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ABSTRACT

Aims. We study the precession of accretion disks in the context of gamma-ray burst inner engines.
Methods. With an accretion disk model that allows for neutrino cooling, we evaluate the possible periods of disk precession and
nutation due to the Lense-Thirring effect.
Results. Assuming jet ejection perpendicular to the disk midplane and a typical intrinsic time dependence for the burst, we find
possible gamma-ray light curves with a temporal microstructure similar to what is observed in some subsamples.
Conclusions. We conclude that the precession and nutation of a neutrino-cooled accretion disk in the burst engine might be responsible
for some events, especially those with a slow rise and a fast decay.
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1. Introduction

Currently favored models for gamma-ray burst (GRB) central
engines, such as a failed supernova or “collapsar” (Woosley
1993), the merging of compact objects (Paczynski 1986; Eichler
et al. 1989; Narayan et al. 1992), and common-envelope evolu-
tion in compact binaries (Fryer & Woosley 1998), lead to the
formation of a transient hot and dense accretion disk around a
black hole of a few solar masses. Such a disk can be dominantly
cooled through neutrino losses. The accretion of matter, with
a rate ∼0.1−1 M� s−1, would power the burst, and the energy
ejected through relativistic jets is expected to account for the ob-
served GRB light curves. These curves display a wide variety of
forms with timescales from milliseconds to minutes. The usual
interpretation of this temporal structure is in terms of shocks that
convert bulk kinetic energy into internal energy of the particles,
which then cool through synchrotron and inverse Compton emis-
sion. The shocks can be internal to the jet and due to colliding
shells of different Lorentz factors (e.g. Kobayashi et al. 1997;
Daigne & Mochkovitch 1998; Guetta et al. 2001) or the result of
interactions with the ambient medium (e.g. Heinz & Begelman
1999; Fenimore et al. 1996). Among the observed light curves,
however, there are some that are hard to explain using the stan-
dard model, like those with a slow rise and a fast decay (Romero
et al. 1999).

In this paper, we study the possible precession of dense ac-
cretion disks, hence of the jets produced in GRBs. We find that
for typical sets of parameters, like a black hole with a mass
Mbh = 3 M�, a dimensionless spin parameter a∗ = 0.9, and
accretion rates in the range Ṁ = 0.1−1 M� s−1, spin-induced
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precession can occur in the neutrino-cooled disk. The precession
of the disk is transmitted to the relativistic jets, which results in
the peculiar temporal microstructure of some GRB light curves.
In this way we provide a new basis for the precession of GRB
jets (see also Blackman et al. 1996; Portegies et al. 1999; Fargion
1999, 2004) and, in particular, a possible origin of light curves
with slower rises than decays.

The structure of this work is as follows. In Sect. 2, we de-
scribe the basic equations of a neutrino-cooled accretion disk
within the model considered and obtain the disk structure. In
Sect. 3, we analyze the precession of the disk due to the Lense-
Thirring effect and how it relates to the disk density and outer
radius. In Sect. 4 we focus on the precession of disks cooled
by neutrino emission with general properties such as those out-
lined in Sect. 2. Finally, we present a discussion with examples
in Sect. 5 and a summary with our final comments in Sect. 6.

2. Neutrino-cooled accretion disks

A neutrino-cooled accretion disk occurs when rotating matter
around a compact object (which we take to be a black hole)
achieves the transport of its angular momentum outwards, and
as it falls in the potential well, it liberates most of its gravita-
tional energy as neutrinos. Central black holes are rapidly ro-
tating in most candidate GRB engine models, and the structure
of accretion disks around such compact objects has been ex-
tensively studied in different contexts (e.g. Novikov & Thorne
1973; Riffert & Herold 1995; Artemova et al. 1996; Belovorodov
1998; Setiawan et al. 2004).

However, to take neutrino losses and transfer into account,
we implement a steady-state disk model similar to the one pre-
sented by Di Matteo et al. (2002), but with the necessary rela-
tivistic correction factors according to Riffert & Herold (1995),
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due to the presence of a Kerr black hole. As mentioned by
Di Matteo et al. (2002) and Popham et al. (1999), although in
GRB’s engines the accretion rate may vary, it is expected to vary
significantly only in the outer disk. Hence it is a good approxi-
mation to study the inner neutrino-cooled disk assuming a con-
stant accretion rate in order to obtain its rough properties. We
now describe the basic equations on which our accretion model
is based. Conservation of mass implies that the accretion rate is

Ṁ = −2πrvrΣ, (1)

where Σ = 2ρH is the surface density and H is the disk’s half
thickness. The angular momentum of the disk material is dimin-
ished in magnitude due to the action of viscosity. Thus, conser-
vation of angular momentum in the direction perpendicular to
the disk implies

fφ(2πr · 2H) · r = ∆L
∆t
, (2)

where fφ is the viscous stress and L the disk angular momentum
component in the direction perpendicular to the disk midplane.
Then, ∆L/∆t = ṀΩr2, where Ω =

√
GMbh/r3 is the Keplerian

angular velocity. We adopt the usual prescription for viscosity:
fφ = −tφr = αP, where tφr is the φ − r component of the viscous
stress tensor, α the dimensionless viscosity parameter (Shakura
& Sunyaev 1973), and P the total pressure. The latter includes
with the contributions of gas, radiation plus electron-positron
pairs, degeneracy, and neutrino pressure, respectively:

P = ρ
kT
mn

(
1 + 3Xnuc

4

)
+

11
12

aT 4 + K
(
ρ

2

)4/3
+

uν
3
, (3)

where

K =
2πhc

3

(
3

8πmn

) 4
3

, (4)

Xnuc is the mass fraction of free nucleons specified below, mn is
the nucleon mass, a the radiation density constant and uν is the
neutrino energy density given by uν =

∑
i(τνi/2+1/

√
3)/(τνi/2+

1/
√

3+1/(3τa,νi)) (Phopam & Narayan 1995), with τi as the neu-
trino optical depth for the flavor i (see below).

The rate at which energy (entropy) per volume unit is gener-
ated by viscosity for a Keplerian disk is Q̇+vis = − fφtφr/ν, where ν
is the kinematic viscosity coefficient (e.g. Shaphiro & Teukolsky
1983), so that the heating rate is found to be

Q̇+vis =
3ṀGMbh

8πHr3
· (5)

Solutions for the disk in thermal equilibrium arise when the en-
ergy balance is achieved (e.g., Kohri & Mineshige 2002):

Q+vis = Q−, (6)

where Q+vis = Q̇+visH is the viscous heating rate integrated over
the half thickness, and the corresponding cooling term consists
in turn of four contributions,

Q− = Q−rad + Q−photo + Q−adv + Q−ν . (7)

The radiative cooling Q−rad is negligible as compared with the
other sources of cooling in the range of high temperatures and
densities that we deal with. The photodissociation of heavy nu-
clei constitutes a cooling mechanism, with a rate approximately
given by

Q−photo = 1029ρ10vr
dXnuc

dr
H erg cm−2 s−1, (8)

where ρ10 = ρ/1010 g cm−3 and

Xnuc ≈ 34.8ρ−3/4
10 T 9/8

11 exp (−0.61/T11), (9)

with T11 = T/1011 K (e.g. Popham et al. 1999).
We approximate the advective cooling term as in Di Mateo

et al. (2002; see also Narayan & Yi 1994)

Q−adv � vr
H
r

[
38
9

aT 4 +
3
8
ρkT
mn

(1 + Xnuc)

]
, (10)

where the first term includes both the entropy density of radia-
tion and that of neutrinos.

The neutrino cooling rate integrated over H in the optically
thin limit is just

Q−ν = (q̇eN + q̇νiν̄i + q̇brem + qplas)H, (11)

where q̇eN is the cooling rate due to electron or positron capture
by a nucleon, q̇νiν̄i is that caused by electron-positron pair an-
nihilation, q̇brem is the cooling term corresponding to nucleon-
nucleon bremsstrahlung, and q̇plas is the rate due to plasmon
decays, (Kohri et al. 2005; Di Matteo et al. 2002; Kohri &
Mineshige 2002):

q̇Ne = 9.2 × 1033ρ10T 6
11Xnuc erg cm−3 s−1, (12)

q̇νeν̄e = 3.4 × 1033T 9
11 erg cm−3 s−1, (13)

q̇νµν̄µ = qντν̄τ = 0.7 × 1033T 9
11 erg cm−3 s−1, (14)

q̇brem = 1.5 × 1027ρ2
10T 5.5

11 erg cm−3 s−1, (15)

q̇plas = 3 × 1032T 9
11e−γp

⎛⎜⎜⎜⎜⎜⎝γ6
p + γ

7
p +

γ8
p

2

⎞⎟⎟⎟⎟⎟⎠ erg cm−3 s−1. (16)

In these equations,

γp = 5.565 × 10−2
√

(π2 + 3η2
e)/3, (17)

ηe = µe/(kT ), (18)

and the electron chemical potential µe is obtained by solving
Eq. (26) of Kohri & Mineshige (2002).

Without assuming neutrino transparency, it is necessary to
consider the inverse processes to Eqs. (12)−(16) that produce
absorption of neutrinos, as well as the scattering with nucleons
that may prevent the free escape of neutrinos. The absorptive op-
tical depths for the three neutrino flavors are (Kohri et al. 2005)

τa,νe =
(q̇eN + q̇e−e+→νeν̄e + q̇brem + qplas)H

(7/2)σT 4
(19)

τa,νµ = τa,ντ =
(q̇e−e+→νµν̄µ + q̇brem)H

(7/2)σT 4
, (20)

whereas for the scattering optical depth, we use the expression
given by Di Matteo et al. (2002),

τs,νi � 2.7 × 10−7T 2
11ρ10H. (21)

Then, adopting a simplified model for the neutrino transport
(Popham & Narayan 1995), the neutrino flux integrated over a
half thickness is

Q−ν =
∑

i

7/8σT 4

(3/4)(τi/2 + 1/
√

3 + 1/(3τa,i))
, (22)

where τi = τa,i + τs,i. We employ this last expression with which
the neutrino emission is correctly obtained in situations with
both small and large optical depths.
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For the purposes of this paper, we need to work out the
structure of a steady-state accretion disk around a rotating black
hole with a mass Mbh = 3 M�, a dimensionless spin parameter
a∗ = 0.9 (a∗ = 1 would be a maximally rotating black hole),
a viscosity parameter α = 0.1, and an accretion rate between
Ṁ = 0.1−1 M� s−1. It is necessary to introduce general relativis-
tic correction factors to some of the equations presented above.
These factors are (Riffert & Herold 1995):

A = 1 − 2GMbh

c2r
+

(GMbha∗
c2r

)2

(23)

B = 1 − 3GMbh

c2r
+ 2a∗

(GMbha∗
c2r

)3/2

(24)

C = 1 − 4a∗
(GMbha∗

c2r

)3/2

+ 3
(GMbha∗

c2r

)2

(25)

D =
∫ r

rms

x2c4

8G2 − 3xMbhc2

4G +

√
a2∗M3c2 x

G − 3a2∗M2
bh

8

√
rx
4

(
x2c4

G2 − 3xMbhc2

G + 2
√

a2∗M3c2 x
G

) dx. (26)

Our Eq. (1) remains valid, while hydrostatic equilibrium in the
vertical direction leads to a corrected expression for the half
thickness of the disk (Riffert & Herold 1995):

H �
√

Pr3

ρGMbh

√
B
C
· (27)

The viscous shear fφ of Eq. (2) is also corrected by

fφ = αP

√
A

BC
=

Ṁ
4πH

√
GMbh

r3

D
A
, (28)

and the energy balance is affected through the correction in the
heating rate,

Q̇+vis =
3ṀGMbh

8πHr3

D
B
· (29)

With a fixed radius, we numerically solve for H and P Eqs. (27)
and (28), which depend only on ρ, and using the equation of
state (3) we get T (ρ). Then, when the equality (6) is satisfied,
the corresponding values of T and ρ are selected for that radius.
In Fig. 1 we show the temperature, density, and half thickness
profiles for accretion rates of 0.1 M� s−1 and 1 M� s−1, and in
Fig. 2 we present the neutrino cooling parameter fν ≡ Q−ν /Q+vis
and the advection parameter fν ≡ Q−adv/Q+vis. We observe that for
a wide range of disk radii the most important cooling mechanism
is neutrino emission with advection in the second place, domi-
nating the latter only in the first ∼2 km from the inner radius
(Rms � 10.6 km) as a consequence of the relativistic corrections
made. Elsewhere, up to ∼200−750 km depending on the accre-
tion rate, neutrino cooling dominates.

3. Spin-induced precession of accretion disks

A Kerr black hole has been found to produce the Lense-Thirring
effect (Lense & Thirring 1918), or dragging of inertial frames,
which induces the precession of a particle orbit that happens to
be inclined with respect to the black hole equator. The angular
momentum of a Kerr black hole of mass Mbh is J = GMbh|a∗|/c,
where a∗ is the dimensionless spin parameter. In such a case, an
inclined particle orbit has been found to precess with a frequency
wLT = GJ/(c2r3) (Wilkins 1972).

Fig. 1. Disk temperature profile in the upper panel, density profile in
the middle panel, and half thickness in the lower panel. Dashed line:
Ṁ = 1 M� s−1, solid line: Ṁ = 0.1 M� s−1.

Fig. 2. Neutrino cooling parameter fν (solid line) and advection param-
eter fadv (dashed line) in the upper panel for Ṁ = 0.1 M� s−1 and in the
lower panel for Ṁ = 1 M� s−1.

For the candidate central engines of GRB, namely collap-
sars, the common envelope evolution of a black hole that causes
the tidal disruption of a companion helium core, or other types
of merging events, the formation of an accretion disk inclined
with respect to the Kerr black hole equator cannot be ruled out.
In the last two cases, it is clear that the black hole angular mo-
mentum J does not need to be aligned with the one of its com-
panion, and in the case of collapsars, when the core collapses to
form a black hole, it could happen that the rest of the rapidly ro-
tating star may not be symmetrically distributed in the presence
of magnetic fields, leading to the formation of an accretion disk
whose angular momentum L would not be exactly aligned with
that of the black hole.

In any of the above situations, the inclined disk is also
expected to undergo the Bardeen-Patterson effect (Bardeen &
Patterson 1975), that results from the action of viscous torques
together with the Lense-Thirring effect. This causes an align-
ment of the inner parts of the disk with the black hole equator,
which arises up to a certain transition radius that depends on
the midplane Mach number of the disk (Nelson & Papaloizou
2000). In the case considered here, the midplane Mach num-
ber is M < 5, which corresponds to essentially no warping of
the disk according to Nelson & Papaloizou (2000). Also, the
disk is expected to precess as a solid body if the sound crossing
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Fig. 3. Schematic picture of the precessing disk and jet. The observer is
at infinity in the direction signaled.

timescale (here τcross < 3.2×10−2 s) is shorter than the precession
period (Papaloizou & Terquem 1995). For precession periods
τp > τcross, we will then assume rigid body precession, and since
there is a torque causing the precession, considering precession
alone is actually an approximation, meaning that the same torque
should also cause a nutation motion to develop (Goldstein et al.
2002).

Assuming then that the disk supports a strong magnetic field
that threads the central black hole, rotational energy can be ex-
tracted from the black hole due to mechanisms such as those pro-
posed by Blandford & Znajek (1977) or by Blandford & Payne
(1982). As the magnetic field is expected to be anchored in the
disk, this would lead to the formation of jets perpendicular to
the midplane of the disk, so that the precession and nutation of
the disk automatically implies the precession and nutation of
jets. Then, to kinematically describe the jet motion, we consider
the angular evolution of its spherical angles θjet(t) and φjet(t) as
in Portegies et al. (1999),

φjet(t) = φjet(0) + Ωpt +
Ωp

Ωn
sin (Ωnt),

θjet(t) = θ0
jet +
Ωp

Ωn
tan θ0

jet cos (Ωnt), (30)

where Ωp = 2π/τp, and Ωn = 2π/τn are the precession and nuta-
tion angular frequencies with periods τp and τn, respectively. A
sketch of the situation is shown in Fig. 3.

Considering the above expressions (30), we intend to relate
the possible precession and nutation periods to some parameter
of a given disk, e.g. the surface density Σ(r). We do this in a sim-
ilar way to Caproni et al. (2004), but here nutation will also be
considered along with precession. Without nutation, the preces-
sion period τp can be estimated to be

τp =

∫ 2π

0

L
T

sin θdφ = 2π sin θ
L
T
, (31)

where the magnitudes of the disk angular momentum L and of
the precessional torque T applied to the disk are

L = 2π
∫ Rout

Rms

Σ(r)Ωk(r)r3 dr (32)

T = 4π2 sin θ
∫ Rout

Rms

Σ(r)Ωk(r)νp,θ(r)r3 dr. (33)

Here,

Ωk(r) =
c3

GMbh

⎡⎢⎢⎢⎢⎢⎣
(

r
Rg

)3/2

+ a∗

⎤⎥⎥⎥⎥⎥⎦
−1

(34)

is the relativistic Keplerian angular velocity, Rg = GMbh/c2 the
gravitational radius, and

νp,θ =
Ωk(R)

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −
√√√

1 ∓ 4

√
Rga2∗

r
+ 3

(
Rga∗

r

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

the nodal frequency that comes from perturbing a circular or-
bit in the Kerr metric (Kato 1990). The precessing part of the
disk ends at an outer radius Rout, extending from an inner radius
Rms = ξmsRg, where

ξms = 3 + A2 ∓ [(3 − A1)(3 + A1 + 2A2)]1/2, (36)

with

A1 = 1 + (1 − a2
∗)

1/3[(1 + a∗)1/3 + (1 − a∗)1/3], (37)

and

A2 = (3a2
∗ + A2

1)1/2, (38)

where the minus sign in ξms corresponds to prograde motion
(a∗ > 0), whereas the plus sign corresponds to retrograde mo-
tion (a∗ < 0). Note that for a∗ = 0.9, Rms � 1.1 × 106 cm.

With both nutation and precession, according to (30),

φ(τp) = 2π + (τn/τp) sin (2πτp/τn), (39)

so we estimate

τp =

∫ φ(τp)

0

L
T

sin θ(t)dφ (40)

τp =
2πGMbh

c3

[
2π +

sin (2πRΩ)
RΩ

]

×
∫ ξout

ξms
Σ(ξ)

[
Γ(ξ)

]−1 ξ3dξ∫ ξout

ξms
Σ(ξ)Ψ(ξ)

[
Γ(ξ)

]−2 ξ3dξ
, (41)

where RΩ =
τp

τn
, ξ = r/Rg, Γ(ξ) = ξ1/2 + a∗, and

Ψ(ξ) = 1 − (1 ∓ 4a∗ξ−3/2 + 3a2
∗ξ
−2)1/2. (42)

4. Results

We intend to evaluate the possible precession and nutation pe-
riods that are consistent with the typical parameters of an ac-
cretion disk which is to power a GRB, i.e. Mbh = 3 M�,
Ṁ = 0.1−1 M� s−1, α = 0.1, and a∗ ∼ 0.9. Then, taking
into account a disk surface density obtained as in Sect. 2 by
Σ(r) = 2ρ(r)H(r), we compute the possible precession periods
using (41) with a∗ = 0.9 for a wide range in Rout(∼106−109 cm)
and also for the relative fraction RΩ = τp/τn varying be-
tween 10−3 and 10. We thus obtain the precession period τp as
a function of both the outer radius Rout of the accretion disk and
the fraction RΩ. In Fig. 4 we show the results for an accretion
rate of Ṁ = 0.1 M� s−1.
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Fig. 4. Precession period vs. Rout and RΩ = τn/τp for Ṁ = 0.1 M� s−1.

Mac Fayden & Woosley (1999) note that a steady disk may
form within the collapsar model at r ∼ 2−3× 107 cm, so looking
at Rout of that order may give a rough idea of the possible pre-
cession periods. Then, by fixing RΩ at 10, 0.1 and 0.01, we find
the precession period τp as a function of the outer radius Rout
for nutation periods of τn = τp/10, τp/0.1, and τp/0.01, respec-
tively. The results are shown in Fig. 5 for Ṁ = 0.1 M� s−1 and
Ṁ = 1 M� s−1.

It has been found that neutrino emission is important in
the inner regions of the disk where very high temperatures and
densities are achieved (Di Matteo 2002; Kohri & Mineshige
2002), in agreement with our results. In particular, from Fig. 2,
we observe that neutrino emission dominates until a radius of
∼2 × 107 cm for Ṁ = 0.1 M� s−1 and up to 7.5 × 107 cm for
Ṁ = 1 M� s−1, so these neutrino-cooled accretion disks may
precess approximately with periods (see Fig. 5)

τp

∣∣∣
0.1 M� s−1 < 0.38 s for RΩ � 0.01, (43)

τp

∣∣∣
0.1 M� s−1 < 0.41 s for RΩ � 0.1, (44)

τp

∣∣∣
0.1 M� s−1 < 0.2 s for RΩ � 10, (45)

and

τp

∣∣∣
1 M� s−1 < 6.21 s for RΩ � 0.01, (46)

τp

∣∣∣
1 M� s−1 < 6.04 s for RΩ � 0.1, (47)

τp

∣∣∣
1 M� s−1 < 3.12 s for RΩ � 10. (48)

We note that, for example, if RΩ = 0.1, intermediate precession
periods of 0.41 s and 6.04 s can also be achieved with interme-
diate values of Ṁ between 0.1 M� s−1 and 1 M� s−1 for different
outer radii between 2 × 107 cm and 7.5 × 107 cm.

Now, to work out possible GRB light curves consistent
with such precessing neutrino-cooled disks, we proceed as do
Portegies et al. (1999) and assume the production of jets perpen-
dicular to the plane of the disk. The spin angular momentum of
the black hole J is along the z-axis, we fix the observer at the an-
gles (θobs, φobs), and then let the jet angles (θjet(t), φjet(t)) evolve
according to (30). The angle between the observer and the jet
is ψ = cos−1(r̂obs · r̂jet) (see Fig. 3), and, following Portegies
et al. (1999), we implement the distribution of the corresponding
Poynting flux L(ψ) normalized to unity at its maximum (Fig. 6,
upper panel). Also, we assume an intrinsic time dependence for
the emission I(t), normalized to unity at its maximum as well,
which is inspired by what is expected from a typical explosive

Fig. 5. Precession period as a function of the disk outer radius for RΩ =
{0.01, 0.1, 10}. Left panel shows the results for Ṁ = 0.1 M� s−1, and the
right panel for Ṁ = 1 M� s−1.

Fig. 6. Upper panel: jet luminosity L as a function of the angle ψ be-
tween the jet and the observer. Lower panel: intrinsic time dependence
of the burst.

injection, and consists of a fast rise, a plateau, and an exponen-
tial decay (Fig. 6, lower panel). The intrinsic duration there was
considered to be 10 s, but it could change from burst to burst.
Defining F(t) ≡ I(t)L(ψ), we show in Fig. 7 some possible light
curves varying the initial jet angles and the observer angles, for
different values of τp(Rout, τn) and for relatively high accretion
rates. More signals are plotted in Fig. 8 for lower accretion rates.
All these curves have been averaged every 64 ms to simulate the
resolution of the detector.

5. Discussion

Inspecting the light curves shown in both Figs. 7 and 8, and many
others that can be generated in a similar way, we see that some
peculiar time profiles can be produced. For instance, a fast-rise
and exponential-decay (FRED) type of burst, with superposed
microstructure with timescales of δt ∼ 0.1 s, as it has been
observed in several cases, can be seen in Fig. 8, upper panel.
One interesting type of burst that can not be accommodated
in the usual internal shock models is formed for those so-
called peculiar asymmetric bursts (PABs). These bursts repre-
sent around ∼4% of the total sample (Romero et al. 1999) and
present slower risings than decays. In Fig. 7, bottom panel, and
Fig. 8, 3rd panel, we show examples of bursts with such a time
profile that can result from precessing jets with long nutation
periods. In such systems the jet crosses the line of sight before
disappearing quite quickly in the observer’s frame. For the right
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Fig. 7. Some possible GRB light curves for precessing neutrino-
cooled disks with 0.6 M� s−1 (upper panel), 1 M� s−1 (second panel),
0.8 M� s−1 (third panel) and 0.4 M� s−1 (bottom panel). The preces-
sion period is indicated as τp(Rout, τn), the jet angles at t = 0 as
(θjet(0), φjet(0)) and the observer angles as (θobs, φobs).

Fig. 8. Some possible GRB light curves for precessing neutrino-cooled
disks with 0.2 M� s−1 (upper panel), 0.15 M� s−1 (second panel),
0.12 M� s−1 (third panel) and 0.1 M� s−1 (bottom panel). The pre-
cession period is indicated as τp(Rout, τn), the jet angles at t = 0 as
(θjet(0), φjet(0)) and the observer angles as (θobs, φobs).

combination of viewing angle, precession, and nutation, this re-
sults into a typical PAB.

Distinguishing the effects of precession from those of mul-
tiple shocks could be more difficult in more conventional light
curves with many peaks. However, an analysis of the spectral
variability might help at this point, since changes due to preces-
sion are essentially geometric and, hence, achromatic. Inverting
the problem, clear identification of precession in a given time

profile of a GRB can be used to infer some characteristics of the
accretion disk, such as its outer radius.

6. Summary

We have studied the precession of accretion disks with neutrino
losses, taking into account our results obtained for the disk struc-
ture by adequately correcting the governing equations of mass
conservation, energy balance, hydrostatic equilibrium in the ver-
tical direction, and angular momentum conservation in the pres-
ence of a Kerr black hole. Assuming that precession will not
significantly alter the obtained disk structure and that it will con-
tinue to be determined mainly by the neutrino cooling processes,
our results imply that precession and nutation of such disks is
possible in the context of GRB engines, giving rise to a tem-
poral microstructure that is similar to what is observed in some
cases. In particular, a peculiar behavior that has been observed
consisting of a slow rise and a fast decay (Romero et al. 1999)
can be obtained in situations with long nutation periods where
the jet crosses the line of sight quite suddenly and never reaches
it again.
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