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Abstract Despite a large amount of publications 

on Fuzzy Mathematical Morphology, little effort was 

done on systematic evaluation of the performance of 

this technique. The goal of this work is to compare 

the robustness against noise of Fuzzy and non Fuzzy 

Morphological operators when applied to noisy 

images. Magnetic Resonance Images (MRI) of the 

brain are a kind of images containing some 

characteristics that make fuzzy operators an 

interesting choice, because of their intrinsic noise 

and imprecision. The robustness was evaluated as 

the degree in which the results of the operators are 

not affected by artificial noise in the images. In the 

analysis we compared different implementation of 

Fuzzy Mathematical Morphology, and observed that 

in most of the cases they show higher robustness 

against noise than the classical morphological 

operators. 

Keywords Biomedical Images, Digital Image 

Processing, Mathematical Morphology, Fuzzy 

Mathematical Morphology.  

I. INTRODUCTION 

The theory of Mathematical Morphology (MM) is a 

powerful tool in the Digital Image Processing field. It is 

broadly used as a processing tool for enhancement, 

segmentation, edge detection, filtering, and more 

generally, the analysis of internal structures (Serra, 

1982; Serra, 1988; Ronce and Heijmans, 1991). A key 

aspect of this theory is the use of the structuring 

element, a probe set that is used to test the image in 

several ways, generating information about its 

geometry. One of the reasons of the success of 

Mathematical Morphology is its simplicity of 

implementation: most of the operators can be built by 

combination of basic operators of negation, 

complement, dilation and erosion. The last two are 

considered the pillars of MM, and most of its variants 

are based on variants of these operators, as for example 

in the gray level morphology (Bangham and Marshall, 

1998). 

In the other hand, the theory of Fuzzy Sets is an 

extension to the classical set theory, allowing for the 

representation of uncertainty, modeled as degrees of 

membership (Zadeh, 1965). This theory has been 

applied with many degrees of success, including control 

and decision making.  

When combined with Mathematical Morphology, 

Fuzzy Set theory extends the applicability of this model 

by adding the ability to handle uncertainty. Extension of 

classical binary MM to gray level images, is obtained 

via Fuzzy Mathematical Morphology (FMM), which 

combines the power of Mathematical Morphology, 

based on set theory, with the ability of fuzzy logic to 

handle degrees of membership. FMM has been 

developed in various directions, until it was combined 

in a unique theoretical framework (De Baets et al., 

1995; De Baets et al., 1995; Kerre and Nachtegael, 

2000; Bloch and Maître, 1995; Di Gesu et al., 1993). 

II. BACKGROUND 

Several methodologies have been developed to extend 

binary MM to grayscale images. One of these 

extensions, based on fuzzy set theory, is the Fuzzy 

Mathematical Morphology (FMM) (Bloch and Maître, 

1995). The FMM has proven to be a solid theory and 

has been applied successfully in biomedical image 

segmentation (Kerre and Nachtegael, 2000; Blotta et al., 

2013, Bouchet et al., 2007; Bouchet et al., 2011; 

Gasparri et al., 2011). 

Operations between fuzzy sets are defined based on 

the conjunction and disjunction operators, applied to the 

membership values of these sets (Dubois and Prade, 

1980). The values of the membership functions are 

numbers in the interval  0,1 . In most cases the images 

in gray levels are defined so that the gray level intensity 

at each pixel is an integer value belonging to the natural 

range  0,255 . Therefore, to be able to apply the FMM 

operators, the gray level images must be modeled as 

fuzzy sets, with a change of scale to the range  0,1 . 

This process of scaling it is called "fuzzification", while 

the reverse process is called "desfuzzification". Usually 

the fuzzification function used, 

   : 0,1,2,...,255 0,1g  , is defined by:  

  
255

x
g x  , (1) 

The reverse process by which the intensities of the 

gray levels of an image, belonging to the interval  0,1 , 



are brought back to the set  0,1,2,..., 255  is defined by 

the function    : 0,1 0,1,2,...,255h   defined by:  

    255h x x , (2) 

where   :     represents the integer part function, 

defined by: 

    sup /a k k a   , (3) 

In the following sections   and   will denote two 

fuzzy sets, with membership functions 

 2: 0,1U    and  2: 0,1U   , where the 

first one corresponds to a grayscale image and the 

second one determines the structuring element (SE). 

The membership functions are obtained by applying 

fuzzification function over the gray scale images. 

The literature that studies the extension of basic 

operators in binary images to gray levels image using 

the fuzzy set theory presents several approaches, 

developed by various authors. Some of the authors 

which have developed several theories and have defined 

different formulas of the basic operators of the FMM 

are De Baets et al., 1995; De Baets et al., 1995; Kerre 

and Nachtegael, 2000; Bloch and Maître, 1995; Di Gesu 

et al., 1993. Bloch y Maître have achieved the 

unification of all the models proposed by the authors 

mentioned previously, by the use of t-norms and s-

norms. The following are the definitions of the basic 

operators of the FMM given by these authors. 

Fuzzy dilation of the image   by the SE   (Bloch 

and Maître, 1995): 

        , sup ,
y U

x t y y x    


    , (4) 

where  ,t a b  is a t-norm (Dubois and Prade, 1980). A 

function      : 0,1 0,1 0,1t     is a t-norm if it satisfies 

the following conditions, for every  , , 0,1a b c  

(Dubois & Prade, 1980): 

- boundary condition:  ,1t a a  

- symmetry:    , ,t a b t b a  

- monotonicity: If a c  and b d  then 

   , ,t a b t c d    

- associativity:      , , , ,t t a b c t a t b c   

Fuzzy erosion of the image   por el SE  (Bloch 

and Maître, 1995): 

 
        , inf ,

y U
x s y c y x    



  
 

, (5) 

where  ,s a b  is a s-norm and   1c a a   is the fuzzy 

complement operator (Klement et al., 2004). A function 

     : 0,1 0,1 0,1s    is a s-norm if it satisfies the 

following conditions, for every  , , 0,1a b c  (Klement 

et al., 2004): 

- boundary condition:  ,0s a a  

- symmetry:    , ,s a b s b a  

- monotonicity: If a c  and b d  then 

   , ,s a b s c d  

- associativity:      , , , ,s s a b c s a s b c  

A function    : 0,1 0,1c   is a fuzzy complement if it 

satisfies the following conditions, for every  , 0,1a b  

(Klement et al., 2004): 

- boundary condition:  0 1c   and  1 0c    

- monotonicity: If a b  then    c a c b   

- involutive property:   c c a a   

From these two operators the fuzzy opening, fuzzy 

closing and other fuzzy morphological operations can 

be defined. 

Fuzzy opening of the image   by the SE  : 

     , , ,        , (6) 

Fuzzy closing  of the image   by the SE  : 

     , , ,        , (7) 

Similarly, others operators of the FMM can be 

derived from the classical definitions, substituting the 

basic operations by the equivalent fuzzy operations. 

III. MATERIALS AND METHODS 

The goal of this job is to compare classic and fuzzy 

morphological operators, regarding robustness against 

noise. An ideal robust morphological operator should 

provide similar results when applied to an image or the 

same image with additional noise. The degree of 

similarity between these two results measures the 

degree of robustness. Figure 1 shows the scheme of the 

experiments design. 

We made two different experiments. The first one 

was designed to compare the robustness of the basic 

operators (dilation and erosion). The second one was 

designed to compare the robustness of the 

morphologicla filters (aperture and closing).  

A. Experiment for basic operators 

For the first comparison, based on dilation, we 

applied the morphological operators, classic and fuzzy, 

to the two groups of images: a) without noise, and b) 

with varied levels of noise. The resulting images were 

compared, noiseless versus noisy ones, using the mean 

square error as a measure of dissimilarity. We used 6 

fuzzy operators (using the t-norms and s-norms listed in 

Tables 1 and 2, respectively) and 6 levels of noise 



(independent Gaussian noise with mean zero and 

increasing variance). Each comparison was repeated 

100 times, using different realizations of the random 

noise, and the resulting were averaged.  

The main source of noise in the magnetic resonance 

imaging (MRI) is the thermal noise in the receiver and 

the body noise. The body noise is originated in the 

random fluctuations of the spins that induce the voltage 

in the receiving antenna. In a well designed high-field 

MRI system, the  body noise dominates over other 

sources of noise. This noise can be modeled as a 

Gaussian noise added to the MR signal. We used this 

type of noise to simulate noisy MR images (Carrión 

Pérez et al., 2006). 

The following list provides a detailed description of 

the experimental setup: 

•Images: we used 10 magnetic resonance images (MRI), 

acquired with a Tesla 1.5. The protocol included coronal 

and axial images, weighted in T2 (TR/TE!/TE= 

3,500/32/96 ms ). We used this kind of images because 

of the noisy nature of these images. Figure 2 shows 

some examples of the images used for the analysis. 

•Noise: we use independent Gaussian noise with 

distribution  20,N  . The 6 values of variance used 

were  2 50,100,150,200,250,300  .  

•Iterations: the analysis was repeated 100 times to 

average over the random generation of the random 

noise.  

•Parameters of the norms: as seen in Tables 1 and 2, 

“Hamacher” and “Dubois & Prade” norms require an 

additional parameter. We used 0.2  . This value was 

determined heuristically. 

•Structuring elements: For the MM flat SE of size 3 3 , 

5 5 , 7 7 , 11 11  and 15 15  were used. For the 

fuzzy operators 5 symmetric SE of the same size were 

used. They were the fuzzification of the flat SE of the 

MM (Fig. 3).  

The experiments using erosion instead of dilation 

have the same settings, only replacing the 

morphological operators used. 

 

 
Figure 1: Scheme of the experiments design. 

 

Table 1: Different kind of  t-norms. 

Standard t1    1 , min ,t a b a b  

Algebraic t2  2 , .t a b a b  

Bounded t3    3 , max 0, 1t a b a b    

Drastic t4  4
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
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Table 2: Different kind of  s-norms. 

Standard s1    1 , max ,s a b a b  

Algebraic s2  2 , .s a b a b a b    

Bounded s3    3 , min 1,s a b a b   

Drastic s4  4

0

, 0

1
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s a b b para a

cc
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Figure 2: Examples of brain MRI used for the analysis of the basic 

morphological operators. 
 

   
(a) (b) (c) 

  
(d) (e) 

Figure 3: 3D view of the 5 structuring elements used for the FMM. 

(a) 3 3 . (b) 5 5 . (c) 7 7 . (d) 11 11 . (e) 15 15 . 
 

B. Experiments for morphological filters 

To analyze the performance of the morphological 

filters we used a database of simulated magnetic 

resonance images, so that it was not necessary to add 

noise like in the previous experiments. The following 



list provides a detailed description of the experimental 

setup: 

• Images: We used 149 simulated magnetic resonance 

images (MRI). These images are the result of the work 

of scientists at the McGill University, who built a 

database of simulated images (BrainWeb: Simulated 

Brain Database) that contains a dataset of MRI, which 

are freely available in the web. In that work, the images 

were used to evaluate the performance of the techniques 

for MRI analysis. In those images, the pixels belonging 

to the different tissues are known a priori. The database 

consists of images, weighted in T1, with noise levels of 

0%, 3%, 7% and 9%. Noise levels represent the 

percentage of standard deviation of the Gaussian noise 

with respect to the tissue signal (as a reference). The 

studies contains 181 slices of images of 217 181  

pixels, taken at 1 mm
 
spacing and with 31 mm

 
of voxel 

volume. We used the slices ranged between 11 and 160. 

The remaining slices were discarded because they 

contain only bone information. Figure 4 shows some 

examples of the images used for the analysis. 

• FMM: We used the six t-norms and s-norms listed in 

tables 1 and 2, respectively. In both cases, the basic 

operators, that define the aperture and closing, are based 

on a t-norm and its corresponding s-norm. For 

simplicity of notation, we use n1 to denote the Standard 

norm, n2  for the Algebraic norm, and so on.  

To analyze the results under different conditions, we 

changed the dimension of the SE and made a choice for 

the value of the parameter
 
 , associated with some of 

the norms. We designed four experiments, including 

four SE and a values of  , of the following form: 

• Structuring elements: For the MM flat SE of size  

3 3 , 7 7 , 11 11  and 15 15  were used. For the 

FMM symmetric SE of the same size were used. They 

were the fuzzification of the flat SE of the MM (Fig. 3).  

•Parameters of the norms: as seen in Tables 1 and 2, 

“Hamacher” and “Dubois & Prade” norms require an 

additional parameter. We used 0.2  . This value was 

determined heuristically. 

 

    
(a) (b) (c) (d) 

Figure 4: Examples of MRI brain images used for morphological 

filters analysis. (a) Original image. (b) Image with 3% of noise. (c) 
Image with 7% of noise. (d) Image with 9% of noise. 

 

III. RESULTS 

This section presents the results obtained from the 

previously described experiments.  

A. Results for basic operators experiment 

Tables 3 to 6 show the lowest and highest errors, for 

dilation and erosion respectively, as function of the 

amount of noise (variance) and the operator used, t1 to t6 

for the six t-norms, and s1 to s6 for the six s-norms, and 

MM for classic MM. The errors displayed are the 

average, over the 100 replications (100 realizations of 

noise) and nine images, of the MSE on the images. 

Figure 5 shows graphically the box-plot of error 

rates comparing the classic mathematical morphology 

(MM) and the fuzzy morphology (FMM) based on the 

Bounded t-norm and s-norm, for both dilation and 

erosion, and for the largest amount of noise (
2 300  ), 

across all the structuring element sizes. Here we can see 

a significant decrease on error rates, or differences 

between the original and noisy images after application 

of the morphological operators. 

 

 

Table 3: Lowest error for dilation. The name of the 

operators that reached the minimun is denoted between 

parentesis next to the error. 
SE 2 

 50 100 150 

33 (t3) 0.0031 (t3) 0.00621 (t3) 0.00968 

55 (t6) 0.00302 (t3) 0.00624 (t3) 0.00978 

77 (t6) 0.00295 (t3) 0.00624 (t3) 0.0098 

1111 (t2) 0.00294 (t3) 0.00625 (t3) 0.00979 

1515 (t2) 0.00292 (t3) 0.00625 (t3) 0.0098 

 

SE 2 

 200 250 300 

33 (t3) 0.01346 (t3) 0.01755 (t3) 0.02186 

55 (t3) 0.01369 (t3) 0.0179 (t3) 0.02233 

77 (t3) 0.01372 (t3) 0.01789 (t3) 0.0224 

1111 (t3) 0.01369 (t3) 0.01793 (t3) 0.02244 

1515 (t3) 0.01372 (t3) 0.01794 (t3) 0.02238 

 

 

Table 4: Highest error for dilation. The name of the 

operators that reached the maximun is denoted between 

parentesis next to the error. No name is indicated when 

the maximum was reached by MM. 
SE 2 

 50 100 150 

33 (t4) 0.00398 0.00825 0.01306 

55 (t4) 0.00443 0.00886 0.01437 

77 (t4) 0.00444 0.00878 0.0144 

1111 (t4) 0.00440 (t4) 0.00845 0.01363 

1515 (t4) 0.00439 (t4) 0.00845 0.01327 

 

SE 2 

 200 250 300 

33 0.01812 0.02344 0.02892 

55 0.02037 0.02672 0.03323 

77 0.02054 0.02698 0.03387 

1111 0.01964 0.02609 0.03285 

1515 0.01909 0.02531 0.0317 

 

 

 



Table 5: Lowest error for erosion. The name of the 

operators that reached the minimun is denoted between 

parentesis next to the error. 
SE 2 

 50 100 150 

33 (s1) 0.00289 (s3) 0.00599 (s3) 0.00931 

55 (s1) 0.00272 (s1) 0.0058 (s3) 0.00911 

77 (s1) 0.00268 (s1) 0.00571 (s3) 0.00901 

1111 (s1) 0.00267 (s1) 0.00571 (s3) 0.00898 

1515 (s1) 0.00268 (s1) 0.0057 (s3) 0.00899 

 

SE 2 

 200 250 300 

33 (s3) 0.01298 (s3) 0.01694 (s3) 0.02117 

55 (s3) 0.01273 (s3) 0.01666 (s3) 0.02086 

77 (s3) 0.01259 (s3) 0.01649 (s3) 0.02065 

1111 (s3) 0.01257 (s3) 0.01646 (s3) 0.02064 

1515 (s3) 0.01257 (s3) 0.01647 (s3) 0.02062 

 

 

Table 6: Highest error for erosion. The name of the 

operators that reached the maximun is denoted between 

parentesis next to the error. No name is indicated when 

the maximum was reached by MM. 
SE 2 

 50 100 150 

33 (s4) 0.0112 (s4) 0.01512 (s4) 0.01893 

55 (s4) 0.00824 (s4) 0.0119 (s4) 0.01548 

77 (s4) 0.00635 0.01232 0.0206 

1111 (s4) 0.00614 0.01358 0.02285 

1515 (s4) 0.00617 0.01358 0.02306 

 

SE 2 

 200 250 300 

33 (s4) 0.02264 (s4) 0.02643 0.03083 

55 0.02545 0.03334 0.04155 

77 0.0294 0.03878 0.04847 

1111 0.033 0.04365 0.05514 

1515 0.03337 0.0445 0.05619 

 

 
 

Figure 5: Box-plot of error rates comparing the classic mathematical 

morphology (MM) and the fuzzy morphology (FMM) based on the 

Bounded t-norm and s-conorm, for both dilation and erosion, and for 

the largest amount of noise ( 2 300  ), across all the structuring 

element sizes. 

 

B. Results for morphological filters experiment 

Tables 7 to 10 show the lowest and highest errors, for 

opening and closing respectively, as function of the 

amount of noise and the operator used, n1 to n6 for the 

six norms, and MM for classic morphology. The mean 

square error was used as a measure of dissimilarity, to 

determine the quality of the operators, based on the 

results of the experiments. For every filter the error is 

computed by the following steps: 

•Step 1: The mean square error is computed between the 

values of every pixel of the noiseless image and noisy 

image after the application of the filter. 

•Step 2: The average of the pixel mean square error is 

computed for every cut (image). 

•Step 3: The average and standard deviation of the 

errors is computed across all cuts (images) for each 

noise level.   

Figure 6 show a scheme of the error computation 

process. 

Figure 7 shows graphically the box-plot of error 

rates, comparing classic mathematical morphology 

(MM) against fuzzy morphology (FMM) based on 

different norms, for both opening and closing, and for 

the largest amount of noise ( 9% ), across all the 

structuring element sizes.  

 

Table 7: Lowest error for opening. The name of the 

operators that reached the minimun is denoted between 

parentesis next to the error. 
SE Noise Level 

 3% 7% 9% 

33 (n2) 0.00282 (n2) 0.01117 (n2) 0.01819 

77 (n6) 0.00222 (n6) 0.00919 (n6) 0.01494 

1111 (n2) 0.00221 (n3) 0.00913 (n6) 0.01485 

1515 (n6) 0.0022 (n6) 0.00911 (n6) 0.01481 

 

Table 8: Highest error for opening. The name of the 

operators that reached the maximun is denoted between 

parentesis next to the error. No name is indicated when 

the maximum was reached by MM. 
SE Noise Level 

 3% 7% 9% 

33 (n5) 0.00413 0.01616 0.02589 

77 0.00373 0.01691 0.0277 

1111 (n4) 0.00341 0.0139 0.02294 

1515 (n4) 0.00339 (n4) 0.0119 0.01927 

 

Table 9: Lowest error for closing. The name of the 

operators that reached the minimun is denoted between 

parentesis next to the error. 
SE Noise Level 

 3% 7% 9% 

33 (n6) 0.00201 (n6) 0.00502 (n6) 0.00732 

77 (n1) 0.00132 (n5) 0.0029 (n5) 0.00408 

1111 (n1) 0.00117 (n1) 0.00244 (n5) 0.00341 

1515 (n1) 0.00116 (n1) 0.00241 (n5) 0.00337 

 



Table 10: Highest error for closing. The name of the 

operators that reached the maximun is denoted between 

parentesis next to the error. 
SE Noise Level 

 3% 7% 9% 

33 (n4) 0.00341 (n4) 0.01197 (n4) 0.01865 

77 (n4) 0.00341 (n4) 0.01195 (n4) 0.01861 

1111 (n4) 0.00338 (n4) 0.01186 (n4) 0.01847 

1515 (n4) 0.00333 (n4) 0.0117 (n4) 0.01824 
 

  
 

(a) (b) (c) 

Figure 6: Scheme of the error computation  for a whole set of images  

(a) Step 1. (b) Step 2. (c) Step 3.  
 

 
 

Figure 7: Error rates Box-plot comparing classic mathematical 
morphology (MM) against fuzzy morphology (FMM), based on 

different norms, for both opening and closing, and for the largest 

amount of noise ( 9% ), across all the structuring element sizes.  

III. DISCUSION 

For the dilation experiments we can see that, for most of 

the cases, the MM operator has higher error than the 

MMD ones, and the differences increases for larger 

levels of noise. The erosion experiments show similar 

results, but with more MMD operators having worse 

performance than the MM operator for some conditions. 

In more than 70% of the cases, the worst FMM 

operators have better performance than the MM 

operators. 

From the analysis of the results, we can conclude, in 

first place, that the Standard and Dubois & Prade norms 

have almost identical behavior. This is due to the fact 

that they definitions are similar, with identical behavior 

for most of the pixels. Second, we can see that the 

Bounded norm has the best performance (lowest error) 

for the images under study, and under the specific setup 

of the experiments. 

For the erosion we can see that the error of the MM 

operator increase with the size of the structuring 

element (SE), behavior not replicated in the dilation 

experiment. This behavior of the erosion operators may 

indicate a sensibility issue: the larger the SE, the more 

sensible is the operator to noise. 

From the results for opening, it is evident the for the 

images and noise under analysis, the Hamacher and 

Algebraic norms show the best performance for 3 3  

structuring elements, and Hamacher alone shows best 

performance for other sizes of the structuring element. 

It is important to note that the classic MM did not 

show always the worst performance, but just in two 

thirds of the cases. The other third of the cases present 

the Drastic and Dubois&Prade norms as worst 

performers. 

In the results for closing, some MMD operators 

performed better than classic MM, while others 

performed worse. Hamacher norm showed the best 

performance, again, for 3 3  SE, while Bounded and 

Drastic norms showed the worse performance than MM. 

For 7 7 , 11 11  and 15 15  SE, the worst performers 

were the same as in the 3 3 , but the best performers 

were the Standard and Dubois&Prade norms. In all 

cases, MM was not the worst performer, neither the best 

performer. 

III. CONCLUSIONS 

Over all the range of settings, we can observe an overall 

better robustness, against noise, of MMD dilation and 

erosion operator against MM operators. Noise present in 

the images affects less the MMD than the MM 

operators. Under the experimental conditions used for 

this work, some morphological filters (opening and 

closing) show more robustness, to noise in the images, 

when using fuzzy mathematical morphology than when 

using classic mathematical morphology.  

Future works, focused on extending the results and 

knowledge on the behavior of the MMD operators, 

include the comparison of morphological filters, 

designed to remove the existing noise, and the study of 

the effect of the structuring element on the filters. 
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