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Abstract— An h-adaptive unstructured
mesh refinement strategy to solve unsteady
problems by the finite element method is
presented. The maximum level of refinement
for the mesh is prescribed beforehand. The
core operation of the strategy, namely the
refinement of the elements, is described in
detail. It is shown through numerical tests
that one of the advantages of the chosen
refinement procedure is to keep bounded the
mesh quality. The type of element is not
changed and no transition templates are used,
therefore hanging nodes appear in the adapted
mesh. The 1-irregular nodes refinement con-
straint is applied and the refinement process
driven by this criterion is recursive. Both
the strength and weakness of the adaptivity
algorithm are mentioned, based on clock time
measures and implementation issues. To show
the proper working of the strategy, an ax-
isymmetric, compressible non-viscous starting
flow in a bell-shaped nozzle is solved over an
unstructured mesh of hexahedra.
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I. INTRODUCTION

The benefits of mesh adaptivity in the solution of Com-
putational Fluid Dynamics problems by the Finite El-
ement Method are well recognized. Amongst them,
h-adaptive or mesh enrichment procedures have the
advantage that they do not need to modify the fluid
dynamic solver to be used.

The development of an h-adaptive element-based
unstructured mesh strategy to solve unsteady prob-
lems by the finite element method is described in this
work. It can be applied both to two- and three-
dimensional unstructured linear finite element meshes.
The adaptivity algorithm is designed considering the
element refinement stage as the core of the strategy.
This allows to extend the algorithm from 2-D meshes
to 3-D ones with little extra effort. The refinement al-
gorithm has been succesfully tested by Ŕıos Rodriguez

et al. (2005), solving steady fluid dynamic problems on
meshes made up of triangles, quadrangles and tetrahe-
dra. Special care has been taken to keep bounded the
quality decrease of the mesh. Edge midpoints or regu-
lar 1:4 and 1:8 refinement seems to be the best choice
in this sense, for two- and three-dimensional elements
correspondingly. It is also shown based on numerical
tests that the best choice (from the quality standpoint)
to regularly refine a tetrahedron in 8 sub-tetrahedra
is to choose the shortest diagonal of the inner octae-
dron that arises in the partitioning process. Hanging
nodes have to be managed since no transition elements
are used to match zones of different refinement levels.
To ensure a smooth transition in element size between
zones with different levels of refinement, the 1-irregular
node constraint amongst neighbouring elements is con-
sidered. Consequently, the refinement process is recur-
sively designed and the solution must be constrained
on these hanging nodes. The selection method of the
elements to be refined is shortly described as well. In
this work, the strategy is used to solve the unsteady
starting flow in a bell-shaped rocket nozzle over an un-
structured mesh of hexahedra. While the adaptivity
software runs on a single processor, the fluid dynamic
problem solver developed by Storti et al. (1999-2007)
runs in parallel on a Beowulf cluster. To show the
algorithm efficiency, clock time is measured using a
uniformly refined mesh equivalent to the adapted one.
Finally, the advantages as well as the disadvantages of
the strategy are highlighted.

II. Element refinement

It is considered that the main issue in the design of the
refinement algorithm is to minimize the quality drop
of the adapted mesh, since high quality meshes are
often desired for numerical reasons. Computational
cost and programming simplicity are also taken into
account in the process design. If a regular 1:8 tetra-
hedron refinement is applied, four similar subtetrahe-
dra are obtained at the corners of the parent element
and an inner octahedron results. By adding an edge,
the octahedron can be splitted into four tetrahedra, as
Fig.1 shows.
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Figure 1: Regular 1:8 tetrahedron refinement se-
quence.

One of the three possible diagonals must be chosen
(these diagonals are marked as dashed lines in Fig.1).
Usually, the diagonal is chosen randomly but it will be
shown through numerical tests that there is a better
choice.

A. Quality Tests

Several tetrahedron shape measures exist in the liter-
ature. Some of them are based on geometrical prop-
erties of the element while others are related to alge-
braic properties of the Jacobian matrix and the ma-
trices thereof derived. Knupp (2000) defined the con-
cept of algebraic mesh quality metrics and introduced
a complete list of them. Here, it is considered that the
quality of the mesh is equal to that of its most poorly-
shaped element. The tetrahedron quality is measured
using both the minimum dihedral angle and the alge-
braic shape measure introduced by Liu and Joe (1994)

η(T ) = 3 3
√

λ1λ2λ3/(λ1 + λ2 + λ3) (1)

where λ1, λ2, λ3 are the eigenvalues of the metric
tensor which transforms the original tetrahedron T to
the regular tetrahedron R which has the same volume
as T . They show in the same work that this is equiv-
alent to

η(T ) =
12(3v)2/3∑

i=1...6 l2i
(2)

where v is the volume of the tetrahedron and li are
the lengths of the edges. Also η(T ) = 1 for the regular
tetrahedron and η(T ) → 0 when the element is poorly-
shaped (such as a wedge, a needle or a sliver).

Three quality tests are carried out. The first test
begins with the refinement of a single tetrahedron,
namely a regular, a right or a poorly shaped one.
Then the worst η-quality element from the eight sub-
tetrahedra is determined. This element is refined
again, and so on. The inner octaedron is always parti-
tioned choosing the same diagonal (either the shortest
or the longest) or choosing it randomly. No conformity
of the resulting mesh is considered. Figure 2 depicts

Refinement Iterations

η

10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Right tetrahedron - Shortest diagonal
Regular tetrahedron - Shortest diagonal
Flat tetrahedron - Shortest diagonal
Right tetrahedron - Longest diagonal
Regular tetrahedron - Longest diagonal
Flat tetrahedron - Longest diagonal
Right tetrahedron - Random diagonal
Regular tetrahedron - Random diagonal
Flat tetrahedron - Random diagonal

(a) Liu’s shape measure

Refinement Iterations

Φ

5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4
flat-random
regular-random
right-random
flat-shortest
regular-shortest
right-shortest

(b) Minimum dihedral angle

Figure 2: Quality metrics vs. refinement iterations for
the first quality test

the mesh quality behaviour as a function of refinement
iterations for both shape measures.

For these tetrahedra it is seen that the quality de-
crease produced by successive refinements is mini-
mized if the shortest diagonal of the inner octahedron
is always chosen. With this choice the quality of the
mesh diminishes only at the first refinement iteration
and then keeps constant. With the other choices the
quality of the mesh tends to zero at each refinement
iteration. Dihedral angles are plotted in radians.
The second test consists of refining 100,000 tetrahedra
with the nodes coordinates randomly generated using
a uniform distribution in the [0, 1] interval. It is veri-
fied that neither the minimum dihedral angle nor the
Liu’s metric are always maximized if the shortest diag-
onal is used. For each tetrahedron, all diagonals of the
inner octaedron are refined and the worst value of the
quality criterion to be maximized is computed. Then



the diagonal which maximizes the criterion is chosen.
Both quality metric values corresponding to this diag-
onal (subscript Opt) and the shortest diagonal (sub-
script Shortest) are considered. Only one refinement
iteration is applied. The aposteriori analysis shows
that in most cases (nearly 92 per cent of the samples
for Liu’s metric) using the shortest diagonal to refine
the inner octaedron maximizes the quality criterion.
Figure 3 depicts the maximum values for Liu’s metric
against those corresponding to the shortest diagonal.
It can be seen that even when the shortest diagonal
is not the best choice, the maximum relative loss of
quality is 13 per cent. That is

max
i

(ηOpt(Ti)− ηShortest(Ti)/ηOpt(Ti)) ' 0.13 (3)

Figure 3 also shows that for poorly shaped tetra-
hedra the relative loss of quality due to choosing the
shortest diagonal is small. Finally, the computing
time for the different strategies will be considered. If
a strategy to maximize the quality criterion had to
be used, all the three choices (one for each diagonal)
should be taken into account. This could be too
expensive for practical purposes, thus the shortest
diagonal strategy is a good choice since it gives a final
quality very close to the optimal one, with a much
smaller computing effort.
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Figure 3: Liu’s metric behaviour for both the optimum
value and shortest diagonal - 1e + 5 random sample
tetrahedra.

Lastly, in the third test, a sensitivity analysis to the
initial tetrahedron shape is performed. Only one re-
finement iteration is done, always choosing the short-
est diagonal. The starting tetrahedra are obtained
moving one vertex of the regular tetrahedron on a
plane parallel to its opposite face, as Fig.4 shows.
A non-linear dependency of the quality drop on the
shape of the initial element can be observed in Fig.5.

The sensitivity is shown as a contour map of the ratio
min(η(T 1))/η(T 0), where the superscript indicates the
number of refinement iteration to which the elements
belong. This figure also shows that for some initial
tetrahedra the quality does not diminish at all.
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Figure 4: Starting tetrahedron.
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Figure 5: Shape measure ratio η(T 1)/η(T 0) contours
for first refinement iteration - Shortest diagonal.

B. Refinement Algorithm

An adaptivity algorithm for unsteady problems must
be computationally inexpensive, so that it can be ap-
plied every few time steps. To this end, it is decided
both not to use transition elements to match zones
with different levels of refinement and to use only one
subdivision pattern for each type of element. As a
consequence: a) the adapted mesh is non-conformal
or has hanging nodes b) the 1-irregular node refine-
ment constraint must be applied to ensure a gradual
transition in the element size, c) mesh quality is not
further degraded, d) there is no need to use compat-
ibility rules for refinement / coarsening, and finally,
e) the solution must be constrained on the hanging
nodes. Figure 6 shows an example regarding to the 1-
irregular node constraint if the shaded element is the
one to be refined. Hanging nodes are marked with
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Figure 6: 1-irregular node refinement constraint in 2-
D.

dots in the same figure. The 1-irregular node con-
straint says that no more than 1 hanging node should
be shared amongst neighbouring elements through the
common edge (2D and 3D) or face (3D) to which the
node belongs. These kind of mesh refinemement was
first proposed by Babuska and Rheinboldt (1978) for
2-D elements. In this work it is extended to the 3-D
case. Some issues concerning to this kind of refinement
are important: a) the problem solver has to be able to
manage the constraint of the solution on the hanging
nodes, b) the zone to be refined will be “wider” than
the zone of interest in the solution field due to this so-
lution constraint and c) some difficulties arise to visu-
alize the results computed over meshes with irregular
nodes, since contour lines are usually drawn element-
wise for unstructured finite elements grids (Hannoun
and Alexiades, 2007) and discontinuous contours ap-
pear.

To describe the refinement algorithm the following
concepts about elements, faces and edges are intro-
duced. It is said that an edge is active if not all
the elements that share it are refined, otherwise it is
inactive. The parent of an edge is the edge from which
it derives by inserting a midpoint on the parent edge.
The parent of a face is the face from which it derives
by joining with edges the midpoints (and centre point
in quads) that appear on the parent face. All the faces
and edges that appear inside refined elements have
no parents. Refined elements are always deactivated.
Finally, every edge has two childs, every face has four
childs and every element can have either 4 (2-D) or 8
(3-D) childs. These geometrical entities are organized
in a hierarchical manner, so we say that an entity
belongs to a low level of refinement if it has a higher
hierarchy, and conversely.

Given a list of elements to be refined eles2ref, cre-
ated either at the error estimate stage or prescribed
by the user, the following algorithm is implemented:

1. Find the edges that belong to eles2ref.
These edges are called edges2reftmp.

2. Find the edges in the set edges2reftmp

that have not been refined yet and call
them edges2ref.

3. Search the parent edges of the
edges2ref. If some of them are
still active, put them in a list
ParentEdges2ref.

4. Find the elements to which these
ParentEdges2ref belong and build a list
eles2refNEW.

The same steps are taken for the faces. As a re-
sult, a new list of elements that should be refined at a
lower refinement level is built within the actual itera-
tion. Now, the refinement function is called with this
list as argument. The recursivity ends when the list
eles2refNEW in the actual iteration is empty. Then,
the elements added to satisfy the 1-irregular criterion
are refined from lower to higher levels until the original
list of elements to be refined can be treated.

III. Adaptivity strategy

The unsteady strategy was developed based on the
following concept: the adapted mesh is updated ev-
ery n-time steps using a starting or base mesh, as the
diagram on Fig.7 depicts. For each one of these adap-
tivity steps (except for the first), some elements are
marked to be refined, based on the error estimate cho-
sen for the problem and the final solution computed
at the previous adaptivity step. The elements to be
refined are always selected at the maximum level of
refinement. Since no higher level of refinement than
the prescribed by the user is desired, a parents search
algorithm should be used: if elements which do not be-
long to level 0 of refinement are selected, it is required
to search for the parents of these elements in the data
structure corresponding to this adaptivity step. The
elements selected for refining are replaced by their par-
ents and the process is repeated recursively until none
of the elements in the list have parents (level 0). In
this way, preliminary lists of elements to build each
refinement level at the next adaptivity step are ob-
tained. This process is represented by dashed lines in
the diagram. Then, the next adaptivity step begins to
be built.
Since the elements numbering scheme of the adapted
meshes at the same refinement level changes from one
adaptivity step to the next, the numbering of the el-
ements in the preliminary list requiered to build that
level needs to be updated. Once the list is updated,
the corresponding level can be created. The updat-
ing and refinement processes are represented on the
diagram by continuous and dotted lines, correspond-
ingly. Finally, the problem solver is restarted using the
most refined mesh. Only for the first adaptivity step,
the problem solver is run a few time steps on the base
mesh. Then, elements are marked and refined as many
times as it is needed, based on the magnitude of the
error estimates. The strategy does not consider coars-
ening of the base mesh and the adaptivity frequency
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Figure 7: Adaptivity strategy for unsteady problems.

is also constant through the whole run.
An initial state to restart the flow solver is computed
as the linear interpolation of the solution on the last
adapted mesh, at the nodes of the base mesh. The
boundary conditions are also updated at every adap-
tivity step. To this end, geometrical entities of the
mesh have a property flag attached to it. This flag is
associated with a special property, such as a fixation,
a periodic or a slip constraint, a geometrical or an el-
ementary property or maybe an allowed combination
of them. The properties are inherited from parents
to childs at the refinement stage by inheritance of the
flag, and updated lists of geometrical entities with that
properties are built in a post-refinement stage within
the adaptivity step.

IV. Error Indication

Since the exact solution of the problem is not known
a priori, error estimates should be used to find which
are the zones of the mesh that have to be refined. A
great number of error estimate methods have been de-
vised, most of them for elliptic problems. Mavriplis
(1995) says that the choice of the right error indica-
tor depends on multiple factors, such as the relative
cost to compute the error estimate in regards to that
of the rest of the adaptivity process, the affordable
error estimate precision and the mathematical char-
acter of the equations. Heuristic gradient-based meth-
ods are frecuently used in hyperbolic problems because
they are computationally chipper, they let the zones
to be refined be properly identified and because a more
rigurous theory needs to be developed for hyperbolic
equations. But success in using these kind of methods
depends on the user’s experience to choose the right
combination of flow variables that better suit. For
compressible flows, the gradient of the density and/or
pressure fields are often used. An element is marked
to be refined when the element-wise computed gradi-
ent multiplied by a measure of its size is greater than
a prescribed tolerance value ε∗ for the error, that is

Figure 8: Problem setup for the rocket nozzle.

ε ≥ ε∗ (4)

where

ε ' ∂ū

∂x
· h = ∆ū (5)

V. Test case

To check the proper working of the unsteady strat-
egy, the transient non-viscous supersonic flow at the
starting of a bell-shaped rocket nozzle is solved. Also,
to find out if there is a true efficiency gain, the same
problem is solved over a fixed mesh finer than the base
mesh used for the adaptive process and the clock time
required by both runs is compared.

A. Problem Setup

While the axisymmetric flow equations are solved over
an unstructured mesh of hexahedra, the adaptivity
strategy is applied over the 2-D grid on the X-Z plane.
Once the adapted mesh of quads is obtained, it is pro-
jected using the rotation matrix R(φ). Figure 8 dis-
plays the problem setup. Only one layer of hexahedra
is used in the circumferential direction φ. Hexahedra
nodes along the axis of simmetry are collapsed so that
these elements turn into wedges. The nozzle area ratio
is A/A∗ ≈ 21.

Because of the axial symmetry of the flow, the fol-
lowing boundary conditions are considered

• Slip condition ~V ·~n = 0 at the wall D̄C and along
the axis of simmetry ĀB.

• Dynamic boundary conditions developed by
Storti et al. (2008) are imposed at the exhaust
section B̄C.

• Pressure and density are constants at the throat
section ĀD. They linearly increase with time
from the surrounding up to the stagnation val-
ues (ρ0 = 0.47541kg/m3, p0 = 0.6MPa, T0 =
4170K). Transient time for this condition is as-
sumed to be t = 5µsec.

• Axial flow at the throat section (VxAD = 0).



• There is no flux in the circumferential direction
(Vφ = 0).

• Circumferential periodicity at every point of the
domain.

On the other hand, the initial conditions
in the whole domain take the following values
(ρini = 0.0018kg/m3, uini = 0m/s, pini = 143Pa,
Tini = 262K). The gas is considered to be air, and the
isentropic coefficient value is γ = 1.17.

B. Solving the Problem

The 3-D Euler equations are solved using the
Advection-Diffusion module of the PETSc-FEM
multi-physics FEM solver developed by Storti et al.
(1999-2007), using 10 processors.

The Courant number for both the adaptive and non-
adaptive simulations is Cou = 2, except for the first
time steps corresponding to the transient time at the
throat conditions, when Cou = 0.2. Selection of the
elements to be refined is based on the magnitude of the
element-wise computed velocity gradient ∇~U(T ). Ve-
locity gradient is chosen because its scale range makes
easier to apply the following criterion for selecting the
elements to be refined

c1 ·max
T

(|∇~U |) ≤ |∇~U | (6)

where constant c1 ' 0.1 is adjusted beforehand for
the whole run. Besides, the velocity gradient allows to
capture the desired flow features with the mesh refine-
ment.
One level of refinement is prescribed for the whole run
and the adaptivity frequency is 5 time steps. This
means that every 5 time steps the mesh is adapted to
the last computed solution. It is considered that the
problem has reached its stationary state for tf = 8.4e-
4sec, so this is the final time for the simulation. The
base mesh for the adaptive simulation has 9330 ele-
ments and 9672 nodes while the mesh for the non-
adaptive simulation has 11430 elements and 11842
nodes. Both of them have smaller size elements at the
throat section. Figure 9 shows the size distribution
of the elements for the base mesh, which is computed
as the radius of the circumscircle of the quadrilateral
elements on the X − Z plane.

C. Results

The adaptive simulation requieres a few more time
steps to reach the final time than the non-adaptive
one, namely 2219 time steps for the latter and 2280
time steps for the former. The time steps number dif-
ference is due to the fact that, although the base mesh
has fewer elements than the fixed, both the smaller size
of the elements at the adapted zones and the CFL con-
dition makes the time step smaller. Figure 10 shows
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adaptive run.

that the size of the meshes in the adaptive simulation
was never higher than the corresponding in the non-
adaptive run. The strange behaviour in the number
of elementes is due both to the fact that the value
maxT (|∇~U(T )| changes with time and because of the
non-uniform size distribution of the base mesh. De-
spite this difference in the number of time steps in
favour of the non-adaptive simulation, the adaptive
one is faster.

The axial velocity profiles are measured along the
axis of simmetry at different time instants. They are
shown at Fig.11, where it can be seen that better res-
olution profiles correspond to the adaptive solution.
The velocity increases behind the shock fronts which
are travelling to the exit section of the nozzle. The
local velocity shoot up immediately behind the sec-
ondary shock that appears in the non-adaptive profile
at t = 5e-4sec. and t = 6e-4sec. does not almost exists
in the adaptive solution. It is worth to mention that
all the variables of the flow were scaled due to numer-
ical reasons. Therefore the velocity scale should be
multiplied by Vref = 1215.16m/sec to get the actual
velocity values in the figures.

Velocity contours are compared for the same time in-
stant at Fig.12. Better resolution of the shock fronts is
apparent for the adaptive solution. Although along the
axis of simmetry the velocity contours are rather sim-
ilar, evident differences exists close to the nozzle wall.
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Finally, details of the adapted meshes at the shock
fronts are presented for two time instants in Fig.13. It
can be seen that at t = 3.5e-4sec the velocity gradi-
ent at the secondary shock location was not still big
enough as to trigger there the refinement of the mesh.

VI. CONCLUSIONS

A strategy to adaptively solve unsteady problems
over unstructured finite element meshes has been pre-
sented. The numerical quality tests show that there
exists a partition procedure for tetrahedral elements
which keeps bounded the decrease of the mesh qual-
ity. The refinement algorithm to apply this procedure
has been described. It is considered that efficiency and
low computational costs are its main advantages while
the managment of the hanging nodes may cause some
problems for visualising the results. The first test case
over an unstructured mesh of hexahedra proves that
better use of computational resources can be achieved
using the adaptive solver. Both a better resolution and
a shorter simulation time give support to this conclu-
sion. The capability of the adaptive code to handle
different type of boundary conditions has also been
tested. Future work includes applying the unsteady
strategy over unstructured meshes of tetrahedra.

Acknowledgment

This work has received financial support from Con-
sejo Nacional de Investigaciones Cient́ıficas y Técnicas
(CONICET, Argentina, grant PIP 5271/05), Univer-
sidad Nacional del Litoral (UNL, Argentina, grant
CAI+D 2005-10-64) and Agencia Nacional de Pro-
moción Cient́ıfica y Tecnológica (ANPCyT, Argentina,
grants PICT 12-14573/2003, PME 209/2003, PICT-
1506/2006). Authors made extensive use of freely dis-
tributed software from the GNU Project and others,
as Fedora GNU/Linux OS, MPI, PETSc, the GCC
compiler collection, Octave, Open-DX, among many
others. Also, many ideas from these packages have
been inspirational to them.

0.1990.796

1.394

1.9911.991

2.589

2.589

3.078

y

x

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

|V|: 0.1991 0.7965 1.3938 1.9912 2.5886 3.0784

(a) Adaptive solution

0.199

0.796

1.991

2.589

2.589

3.078

3.078

y

x

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

|V|: 0.1991 0.7965 1.3938 1.9912 2.5886 3.0784

(b) Non-adaptive solution

Figure 12: Velocity contours comparison at t = 6e-
4sec.

y

x

1 1.2 1.4
0

0.2

0.4

0.6

(a) t = 3.5e-4sec

y

x

1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

(b) t = 6e-4sec

Figure 13: Adaptively refined meshes at the shock
front locations.



References

I. Babuska and W.C. Rheinboldt. Error estimates
for adaptive finite element computations. SIAM
J.Numer.Anal, 15:736–754, 1978.

N. Hannoun and V. Alexiades. Issues in adaptive mesh
refinement implementation. Electronic Journal of
Differential Equations, 15:141–151, 2007.

P.M. Knupp. Algebraic mesh quality metrics. SIAM
Journal of Scientific Computing, April 2000.

A. Liu and B. Joe. On the shape of tetrahedra from bi-
section. Mathematics of Computation, 63(207):141–
154, 1994.

D.J. Mavriplis. Unstructured mesh generation and
adaptivity. Report 95-26, ICASE - NASA Langley
Research Centre, April 1995.
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