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Abstract: In the paper, we address Bayesian sensitivity issues when integrating experts’

judgments with available historical data in a case study about strategies for the preventive

maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are

interested in replacement priorities, as determined by the failure rates of pipelines deployed

under different conditions. We relax the assumptions, made in previous papers, about the

prior distributions on the failure rates and study changes in replacement priorities under

different choices of generalized moment-constrained classes of priors. We focus on the set of

non-dominated actions, and among them, we propose the least sensitive action as the optimal

choice to rank different classes of pipelines, providing a sound approach to the sensitivity

problem. Moreover, we are also interested in determining which classes have a failure rate

exceeding a given acceptable value, considered as the threshold determining no need for

replacement. Graphical tools are introduced to help decision makers to determine if pipelines

are to be replaced and the corresponding priorities.
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1. Introduction

We consider the problem addressed in [1,2] about the replacement policy of low-pressure cast

iron (CI) pipelines used in a metropolitan gas distribution network by the assessment of the rate of

occurrence of gas escapes or leaks (denoted as failures) obtained through integration of historical data

and knowledge of company experts. In the cited works, homogeneous subnetworks were identified and

ranked according to their failure rates, using a methodology based on field data, experts’ qualitative

judgments and Bayesian inference; the failure rate was considered as the priority index for the

replacement policy (of an entire subnetwork, rather than a single section). In the current paper, we

consider the same criterion for the replacement policy, presenting a sounder approach to deal with

the uncertainty associated with the experts’ judgments and providing practical tools to visualize the

consequences of such uncertainty and to help in making decisions through an iterative process.

The considered gas distribution network was developed in a large urban area during the last century,

and thereby, it is characterized by very different technical and environmental features (material, diameter

of pipelines, laying location, etc.). It consists of thousands of kilometers of pipelines of low, medium and

high pressure. The main concerns about the replacement plan were related to the low-pressure network

(20 mbar over atmospheric pressure). As regards the low-pressure pipelines, several materials have been

used to develop the network: traditional cast iron (CI), treated cast iron (TCI), spheroidal graphite cast

iron (SGCI), steel (ST) and polyethylene (PE).

Since CI pipelines have a higher failure rate than other materials, even ten-times greater (see [2]),

and cover more than a fourth of the whole network, the authors paid more attention to this material and

studied its subnetworks in more detail. The low-pressure CI network consists of about 6000 different

sections of pipelines whose lengths range from 3 to 250 m for a total of 320 km.

It should be noted that medium- and high-pressure steel pipelines are less critical, since automatic

devices stop the gas flow if pressure decreases. Moreover, medium- and high-pressure pipelines are

laid deeper in the ground, with more care about the laying procedure, so that they are less subject to

accidental stress.

Using the failure rate as an index of replacement priority and taking advantage of studies developed in

other similar companies and available in the literature (e.g., [3]), factors directly involved in the failure

of a low-pressure CI pipeline were identified. The preliminary data analysis highlighted three critical

failure factors (laying location, diameter and laying depth) characterized by two levels each, so that

eight pipeline classes were obtained; see Table 1.

Since the structural failure of CI pipelines is a rare phenomenon, Cagno et al. [1] felt it appropriate

to model failure events with a Poisson process. As a matter of fact, CI pipeline failures seem to be

scarcely sensitive to both wear and closeness to leak points (an assumption confirmed by available data

taking into account a useful life phase varying from 50 to 100 years), whereas they are mostly affected
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by accidental stress. Due to these considerations, a time and space homogeneous Poisson process was

used for each class i (cf., Table 2), with unit intensity (or failure rate) θi (i.e., per km and year). Thus,

the failure probability of a single section in a planning period k is calculated as:

Pijk = 1− e−θisjtk ,

where sj is the length of the j-th section (km) and tk is the k-th planning period (year). In the analyzed

case, the planning period tk was taken as a year, since the planning frequency was annual. Therefore,

the likelihood function of each pipeline class will be:

l(θi) ∝ exp(−stkθi)θ
x
i ,

being x the number of failures over the network (of length s =
∑

j sj) of pipelines characterized by the

same parameter θi.

Table 1. Significant levels of factors related to failure.

Factors Low Level (L) High Level (H)

Diameter ≤ 125 mm > 125 mm

Laying depth < 0.9 m ≥ 0.9 m

Laying location Sidewalk Street

Table 2 shows the maximum likelihood estimate (MLE) of the annual failure rate for different

combinations of factors and highlights both the influence of laying location (higher failure rates in street

locations) and the interactions between factors (e.g., the varying influence of laying depth as a function

of diameter). Each MLE is calculated as the ratio between the total number of failures and the length

multiplied by the observation period (six years).

Table 2. Classes of pipelines, according to low/high (L/H) levels of factors.

Factors Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Diameter L L L L H H H H

Laying location L L H H L L H H

Laying depth L H L H L H L H

Failures x 41 11 15 2 54 8 16 3

Length (km) × time (6 years) 572.21 116.92 84.57 17.358 811.33 133.42 121.674 16.88

MLE 0.072 0.094 0.177 0.115 0.067 0.060 0.131 0.178

Order 6 5 2 4 7 8 3 1

Note that with the company’s previous method of assessing tendency to failure, the small diameter

was considered the most critical factor, whereas the laying location was one of the least important factors,

so that it was clearly against the historical data analysis, giving misleading results.

Maximum likelihood estimation might lead to surprising and misleading results: for the pipelines in

Class 8, there were only three failures in six years over 2.81 km, and according to the MLE (see Table 2),
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this class (with a large diameter, laid deeply under the street) was the one most subject to failures. The

MLE is affected by the very short length of the network in Class 8 and very sensitive to the number of

observed failures, whereas the conclusion is very different when we consider the experts’ judgments,

as well.

In Section 2, we will consider a quantile class (a special case of generalized moment-constrained

class) obtained from experts’ beliefs about failure rates. We claim that it is quite impossible to get

a unique prior out of experts’ judgments, and here, we present a method, based on classes of priors,

addressing the issue, which is rarely used in applications and hardly known in engineering literature. As

a consequence of the choice of a class of priors, there is a set of possible values that could be taken as

estimates of the failure rate in each subnetwork; this is typically described in robust Bayesian analysis

as a sensitivity problem with respect to the choice of the prior. We could consider the set of all posterior

means obtained when varying the prior in the class. The choice of the posterior mean corresponds,

in the language of Bayesian decision analysis, to the selection of the optimal action that minimizes

the posterior expected loss under a squared loss function. Under a class of priors and, possibly, of

loss functions (which are the two major ingredients in the Bayesian approach along with the sampling

model), the search for a class of optimal actions/estimates could lead to considering all of those actions

for which there exist at least one prior and one loss, such that they minimize the corresponding posterior

expected loss; this would be called the set of the Bayes actions. Another approach, fully justified

from a foundational point of view, as stated, e.g., in [4], consists of finding all of those actions for

which there exists no other action performing better (dominating), in terms of not a greater posterior

expected loss, when considering all possible combinations of priors and loss functions; those actions are

called non-dominated. In Section 3, for each subnetwork, we will compute the set of non-dominated

actions under its class of priors for a fixed, squared loss function. The goal would be to obtain disjoint

non-dominated sets, implying that the subnetwork with the largest estimates (i.e., the non-dominated

actions) has a worse failure rate than the others, regardless of the choice of the prior. The subnetworks

would be ranked not according to the value of a unique estimate, like in [2], but considering if the

non-dominated sets are overlapping or disjoint. Should all of the non-dominated sets be disjoint, then

ranking would be obvious. If the non-dominated sets do not allow us to order the failure rates (i.e., there

is overlap between sets of different subnetwork), we propose the choice of the least sensitive action as

the optimal solution of the sensitivity problem, as in [5]. The use of non-dominated and least sensitive

actions is definitely new in reliability, combining foundational justification with ease of interpretation

when looking at the plots provided in the paper. The plots presented in the paper are a useful innovation

in Bayesian robustness, since they allow for immediate, visual evaluation, even by non-statisticians, of

the consequences of the uncertainty in specifying the prior distributions.

Furthermore, the paper deals not only with the comparison of different classes of pipelines to suggest a

replacement order, but also with the problem of determining which classes have a failure rate θ exceeding

a given threshold θ̃, deemed as the largest “acceptable or assumable” level with no need for replacement.

Such an aspect, not considered in [1,2], is relevant in determining if different experts’ opinions, combined

with historical data, lead to an agreement about the need or not of replacements.

Further remarks and a discussion will conclude the paper in Section 4.
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Summarizing the major aspects of the paper, it is worth mentioning, first of all, that the work stems

from a case study where experts are unable to express quantitative judgments on the quantity of interest

(failure rates of eight subnetworks) and their qualitative assessments are transformed into a unique value

for each rate, for each person. Cagno et al. [1] used the values assessed by the experts, like “samples”

from prior distributions, conveniently chosen by the statisticians (namely gamma and lognormal ones).

Other methods are possible to combine the opinion of experts; a relevant one is due to Albert et al. [6].

We are considering a different approach, which has roots in the Bayesian robustness literature, reviewed

in [7]. Coherently, with such an approach, we are considering a class of priors compatible with the unique

information provided by the experts, i.e., a set of values for each failure rate. This aspect is important,

since we believe that in real-life applications of the Bayesian approach, it is important to be as much as

possible adherent to the experts’ opinions and try to avoid (or limit) adding arbitrary assumptions. The

class proposed in the paper, relying on quantiles, is definitely more realistic than the ones considered

in [2]. For the problem at hand, the use of the quantile class on the parameter of a Poisson process

was a consequence of the available experts’ assessments: opinions on the failure rates. In general, we

believe that experts are more keen to provide information on observable quantities, like the number of

gas escapes in a given time frame and a network of known length. The generalized moment-constrained

class, studied in [8], is very powerful, since it allows considering all of the priors compatible with elicited

values of moments and/or quantiles of observable quantities. There are cases in which elicitation on the

parameters is possible, especially when the parameter has a physical meaning: in our case, it is the failure

rate per unit of time and space and an expert (more statistically educated than the ones here) could make

assessment on, say, the median and the quartiles of its distribution, just by splitting intervals with the

same probability. The analysis performed in the paper can be read also in a different way with respect

to how it is presented here, mimicking an actual, interactive process of the assessment of prior beliefs

by just one expert and studying the consequences. We start with the assessment of upper and lower

bounds on the rates (corresponding here to the largest and smallest values given by the experts), and

the obtained ranks of subnetworks are unsatisfactory because of the many overlaps among ranges. The

expert is asked to refine his/her assessments first by specifying three and then seven quantiles until the

posterior ranges are no longer (or definitely less) overlapping. The use of the graphical tools presented

in the paper would be very helpful in such a process of interactive assessment. If it is impossible to get a

clear ranking using the expert’s opinions or, more simply, if point estimates are needed, then we believe

an optimality criterion should be used (and two are presented here and compared).

2. Bayesian Approach

Sensitivity analysis is an important issue in Bayesian analysis and decision theory. In many fields, it

is worth studying how changes in the input parameters affect the output from a model. The issue stems

naturally from the difficulty in eliciting experts’ judgments, and the case at hand is typical. Experts

were able neither to assess “exact” prior distributions on the parameters θi, nor some features, like their

quantiles. The experts were able to provide only qualitative judgments, which were expressed through

pairwise comparison of all subnetworks about the propensity of a failure occurring in one class rather

than in another. The AHP (analytic hierarchy process) methodology, proposed by [9], was used to obtain
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rates of occurrence of gas escapes in each subnetwork, whereas further manipulations lead to gamma

conjugate priors on θi’s. In more detail, each expert was presented with a picture of the eight possible

configurations (small/large diameter, deep/not deep in the ground, walkway/traffic) and then asked to

compare them pairwise. In particular, he/she was asked if, given the occurrence of a gas escape, it

was more likely in a subnetwork with respect to another. Calling A and B the two subnetworks, the

question was if the occurrence in A was equally/a little more/much more/clearly more/definitely more/a

little less/much less/clearly less/definitely less likely than in B. A number was associated with each

answer: 1, 3, 5, 7, 9, 1/3, 1/5, 1/7, 1/9, respectively. A square matrix of size eight was obtained out

of the pairwise comparisons, and the eigenvector associated with its largest eigenvalue provided the

probabilities P1, . . . , P8 that the gas escape had occurred in each subnetwork (mathematical details can

be found in [9]). Given an estimate of the unit failure rate θ∗ of the entire city network, then the guess of

the j-th expert on the failure rate of the i-th subnetwork was given by θ
(j)
i = θ∗Pi, i = 1, . . . , 8, using the

coloring theorem (see [10]). The set of all of those guesses, for each expert and each subnetwork, is the

opinions used in the current paper. In [1], they were used as a sample from a gamma prior distribution

whose parameters were obtained matching mean and variance with sample mean and sample variance,

respectively. The described procedure is subject to criticism, since the selected prior does not reflect the

actual knowledge. Therefore, a class of priors, compatible with the prior knowledge, is entertained to

solve the problem.

The consideration of classes of priors and loss functions is the starting point for much of the

developments in robust Bayesian analysis; see [11] and [7]. Excellent surveys of sensitivity analyses

with respect to the prior are [11,12] and [13], whereas sensitivity with respect to the loss function has

been considered in [14–16], among others. The main differences among works in Bayesian sensitivity

are about the choice of the classes and the sensitivity measures.

2.1. Choice of Prior Distributions

In [1], the experts’ opinions were synthesized into one value for the mean and variance of the prior

distribution on each failure rate, computing the Bayes estimates (i.e., the posterior mean) using both

gamma and lognormal priors.

The work in [2] compared two classes of gamma priors with mean and variance in intervals around

the synthesized values from the experts’ opinions. The classes lead to different, but similar, ranges on

the posterior mean of each class.

In [17], other prior classes were considered. They considered, for each class i, the family of priors:

Γ = {πc : πc ∼ G(c2m2
i /σ

2
i , cmi/σ

2
i ), c1 ≤ c ≤ c2, for given c1 ≤ c2},

where c is a positive constant, within the same interval for all of the classes, and mi and σ2
i , ∀i, are the

mean and the variance, respectively, obtained in [2]. Then, they kept the same (gamma) distribution form

for priors, and they considered, for each class, the family of priors:

Γ = {πc : πc ∼ G(m2
i /c,mi/c), 0 < c1 ≤ c ≤ c2},

where each πc has mean mi and variance c.
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Finally, they studied, for each class i, the family of all of the probability measures sharing the same

mean mi and variance σ2
i as in [2]. They obtained the family of priors:

Γ = {π : Eπ(θ) = mi, Eπ(θ
2) = σ2

i +m2
i },

a special case of the moment-constrained class, described later. This class, unlike the previous ones, is

a first attempt to use the experts’ opinions without arbitrary assumptions, like the choice of a gamma

distribution. The current work goes even further, since it considers the opinions as they are (after

manipulation by AHP) through quantiles of the empirical distribution of the experts’ opinions rather

than summarizing measures, like mean and variance.

The generalized moments class was studied by [8] and further explored in [18], and it is defined as

follows:

Γ = {π(θ) :

∫

Θ

Hi(θ)π(θ)dθ ≤ αi, i = 1, . . . , n}, (1)

where Hi are given π-integrable functions and αi (i = 1, . . . , n) are fixed real numbers. Sometimes, the

moment conditions are given by equalities. In those works, the aim is to find the range of a quantity of

interest F (π) =
∫
Θ
F (θ)π(θ|x)dθ, when π varies over a class of prior distributions Γ.

Generalized moment classes cover a great variety of classes that are of interest for robust Bayesian

analysis. For Hi(θ) = θi, we have ordinary moment conditions on π; for Hi(θ) = ICi
(θ), we

have conditions on the prior probability of sets Ci; and with equalities, we have the quantile class;

see, e.g., [19–21].

In [1,2], the opinions from fourteen experts were collected using an “ad hoc” questionnaire, and priors

were obtained. An estimate of the failure rate for the eight pipeline classes was obtained for each expert,

and the sample mean and variance of those estimates were matched with the mean and variance of the

entertained priors, obtaining the values of the hyperparameters. The ranges of the experts’ (prior) failure

rates are shown in Figure 1. Differences among experts can be easily detected from the plot, especially

about Classes 3 and 7. Furthermore, it is worth noticing that, for all of the experts, the failure rate in

Class 6 is lower than the ones in Classes 3, 4 and 7, whereas the rate of failure in Class 2 is less than in

Class 3. Based just on prior opinions, there is no replacement order shared by all of the experts, although

there are strong indications about the worst (3 and 7) and best (6) classes.

The previous works could raise some concerns about the proper use of experts’ judgments. The

choice of a functional form for the prior (gamma or lognormal) is quite arbitrary, since it corresponds

to mathematical convenience and not to actual knowledge. The classes of priors entertained in [17] are

quite simplistic, even the one determined by sample mean and variance. Here, we propose the use of

sample quantiles, out of the empirical distribution of the estimates provided by experts, so that, e.g.,

we will consider classes of priors with the median corresponding to the sample median of the experts’

estimates. Therefore, we will consider the quantile class,

Γ = {π :

∫

Ci

π(θ)dθ = αi, i = 1, . . . , n}, (2)

where
∑n

i=1 αi = 1 and {Ci, i = 1, . . . , n} is a partition of the parameter space Θ. Firstly, the class

is obtained considering only three sample quantiles from the distribution of experts’ assessed values.

Since the range of the non-dominated sets is not “small” enough to avoid overlaps and allow us to make
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a clear-cut ranking of the classes, we will consider a more restricted class with seven quantiles. In that

case, ranking will be more evident especially for the worst and best classes, but some overlaps will be

present. Those findings could be sufficient for a decision maker (DM) about planning the replacement of

the entire worst subnetwork (not just simply sections) of pipelines, whereas a precise ranking could be

obtained introducing a criterion to select one representative value for each class. Here, we will consider

two criteria developed in a Bayesian decision analysis framework: the posterior regret (see [22]) and,

mostly, the least sensitive action (see [5]).
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Figure 1. Range of prior failure rates for the different pipelines classes.

2.2. Estimation of Failure Rate

In this section, we introduce the statistical notions used to perform the estimation of the failure rates

in the subnetworks and, consequently, rank them according to the need of replacements. For the readers

willing to skip the necessary mathematical details of the section, we would like to point out that, among

all possible values a of the failure rate in a set A (namely, the set of positive real numbers), we are

using experts’ opinions and historical data to find a class of estimates (or a unique value) that satisfy

some optimality criteria, aimed to reduce the incurred loss (here, more generally from a class, whereas a

unique, squared loss function will be considered in the actual pipeline replacement problem). The former

will lead us to the set of non-dominated actions, whereas the latter to the least sensitive action.

We consider the standard Bayesian decision theoretic framework for statistical problems; see,

e.g., [23]. Let X be an observation from a distribution Pθ with density pθ(x). π(θ) denotes a prior
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distribution belonging to a class of distributions Γ and L a loss function belonging to a class of loss

functions L, such that for all a ∈ A, there exists θa, with L(a, θa) = min
θ∈Θ

L(a, θ) = 0.

Let πx(θ) denote the posterior density when x (possibly a sample) is observed, mπ(x) the marginal

density, l(θ) the likelihood function and ρ(π, L, a) the posterior expected loss of a, i.e.,

ρ(π, L, a) =

∫
L(a, θ)l(θ)π(θ)dθ

mπ(x)
= Eπx [L(a, θ)].

As a consequence of this model, the solution concept is the set of non-dominated alternatives, or

actions, (ND(A)).

Definition 1. a ∈ A is a non-dominated alternative (a ∈ ND(A)) if there is no other alternative b ∈ A,

such that:

ρ(π, L, b) ≤ ρ(π, L, a), for all (L, π) ∈ L × Γ,

and there is a pair (L0, π0), such that:

ρ(π0, L0, b) < ρ(π0, L0, a).

When there precision in beliefs and preferences, the solution is given by the Bayes action.

Definition 2. For any (L, π) ∈ L × Γ, a Bayes action corresponding to (L, π) is an action minimizing

ρ(π, L, a) in A and will be denoted by a∗(L,π). Therefore, it holds:

ρ(π, L, a∗(L,π)) = min
a∈A

ρ(π, L, a).

Arias-Nicolás et al. [24] modeled beliefs through a class of probability and preferences through a

class of convex loss, showing the relation between Bayes actions and the non-dominated set. In [21], the

non-dominated set is computed for some classes of probability distributions and loss functions.

In most papers about Bayesian robustness, the range of the posterior expectation of a quantity of

interest, F (θ), has been proposed as a measure of sensitivity. If F (θ) = θ, then the range of the posterior

mean is obtained, which is the Bayes alternative when the preferences are modeled by the quadratic loss

function; see e.g., [25]. If F (θ) = IC(θ), the range of the posterior probability of a credible set C is

obtained; see [12,26–29], among others.

However, the use of measures based on the range can provide misleading conclusions in the sensitivity

analysis with respect to the prior or loss function; see e.g., [14]. Different approaches have been

proposed, e.g., selecting the “best” (with respect to some criterion) optimal alternative. In these

situations, the election of alternatives as the conditional Γ-minimax [25,30] and the posterior regret

Γ-minimax [22,31] actions could be useful as a way of selecting a single robust solution.

However, these actions could lead to a huge relative increase in posterior expected loss with respect

to Bayes actions. Therefore, we propose another measure [5], which is not dependent on the unit of

measurements and which generalizes the relative sensitive measure given by [32].

From now onwards, ρ(π, L, a∗(L,π)) > 0, for all (L, π) ∈ L × Γ, and A will be a bounded closed

interval.
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Definition 3. Given a pair (L, π) ∈ L × Γ, let S(π, L, a) be the sensitivity of an alternative a with

respect to the pair (L, π), defined as the difference between the posterior expected losses of a and the

Bayes action, a∗(L,π), with respect to the optimal expected loss, i.e.,

S(π, L, a) =
ρ(π, L, a)− ρ(π, L, a∗(L,π))

ρ(π, L, a∗(L,π))
.

S(π, L, a) can be viewed as the difference in the posterior expected loss when a is used instead of

the optimal action a∗(L,π), measured in terms of the optimal posterior expected loss. This measure is an

extension of the one defined in [32].

For this sensitivity measure, it is possible to consider the following:

Definition 4. als is the least sensitive (LS) alternative for L × Γ if:

S(als) = inf
a∈A

S(a),

where S(a) will denote the sensitivity of an action a with respect to L × Γ, i.e.,

S(a) = sup
(L,π)∈L×Γ

S(π, L, a)

It is easy to see that the LS action (a minimax action, because of its definition) might not be Bayes

for any pair (L, π) ∈ L × Γ. However, it is true that the LS action must be a non-dominated alternative.

There is no general algorithm able to compute least sensitive actions in a general class. In [5],

an algorithm for classes of convex loss functions is presented. Based on [8], the following result

can help computations for some classes of distribution priors, like, for example, the generalized

moment-constrained and ǫ-contaminated classes, among others.

Proposition 1. Let Γ be a class of prior distributions and L a class of loss functions. Then, for each

a ∈ A,

S(a) + 1 = sup
k∈A

sup
(L,π)∈L×Γ

ρ(π, L, a)

ρ(π, L, k)

Proof. It is easy to see that:

sup
(L,π)∈L×Γ

ρ(π, L, a)

ρ(π, L, a∗(L,π))
≤ sup

k∈A
sup

(L,π)∈L×Γ

ρ(π, L, a)

ρ(π, L, k)
.

Conversely, let k̃ and (L̃, π̃) be the values where the supremum is achieved. Then, k̃ must be a Bayes

alternative for (L̃, π̃), because for all pairs (L, π) ∈ L× Γ, it holds:

ρ(π, L, a)

ρ(π, L, k)
≤

ρ(π, L, a)

ρ(π, L, a∗(L,π))
.

Thus:

sup
(L,π)∈L×Γ

ρ(π, L, a)

ρ(π, L, a∗(L,π))
≥

ρ(L̃, π̃, a)

ρ(L̃, π̃, a∗
(L̃,π̃)

)
= sup

k∈A
sup

(L,π)∈L×Γ

ρ(π, L, a)

ρ(π, L, k)
.
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Note that the denominator in the right-hand side does not depend on a(L,π), and we do not need the

calculation of mπ .

Now, we use this proposition to determine the sensitivity of the optimal action for the generalized

moment-constrained class.

Proposition 2. Let Γ be a generalized moment class defined as in (1) and L a class of loss functions.

Then, for each a, k ∈ A,

sup
π∈Γ

ρ(π, L, a)

ρ(π, L, k)
= sup

(θ,p)∈T

n+1∑

i=1

L(a, θi)l(θi)pi

n+1∑

i=1

L(k, θi)l(θi)pi

,

where θ = (θ1, . . . , θn+1)
′, p = (p1, . . . , pn+1)

′ and the set T ⊂ Θn+1 × [0, 1]n+1 are defined by the

following conditions:

1. h′
i
p ≤ αi, i = 1, . . . , n, with hi = (Hi(θ1), . . . , Hi(θn+1))

′,

2.

n+1∑

i=1

pi = 1.

Proof of Proposition 2. See [8].

If the moments conditions of Γ are given by equalities, then Condition 1 becomes an equality, as well.

A similar result can be obtained considering ǫ-contaminated classes where the contaminating class is

determined by generalized moment constraints.

If we consider a quantile class (2), we have the following result:

Corollary 1. Let Γ be a quantile class defined as in (2) and L a class of loss functions. Then, for each

a, k ∈ A,

sup
π∈Γ

ρ(π, L, a)

ρ(π, L, k)
= sup

θi∈Ci, i=1,...,n

n∑

i=1

L(a, θi)l(θi)αi

n∑

i=1

L(k, θi)l(θi)αi

. (3)

Proof of Corollary 1. This result follows from the previous proposition and Theorem 1 in [19].

3. Replacement Policy of Pipelines

The works in [1,2,17] estimated the failure rates (under quadratic loss function), using different priors

and classes of prior distributions, and they obtained very similar rankings, slightly different with respect

to the ones obtained through maximum likelihood estimation, as discussed earlier.
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3.1. Posterior Ranking of Pipelines

We start by considering the quantile class (2) determined by the three quartiles of the empirical

distribution of beliefs from the same fourteen experts considered in [1,2], i.e., we choose αi = 1/4, i =

1, ..., 4. The Type 2 quantile algorithm discussed in [33] is employed to obtain the quantiles. Since we

have the goal of ranking the classes, we need a unique value for the estimation of the failure rate in each

class. We choose an optimal solution compatible with the “relative least sensitive” criterion (detailed

in [5]). The optimal solution belongs to the set of non-dominated actions, so the first step consists of

determining such a set.

Table 3. Quartiles of expert’s prior failure rate for each class.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

min 0.03 0.02 0.11 0.05 0.02 0.01 0.08 0.02

max 0.2 0.09 0.42 0.16 0.09 0.05 0.37 0.16

q0.250 0.090 0.040 0.290 0.060 0.040 0.020 0.120 0.040

q0.500 0.105 0.040 0.320 0.090 0.060 0.030 0.185 0.045

q0.750 0.120 0.090 0.350 0.130 0.080 0.040 0.230 0.060

Since the preferences are modeled by a class of convex loss functions, the non-dominated actions

belong to the interval delimited by the infimum and the supremum of the Bayes alternatives; see [24].

Note that considering a quadratic loss function, the posterior expected loss of an alternative a is

(a − µπx
)2 + Vπx

, being µπx
and Vπx

the posterior mean (Bayes alternative) and variance (optimal

posterior expected loss), respectively. The posterior regret and the sensitivity of a can be computed

by the expressions:

ρ(π, L, a)− ρ(π, L, a∗(L,π)) = (a− µπx
)2 (4)

and:

S(π, L, a) =
ρ(π, L, a)− ρ(π, L, a∗(L,π))

ρ(π, L, a∗(L,π))
=

(a− µπx
)2

Vπx

(5)

Then, applying the previous results, the supremum (infimum) of the posterior means can be computed by:

sup
π∈Γ

∫

Θ

θπx(θ)dθ = sup

θi ∈ Ci,

i = 1, ..., n.

4∑

i=1

αiθil(θi)

4∑

i=1

αil(θi)

.

The non-dominated set for each class is illustrated in Figure 2 and Table 4, where the range (the

difference between supremum and infimum, typically considered in Bayesian robustness) is presented,

as well.

In a “classical” robust Bayesian analysis, the major interest would be on Classes 3 and 8, since their

ranges are quite large, denoting a lack of robustness with respect to the choice of the prior distribution,

unlike Class 6, where the range is very small. Further elicitation on those classes would be necessary
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to reduce those ranges. Here, the focus is quite different: we are interested in ranking classes, possibly

through non-overlapping ranges, regardless of their size. From Figure 2, it can be easily seen that Classes

3 and 7 are the ones in major need of replacement, although the order of replacement between Class 7

and Class 8 is not so clear because of overlapping non-dominated sets. It is worth mentioning that Class 8

is the one suggested as the worst according to the MLE. From the figure, it is evident that Class 6 has the

lowest failure mean, like in the MLE case, and it should be the last to be replaced. To be able to decide

the replacement priority of the other classes, we choose an optimal alternative inside the non-dominated

set: we opt for the least sensitive alternative, which outperforms other optimality criteria, like posterior

regret gamma-minimax (PRGM), as discussed later. The proposed procedure is perfectly coherent with

a robust Bayesian approach: a measure of robustness (e.g., the range) is provided, and any prior can be

chosen if the measure is “small”, whereas a prior is chosen according to some optimality criterion and

reported along with the robustness measure when this is “large”.

Table 4. Non-dominated set for the different pipelines classes (three quantiles).

pipelines Class 1 Class 2 Class 3 Class 4

Non-dominated set [0.0607, 0.1068] [0.0632, 0.0857] [0.1464, 0.3054] [0.0883, 0.1124]

Range 0.0461 0.0225 0.1590 0.0241

pipelines Class 5 Class 6 Class 7 Class 8

Non-dominated set [0.0600, 0.0814] [0.0352, 0.0455] [0.1158, 0.1666] [0.0495, 0.1325]

Range 0.0214 0.0103 0.0508 0.0830
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Figure 2. Range of posterior non-dominated set for the different pipelines classes (three

quantiles).
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Then, for all a ∈ ND(A), we calculate the sensitivity of a. Applying the previous results, we obtain:

sup
k

sup
π∈Γ

ρ(π, L, a)

ρ(π, L, k)
= sup

k




sup

θi ∈ Ci,

i = 1, ..., n.

4∑

i=1

αil(θi)(a− θi)
2

4∑

i=1

αil(θi)(k − θi)
2




.

We know that the supremum is achieved within the set of Bayes alternatives, i.e., the posterior means

of discrete measures with one point in the closure set of each Ci. Then:

S(a) + 1 = sup

θi ∈ Ci,

i = 1, ..., n.




4∑

i=1

αil(θi)(a− θi)
2

4∑

i=1

αil(θi)(µ− θi)
2




,

and we calculate the least sensitive action and its sensitivity for each pipelines class (see Table 5).

Table 5. Least sensitive and posterior regret actions for each class (three quantiles).

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

als 0.0997 0.0721 0.2675 0.0993 0.0746 0.0399 0.1331 0.0618

S(als) 44.9602 0.9412 6.5877 0.1251 4.9896 0.7963 0.5811 1.9973

Replacement order 3 6 1 4 5 8 2 7

aPRGM 0.0837 0.0801 0.2259 0.10035 0.0707 0.04035 0.1412 0.091

Replacement order 5 6 1 3 7 8 2 4

In accordance with the criterion of the least sensitive alternative in each class, we observe that the

pipelines in Class 3 are the first ones that should be replaced. This conclusion will be reinforced later

when we will consider the class determined by seven quantiles. However, the optimal alternative in

Class 3 is more sensitive than the optimal one in Class 7: this is due to a higher relative increase in

posterior expected losses with respect to Bayes actions in Class 3 than in Class 7 and, to a lesser extent,

related to the different size of the range, as discussed earlier. We observe also that the results vary

slightly with respect to the ones obtained with the posterior regret Γ-minimax. The most significant

changes are in Class 8 and, to a lesser extent, Class 1. In particular, pipelines in Class 8 are ranked

seventh according to the least sensitive action criterion and fourth when considering posterior regret

Γ-minimax actions. Note that, considering quadratic loss functions, the computation of the PRGM

action just depends on the Bayes alternative values (see Expression (4)). The PRGM action is always

the middle point of the set of non-dominated actions; see [22]. However the value of the LS action

depends on both the Bayes alternatives and their posterior expected losses (see Expression (5)). In Class

8, the non-dominated set is [0.0495, 0.1330], and the PRGM is the middle point 0.091, which has a

sensitivity of 27.51. The supremum of the relative increase in posterior expected loss of the PRGM

action is achieved for the discrete distribution π ∈ Γ concentrated at θ1 = 0.04, θ2 = 0.045, θ3 = 0.049

and θ4 = 0.06; its posterior mean is µπx
= 0.051, and its posterior variance (or posterior expected
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loss) is Vπ = 0.000058. However, the LS action for this class is 0.0618, which has a sensitivity of

2.03. The supremum of the relative increase in posterior expected loss of this action is achieved for the

distribution in Γ concentrated at θ1 = 0.02, θ2 = 0.04, θ3 = 0.045 and θ4 = 0.16; its posterior mean

is 0.1325, and the posterior variance is 0.002. As was mentioned earlier, the choice of PRGM actions

can be unsuitable, since these actions can provide very large relative posterior expected losses for the

possible prior distributions; see [5]. Note that, in this case, the relative sensitivity measure takes in to

account both the Euclidean distance between Bayes alternatives and the posterior variance (the optimal

expected loss). The squared root of the relative sensitivity shows how many times the Euclidean distance

is greater than the standard deviation. Then, for example, in Class 8 and in the worst case (when the

supremum of the relative increase in posterior expected loss is achieved), the distance between PRGM

action and the Bayes action is more than five-times larger than the standard deviation. Therefore, the

PRGM action would be unlikely, if the distribution with posterior mean µπx
= 0.051 and posterior

variance Vπ = 0.000058 were the correct one. However, and in the worst case, the distance between

the least sensitive action and the corresponding Bayes action is “only” less than 1.5-times the standard

deviation.

Regarding the relative sensitive measure, there is a lack of robustness in Classes 1, 3, 5 and 8, mainly.

These classes, except Class 5, are the ones with the largest sets of non-dominated actions. We would like

to point out that the LS action (0.0746) in Class 5 has a relative sensitivity of 5.0056, meaning that the

supremum of relative increase in posterior expected loss of this action (and of all actions) is greater than

500%; the supremum is achieved for a distribution with posterior mean 0.0612 and posterior variance

0.000036.

Table 6. Quartiles of expert’s prior failure rate for each class.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

min 0.03 0.02 0.11 0.05 0.02 0.01 0.08 0.02

max 0.2 0.09 0.42 0.16 0.09 0.05 0.37 0.16

q0.125 0.060 0.030 0.210 0.050 0.020 0.020 0.110 0.030

q0.250 0.090 0.040 0.290 0.060 0.040 0.020 0.120 0.040

q0.375 0.090 0.040 0.310 0.070 0.050 0.030 0.150 0.040

q0.500 0.105 0.040 0.320 0.090 0.060 0.030 0.185 0.045

q0.625 0.110 0.050 0.330 0.110 0.060 0.030 0.220 0.050

q0.750 0.120 0.070 0.350 0.130 0.080 0.040 0.230 0.060

q0.875 0.130 0.090 0.390 0.130 0.090 0.040 0.260 0.150

Despite some clear findings, there is still some uncertainty about rankings of failure rates, so that we

need to find ways to reduce it: we will increase the number of quantiles matching the empirical ones

and consider a quantile class with seven quantiles (see Table 6). We note from Figure 3 and Table 7 that

the non-dominated set for each pipelines decreases significantly (in particular, for Classes 1, 3 and 8,

as discussed above). Now, it is evident (even graphically) that pipelines in Class 3 are the first ones to

be replaced, followed by those in Class 7. However, due to overlapped non-dominated sets, the order

of replacement is not clear between Classes 4 and 8 (the two classes with the largest failure rates after

Classes 3 and 7). Something similar occurs with Classes 1 and 2 (actually, the non-dominated set of the
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former contains the latter). The most reliable pipelines (with lower posterior failure mean) are in Classes

6 and 5, although the latter slightly overlaps with Class 1.
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Figure 3. Range of posterior non-dominated set for the different pipelines classes (seven

quantiles).

Table 7. Non-dominated set for the different pipelines classes (seven quantiles).

pipelines Class 1 Class 2 Class 3 Class 4

Non-dominated set [0.0681, 0.0920] [0.0735, 0.0838] [0.1874, 0.2487] [0.0923, 0.1039]

Range 0.0239 0.0103 0.0613 0.0116

pipelines Class 5 Class 6 Class 7 Class 8

Non-dominated set [0.0603, 0.0692] [0.0352, 0.0412] [0.1272, 0.1469] [0.0956, 0.1257]

Range 0.0089 0.0059 0.0196 0.0301

At this point, a decision maker, in charge of the actual replacement of the pipelines, could decide

either to stop the analysis (and act) or take further steps. In the former case, he/she would be certain that

historical data and experts’ judgments are providing clear indications about the pipelines to replace first,

regardless of the actual prior chosen in the Bayesian analysis (in fact, any prior in the quantile class will

identify Classes 3 and 7 as the worst ones, in the same order). In the latter case, he/she could decide

either to get a more restrictive class (e.g., with more quantiles) or to select a criterion to choose an action

within each non-dominated set and rank classes or pipelines according to those values. For illustrative

purposes, we decide not to refine the class further and to choose actions according to the criterion of the

relative sensitivity measure. Table 8 shows the least sensitive actions and their sensitivity for a quantile

class with seven quantiles and compares them with the posterior regret Γ-minimax. We can observe
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that the ranking according to the two criteria almost coincides (just Classes 1 and 2 swap). The most

significant change with respect to the three quantile class occurs in Class 8: earlier, it was ranked either

seventh or fourth, whereas now, it is third. Probably, the use of more quantiles increased the probability

assigned by the experts to higher values of the failure rate.

Table 8. Least sensitive and posterior regret actions for each class (seven quantiles).

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

als 0.0868 0.0787 0.2175 0.0978 0.0641 0.0377 0.1361 0.1106

S(als) 2.0030 0.1079 0.2802 0.0311 0.2287 0.2002 0.1053 0.0945

Order of replace. 5 6 1 4 7 8 2 3

aPRGM 0.0801 0.0839 0.2181 0.0981 0.0648 0.0382 0.1371 0.11065

Order of replace. 6 5 1 4 7 8 2 3

3.2. Threshold Exceedance

The works in [1,2,17] were interested only in the comparison of different classes of pipelines to

suggest which class needed replacement first. Here, we are addressing a different problem, as well, i.e.,

if a class should be replaced or not. The gas company is not only interested in which pipelines should be

replaced first, but also in those that should be replaced to ensure sufficient safety. Therefore, we propose

to determine the supremum, over a class of prior distributions, of the posterior probability of exceeding

a critical failure rate, and we compute supπ∈Γ Pπ[θ > θ̃|x], where θ̃ is the “acceptable or assumable”

failure rate.

We consider also the maximum allowed posterior risk α, so that no replacement is required for

pipelines in a class where:

Pπ[θ > θ̃|x] =

∫

{θ:θ>θ̃}

πx(θ) ≤ α, (6)

for a given posterior distribution πx.

In our case, we are dealing with a class of priors Γ, and (6) should hold for all of the priors in Γ.

Under such circumstances, there should be no need to replace the pipelines regardless of the chosen

prior in the class, making the decision less affected by the arbitrariness in the choice of a unique prior.

In the same way, we can consider computing the infimum of the posterior probability Pπ[θ > θ̃|x]. If the

infimum is greater than a critical value β, then we could conclude that the pipelines in that class should

be substituted.

Therefore, for all classes, we compute the supremum (infimum) of the posterior risk for any value θ̃

of “acceptable” failure rates. In this case, we consider the class of priors determined by seven quantiles,

like in the previous section. Using an argument similar to Corollary 1, we have:

sup
π∈Γ

Pπ[θ > θ̃|x] = sup
θi∈Ci, i=1,...,n

n∑

i=1

I(θ̃,+∞)(θi)l(θi)αi

n∑

i=1

l(θi)αi

,



Entropy 2015, 17 3673

which depends on the value θ̃. The infimum is obtained similarly. Figures 4 and 5 present suprema (and

infima) for some classes and any value of “acceptable” failure rate. The corresponding medians obtained

from the experts’ prior judgments are also represented by means of a vertical line, Me.
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Figure 4. Supremum and infimum of the posterior risk for any value θ̃ in Classes 1, 3 and 7.
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Figure 5. Supremum and infimum of the posterior risk for any value θ̃ in Classes 2, 6 and 8.

Considering, as an example, Class 1 in Figure 4, it can be seen that, for an allowed posterior risk

α = 0.2 and a critical value of β = 0.7, the infimum is above β when θ̃ < θ̃β = 0.055, whereas the

supremum is below α when θ̃ > θ̃α = 0.098. Therefore, if a DM decides that a value of θ̃ smaller than

0.055 is deemed critical, then the pipelines should be replaced, since the opinion of each expert leads

to exceedance of the critical value. Similarly, if the DM assumes θ̃ greater than 0.098, then each prior,

based on individual expert’s opinion, leads to the decision of not replacing the pipelines. No clear-cut

decision is possible when the DM chooses θ̃β < θ̃ < θ̃α. In this case, either a smaller class of priors

could be entertained or other aspects should be taken in to account by the DM, like choosing an optimal

action (e.g., PRGM or least sensitive action), as discussed earlier.

Similarly, from Class 8 in Figure 5, it can be seen that, for a critical value β = 0.7, the infimum of

the posterior regret is above it when θ̃ < θ̃β = 0.047. Therefore, the pipelines should be replaced if the

DM decides that the value of θ̃ is smaller than 0.047. In this case, the supremum is below an allowed

posterior risk α = 0.2, when θ̃ > θ̃α = 0.16. Therefore, if the DM assumes θ̃ is greater than 0.16, this

leads to the decision of not replacing the pipelines. Note that, in all classes in Figure 4, the DM should

assume a minimum “acceptable” failure rate θ̃α above all failure rates from the experts’ beliefs, to make

a decision of not replacing the pipelines.
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Results for all classes are summarized in Tables 9 and 10. In particular, Table 9 shows the estimation

of (minimum) acceptable failure rates θ̃, verifying Condition (6), for selected values of maximum

allowed posterior risk α. It is important to highlight that both the acceptable failure rates and the

maximum allowed posterior risk should be set by the DM, and they can depend not only on financial

factors, but also on social, environmental and budgetary aspects in each class.

Table 9. Minimum θ̃ implying maximum allowed posterior risks α.

Classes α = 0.05 α = 0.1 α = 0.15 α = 0.2 α = 0.3 α = 0.35

Class 1 0.107 0.105 0.101 0.098 0.095 0.093

Class 2 0.100 0.100 0.100 0.100 0.100 0.100

Class 3 0.350 0.331 0.330 0.320 0.320 0.315

Class 4 0.160 0.160 0.130 0.130 0.130 0.130

Class 5 0.090 0.089 0.085 0.083 0.080 0.080

Class 6 0.050 0.050 0.050 0.050 0.050 0.050

Class 7 0.225 0.214 0.194 0.185 0.185 0.185

Class 8 0.160 0.160 0.160 0.160 0.160 0.160

Table 10 shows the estimation of (maximum) acceptable failure rates θ̃, for which the infimum of

posterior probability Pπ[θ > θ̃|x] is greater than some critical values β.

Table 10. Maximum θ̃ implying exceedance of critical posterior risk β.

Classes β = 0.70 β = 0.75 β = 0.80 β = 0.85 β = 0.90 β = 0.95

Class 1 0.055 0.054 0.052 0.051 0.049 0.046

Class 2 0.060 0.060 0.056 0.050 0.050 0.040

Class 3 0.100 0.100 0.100 0.100 0.100 0.100

Class 4 0.060 0.060 0.060 0.050 0.050 0.050

Class 5 0.055 0.053 0.051 0.050 0.050 0.048

Class 6 0.030 0.030 0.030 0.030 0.027 0.020

Class 7 0.110 0.106 0.098 0.091 0.083 0.080

Class 8 0.047 0.045 0.040 0.040 0.040 0.030

Based on the tables and the plots, it is possible to determine if there are classes of pipelines that need

replacement or not. From Table 9, we can observe that, for a maximum allowed posterior risk α = 0.2

and regardless of the prior, the pipelines in Classes 1, 3 and 7 need no replacement if the values 0.098,

0.320 and 0.185 (or greater values) correspond to an acceptable failure rate, respectively. Note that only

in such classes (all corresponding to shallow pipelines), for α = 0.2, the “acceptable” failure rates are

not exceeding the ones corresponding to the medians obtained from the experts’ judgments. Therefore,

it is worth noticing that more than half of the experts expect that these “acceptable” failure rates will be

exceeded.

As an example, we consider the pipelines in Class 3 (the worst class): the historical data reflect 15

failures over 14.09 km over a six-year period. However, the median of the failure rates from experts’

beliefs is 0.32, corresponding to approximately 27 failures in such a network over the same period,
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significantly above the historical data. In this class, for all prior distributions in Γ (the class determined

by seven quantiles), the probability P [θ > θ̃|x] is less than α = 0.2 when θ̃ exactly coincides with the

prior median 0.32. Therefore, if the DM considers the values for α = 0.2 and θ̃ = 0.32 “acceptable” for

Class 3, there is no need to replace the pipelines in the class.

For the same maximum allowed posterior risk α = 0.2, the pipelines in Class 6 (the best class)

need no replacement if θ̃ = 0.05 is considered as an acceptable failure rate. The estimation for the

acceptable failure in this class is obviously smaller than the corresponding ones in Class 3. However, as

we mentioned earlier, the values θ̃ and α should be set by the DM, and they could be different across

the classes, because of many factors, like the costs of replacing deep or shallow pipelines and the risks

associated with gas escapes in the two environments.

Looking at Table 10, a similar discussion could be done, observing, for example, that the pipelines in

Classes 2, 6 and 8 should be replaced for values of θ̃ equal to 0.056, 0.030 and 0.040, respectively, when

choosing a minimum critical value β = 0.80.

So far, we have considered θ̃ and α fixed by the DM a priori, but the previous plots and tables could

be a helpful tool for the DM in determining the values of θ̃ and α corresponding to his/her preferences.

4. Discussion

In this paper, we have illustrated a methodology that addresses and can overcome the major criticisms

about the Bayesian approach, i.e., arbitrariness in the choice of the prior distribution and difficulty in

properly using the information provided by the experts. Taking a robust Bayesian approach, we have

been able to relax the assumption about a unique prior, and we used the information gathered from the

experts to build classes of priors compatible with their knowledge. We have shown how decisions can

be made by managers by looking at very simple plots expressing a set of non-dominated actions or

by selecting optimality criteria that provide unique values used in ranking pipelines according to their

need for a replacement. The proposed methodology improves upon previous works [1,2,17], since it is

less dependent on the statistician’s choice on the functional form of the prior distribution (or classes of

them) and closer to what the experts actually elicited. The procedure could be implemented in a more

interactive way, where experts could be asked more and more information to get finer and finer classes,

whose effects should be interactively presented to the experts/decision makers through the tables and the

figures shown in this paper.

The proposed approach can find application in many other fields where classes of priors can be

specified on parameters and quantities of interest could be compared and ranked a posteriori. Classes

of priors could be the result of opinions of different experts or imprecise assessment of a unique expert,

whereas the quantity of interest could be the posterior predictive probability of at least a 5% yearly gain,

or the expected gain for different investments to choose from, or the expected number of failures, over a

five-year period, of washing machines from different brands. The method works better when it is possible

to obtain more and more information from the experts, at a relatively inexpensive price, like here, when

moving from three to seven quantiles and obtaining narrower sets, with no overlap among the ones of

major interest. The method is useful also in determining for which systems (here, gas subnetworks; and

investments and brands in the above) is more crucial to get further information and avoid overlaps.
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We have also proposed a robust Bayesian approach on the selection of pipelines to be replaced or

not, regardless of their ranking, based on the exceedance of acceptable failure rate and risk. We have

provided tables and figures that could be helpful in making decisions, loosening the dependence on the

selected prior distributions.
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