we refrain from its application to the small subset of
100 requirements. Experiments showed that it takes beneficial
effects on large datasets but can lead to rapid reduction of
recall on small datasets.
B. Impact of Statistical Filtering on Entire Datset

In this section, we examine the impact of both statistical
filters (relevance and domain specificity) on the number of
extracted term candidates and requirements coverage when
applied to the entire dataset of 2,966 requirements.

1) Number of glossary term candidates: Our first filter
excludes glossary term candidates that relate to a very small
number of requirements to ensure the relevance of the identified
terms. Fig. 3 shows the impact of both statistical filters on
the number of glossary term candidates. Since each candidate
must relate to at least one requirement, the relevance filter

Fig. 3. Number of glossary terms for increasing relevance filter threshold

only activates at a threshold of 2. A threshold of 1 outputs
the same candidates as extracted without the relevance filter.
The figure reveals that a large number of candidates relate
to only one requirement. When eliminating those candidates
by applying a relevance filter threshold of 2, the number of
candidates reduces enormously from 2,439 to 808 (2,202 to
703 with specificity filter). Higher thresholds lead to a further,
less drastic reduction of the candidate list. The specificity filter
has a less radical effect. Its application reduces the number of
candidates extracted by solely linguistic processing by 4–13%.

2) Requirements Coverage: We advocate requirements cov-
erage as additional heuristic for a sufficiently complete set of
glossary term candidates. Fig. 4 depicts the impact of both
filters on requirements coverage. Without any statistical filtering,
we achieve a coverage rate of 99.76% for single coverage of
each requirement. Introducing a relevance threshold comes at
a very low price since requirements coverage stays above 98%
even for a threshold value of 10. Again, specificity filtering has
only a minor impact on coverage loss. Its application diminishes
requirements coverage only slightly, e.g., from 91.98% to 91.3%
for double coverage and a relevance threshold filter of 5.

The high values for single requirements coverage can be
explained by noting that most role descriptions from the
user stories (“home owner”, “house occupant”, “parent”)
are among the glossary term candidates, which ensures a
very high coverage regardless of the specific content of the
requirements. It is therefore more reasonable to examine the
requirements coverage rate of double or even triple coverage for
each requirement. If we analyze double covered requirements,
we can observe a slight reduction of coverage, decreasing
even more at higher relevance threshold. Applying specificity
filtering and a relevance threshold of 5, the coverage rate of
91.3% is still satisfactory but also shows that about one tenth
of all requirements could not be linked to any generalized
glossary term candidate beyond the role description. Triple
coverage of each requirement reduces the overall requirements
coverage tremendously, e.g., from 91.3% to only 72.02%.

C. Automated Keyword Extraction

Based on the results above, we decided to include the
specificity filter and a relevance filter with threshold value
of 5 for the extraction of glossary terms from the entire dataset.
This configuration combines a small loss of coverage with a

Fig. 4. Requirements coverage for coverage types and increasing relevance filter threshold evaluated on the entire dataset of 2,966 requirements.

TABLE I
EXAMPLES OF EXTRACTED GLOSSARY TERM CANDIDATES

term candidate no.
reqs

term
candidate

no.
reqs

term candidate no.
reqs

home occupant 1088 water 149 escape 5
home 767 child 146 hair 5
home owner 621 pet owner 138 less energy 5
house 355 person 130 sound system 5
parent 333 temperature 116 drain 5
time 245 food 108 sport fan 5
alert 190 able 107 automatic door 5
door 175 safe 95 fall 5
light 170 phone 93 dirty 5
energy 165 day 92 rural home oocupant 5

forceful reduction in the size of our glossary. If we execute our
hybrid glossary term extraction approach with these settings
using the CrowdRE dataset, we identify 326 glossary term
candidates. Table I shows the twenty terms that are linked to the
largest number of requirements and the ten terms linked to the
minimum number of requirements for inclusion as a glossary
term candidate. The terms demonstrate the statistical nature of
our extraction pipeline, which occasionally misclassifies terms
and thus also includes some very prominent terms (“able”,
“safe”) that do not actually qualify as noun phrases.

VI. DISCUSSION

A. Comparison of Statistical Filters

In general, our approach corroborates that established means
for term extraction through NLP can be successfully applied
to glossary term candidates in a large-scale requirements
specification. Since our two criteria for good glossary terms
are relevance and domain specificity, we encoded them as
statistical filters. Our evaluation shows that the statistical filter
for domain-specific terms has a much smaller impact in terms
of filtered terms than the relevance filter. Moreover, the effect
size remains small even if we increase the specificity further:
For testing purposes, we included only terms that are at least
twice as frequent in our corpus than in the Treebank corpus.
Even this more restrictive threshold led only to the exclusion
of another 18 terms from our candidate list of 326 terms.

A possible explanation for this is that the relevance filter,
which is applied first, already removed most unspecific terms.
However, if we change the order of our filters, the basic result

still holds: If we filter first for domain specificity, 237 terms get
removed from the initial list of 2,439 terms in this step, but an-
other 1,876 are removed by the relevance filter (with a threshold
value of 5). Thus, while there is an overlap between both filters,
the relevance threshold is substantially more discriminating in
our case. This points to an interesting characteristic that seems
to differentiate requirements documents from more general
corpora: Requirements are already highly focused thematically
and contain very little unrelated or tangential concepts (at least
after stopword removal).

B. Relevance of Statistical Filters for Large Specifications
Some authors argue that any kind of filtering in glossary term

construction should be avoided [2], since missed concepts are
considerably more damaging than effort in manually screening
candidate terms. We generally agree with this line of argument,
however, our results show that approaches without any kind of
filtering result in a large set of term candidates when applied to
large-scale requirements specifications (2,439 terms in our case).
We assume that in many cases, it is not efficient to maintain a
glossary with over 2,000 entries. In fact, we are convinced that,
when constructing a glossary, a human analyst is influenced by
the size of the document(s) to which the glossary relates. For
smaller specifications (below 500 requirements), the analyst
might follow the strategy to define a large fraction of noun
phrases that occur in the requirements. For larger specifications,
however, the human analyst would quickly recognize that this
strategy leads to a large number of glossary terms. Therefore, a
human analyst would focus on terms that appear in a significant
part of the underlying corpus (relevance) and that are unique
to the domain (specificity). Therefore, we argue that for term
extraction from smaller specifications (below 500 requirements),
it might be reasonable to maximize recall. However, for larger
specifications, statistical filtering is necessary to mimic the
changed selection strategy of a human analyst.

C. Limitations of our approach
Our approach successfully generates a reasonable list of

glossary term candidates for the CrowdRE dataset. Nevertheless,
there are two major limitations to the approach presented
here: We cannot aggregate different glossary term candidates
based on semantic meaning, and our possibilities to evaluate

the quality of our results remain limited by the lack of a
comprehensive accepted ground truth.

Conceptually, an important task of any glossary is to define
the canonical terms used to refer to a given concept, and to
regulate both the use of synonyms (by clarifying the preferred
terms) and homonyms (by clearly disambiguating different
meanings and, typically, recommending alternative terms that
are clearly distinct). However, our approach can only reduce
morphological variance through lemmatization. Any form
of semantic synonyms are ignored and the respective terms
treated as separate entities; any form of semantic homonyms
are likewise ignored and incorrectly grouped together as a
single glossary term candidate. Therefore, an important future
extension would be to provide support for the consideration
of semantic similarity (e.g., by investigating linguistic datasets
such as WordNet (cf. [12]) or by through a word vector
approach (cf. [13]).

A further avenue to improve the evaluation of our results
would be to process the CrowdRE dataset with existing term
extraction tools, and to systematically compare their results
with those from our pipeline.

D. Related Work
Hybrid approaches, such as ours, have also been successful

in previous research on glossary term extraction. For example,
Barker et al. [14] built a pipeline that is similar to ours: As
linguistic processing, PoS tags are assigned to feed a skimmer
(similar to a chunker). The skimmer implements a parser
to construct noun phrases based on sequences of PoS tags.
Then statistical filters are used to process the extracted noun
phrases based on their frequency distribution. In contrast to
precision and recall, their main evaluation metric is a relevance
rating of automatically extracted terms by a number of human
analysts. The terms extracted by their approach achieved an
average relevance rating of 0.47 on a scale from 0 (bad) to 2
(good). Other examples of hybrid approaches are proposed by
Park et al. [15] and Dwarakanath et al. [4]. Note, however, that
all mentioned approaches use a linguistic (rule-based) approach
to chunking rather than a statistical chunker. In our case, the
statistical approach has proven superior to chunking. It would
be interesting to determine the conditions under which one or
the other is more reliable.

The idea of hybrid approaches is not uncontested:
Arora et al. [2] argue that in the RE domain, statistical filtering
should not be used for glossary terms because statistical filters
have the purpose to increase precision with the risk to decrease
recall. In their approach without any statistical filters, they
achieved a recall of more than 90% for three investigated
specifications with a precision between 20 and 50%. They
argue that for glossary term extraction in RE, recall should
be rated much higher with precisions (cf. [16]), and therefore,
their approach refrains from any statistical filters. As discussed
in Section VI, we agree with this argument for smaller specifi-
cations. Consistently, Arora et al. [2], as well as Dwarakanath
et al. [4] have evaluated their approaches on requirements
specifications with 108–380 requirements. When applied to
larger specification, as in our case, this strategy results in a

large number of glossary term candidates. This observation is
backed up by the work of Park et al. [15] who extracted over
9,000 terms from a document with over 200,000 words.

VII. CONCLUSION

Our results show that it is possible to automatically extract
a reasonable list of glossary term candidates from a large-
scale requirements corpus, which can substantially facilitate
subsequent expert work. We have already outlined possibilities
to further support expert assessment by also preprocessing
likely semantic links, and believe that this is a promising
avenue for future research.

Our very basic approach can easily be modulated and
extended by more sophisticated filters if the limitation in
evaluation data can be overcome. Moreover, it should be noted
that our pipeline itself does not rely on any specifics of the
CrowdRE dataset. Our approach should therefore generalize
well to new datasets, and we suggest that this could also yield
further valuable insights. Applying our approach to another
dataset for which a reliable ground truth is known might also
help to overcome the remaining uncertainties in our ability to
evaluate the results.

REFERENCES

[1] I. Sommerville and P. Sawyer, Requirements Engineering: A Good
Practice Guide. New York, USA: John Wiley & Sons, Inc., 1997.

[2] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated extrac-
tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, 2017.

[3] P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Toward automating
crowd RE,” in 25th IEEE International Requirements Engineering
Conference (RE), 2017.

[4] A. Dwarakanath, R. R. Ramnani, and S. Sengupta, “Automatic extraction
of glossary terms from natural language requirements,” in 21st IEEE
International Requirements Engineering Conference (RE), 2013.

[5] P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Acquiring creative
requirements from the crowd: Understanding the influences of individual
personality and creative potential in crowd RE,” in 20th IEEE Interna-
tional Requirements Engineering Conference (RE), 2016.

[6] M. Glinz, A Glossary of Requirements Engineering Terminology. Inter-
national Requirements Engineering Board, 2014.

[7] C. Jacquemin and D. Bourigault, “Term extraction and automatic
indexing,” in The Oxford Handbook of Computational Linguistics.
Oxford University Press, 2003, pp. 599–615.

[8] M. T. Pazienza, M. Pennacchiotti, and F. M. Zanzotto, “Terminology
extraction: An analysis of linguistic and statistical approaches,” in
Knowledge Mining. Berlin, Germany: Springer, 2005.

[9] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
analyzing text with the natural language toolkit. O’Reilly Media, 2009.

[10] J. Perkins, Python 3 Text Processing with NLTK 3 Cookbook. Packt
Publishing Ltd, 2014.

[11] T. Brants, “TnT – A statistical part of speech tagger,” in 6th Applied
Natural Language Processing Conference (ANLP), 2000.

[12] R. Richardson, A. F. Smeaton, and J. Murphy, “Using wordnet as a
knowledge base for measuring semantic similarity between words,” in
Proceedings of AICS conference, 1994.

[13] A. Ferrari, B. Donati, and S. Gnesi, “Detecting domain-specific am-
biguities: an NLP approach based on wikipedia crawling and word
embeddings,” in 25th IEEE International Requirements Engineering
Conference Workshops (REW), 2017.

[14] K. Barker and N. Cornacchia, “Using noun phrase heads to extract
document keyphrases,” in Advances in Artificial Intelligence, 2000.

[15] Y. Park, R. J. Byrd, and B. K. Boguraev, “Automatic glossary extraction:
beyond terminology identification,” in 19th International Conference on
Computational Linguistics, 2002.

[16] D. M. Berry, “Evaluation of tools for hairy requirements and software
engineering tasks,” in 25th IEEE International Requirements Engineering
Conference Workshops (REW), 2017.

