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Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films
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By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid
resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that
for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial
static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the
complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability
of our solutions, we compare them with those obtained when the lubrication approximations are not employed and
under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions.
For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five

possible solutions.
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I. INTRODUCTION

The coverage of a solid surface with a liquid and the
eventual emergence of stationary patterns are intensive areas of
theoretical study due to its technological applications as much
as for certain natural processes modeling. For example, we
can mention the industrial coating processes [1,2], the liquid
lining of pulmonary alveoli and ocular surfaces by polymeric
solutions [3,4], and the pattern formation in dewetting of
liquids [5,6].

When liquid is deposited on a solid surface, the final
morphology adopted by the fluid is the result of the competition
among the different forces and effects involved in each
problem such as surface tension, molecular interaction with the
substrate, gravity, evaporation, condensation, centrifugation,
chemical and/or physical inhomogeneities of the substrate
and/or the liquid, stresses applied on the surface of the fluid,
etc. (see Refs. [7-10]). Other relevant aspects are the amount of
liquid and the extension of the substrate on which the liquid is
deposited. It is possible to imagine that a given finite volume
of liquid lying on a sufficiently large solid surface will not
be able to totally cover it and the mass of fluid will take the
shape of one (or various) droplet. But if the substrate is small,
the liquid will reach its borders and then the contour conditions
(dictated by the peculiarities of each situation) will be relevant
to determine the shape of the surface of the liquid [11,12]. In
conclusion, the surface of a liquid can adopt various different
static shapes.

Many researchers have studied static configurations for a
liquid layer on a substrate considering the surface tension, the
molecular interaction between the liquid and the solid modeled
by means of a disjoining pressure, and (sometimes) gravity. In
his classical review [7], de Gennes derived the equation which
gives the final spreading equilibrium. From this equation, he
studied the structure of a drop near the contact line for organic
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liquids (considering the effects of van der Waals forces) and for
water solutions (with double layer effects). He also described a
particular kind of flat droplet he called “pancake,” for which he
found an expression for its thickness and its edge (this type of
drop was also discussed by Sharma [13]). In Ref. [14], Starov
derived a slightly more general equation than that of Ref. [7],
and discussed a solution describing a thin periodical liquid film
and the values of its maximum and minimum were related
to the characteristics of the disjoining pressure. Mitlin also
analyzed periodical static configurations of liquid, but with
the goal of establishing an analogy between dewetting and
spinodal decomposition [15]. Bertozzi et al. [16] analyzed the
existence and stability of a static liquid layer inside a bounded
domain with particular border conditions, and they described
a droplet whose leading order structure is a parabolic shape
mounted over a thin uniform film with a thickness determined
by the disjoining pressure. Starov and Velarde [17] described,
for quite general disjoining pressure, a drop as having three
regions: a central circular cap, a flat equilibrium film around the
drop, and a transition zone. In Ref. [18], Thiele ef al. included
the effect of gravity and described some static solution for a
liquid layer laterally unbounded. They showed a drop and
a hole both mounted in an infinitely extended flat film, a
kink profile that connects two infinitely extended flat films
of different thicknesses, and a periodic profile, on which they
concentrate their interest. Although many static profiles were
described in the mentioned works, no systematic study linking
the parameter space with the occurrence of each solution has
been made.

Here we show the full bidimensional family of static profiles
of a liquid resting on a substrate with which interacts by means
of a disjoining-conjoining pressure. To do this we employ the
lubrication or long wave approximation which is a successful
and standard theoretical approach employed to study thin
liquid films. The fundamental assumption is that the liquid
surface has smooth variations so that the longitudinal scale of
the liquid layer is much larger than its thickness. In contrast
with previous works, we do not assume that the substrate is
prewetted with an infinite precursor film of given thickness
[5,19-21]. Nevertheless, we observe that for a certain range of
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parameters, a finite-length precursor film naturally appears as
a part of the solution. Two parameters control the volume of
the droplet and the length of this precursor film.

This article is organized as follows. In Sec. II the problem
is stated and the governing equations are derived. In Sec. III
we analyze the parameter space and discriminate five possible
scenarios. We present the static solutions for each of the five
parameter regions and also the analytical solution for a par-
ticular disjoining-conjoining pressure. This single expression
accounts for all the five possible solutions. Section IV focuses
on the solution that we consider the most interesting: a droplet
surrounded by a finite-length precursor film (constant volume
problem). In Sec. V we analyze how these static solutions are
modified in the limit where the long wave approximation is not
completely satisfied. Comparison with axisymmetric solutions
are made in Sec. VI. Finally, in Sec. VII the conclusions and
the final discussions are presented.

II. PROBLEM STATEMENT

Let us consider a flat substrate partially covered with a
two-dimensional (2D) liquid layer of thickness h = h(x,?),
viscosity u and surface tension y, x and z being the coordinates
along and normal to the substrate, respectively, and ¢ the
time. Under the lubrication hypothesis, the thickness of the
profile must be much smaller than its extension so that it is
possible to perform a perturbation series in powers of the small
aspect ratio. Assuming that the Reynolds number satisfies
Re ~ O(1), the continuity and the Navier-Stokes equations
are simplified to a partial differential equation that describes
the evolution of 4 [8]:

d(hu)
o + o =0, (1)
h? 9 9%h
= % 9x |: 3)62 + H(h):| (2)

where u = u(x,t) is the mean velocity (averaged in z) in the
x direction. The term with y models the capillarity and IT is
the disjoining-conjoining pressure, which takes into account
the molecular interaction between the liquid and the substrate
[22,23]. The model for I1(#) that we employ is [7,24-28]

[I(h) = he)' he )" 1 3
w{(5) ()] e o

which represents the competition between two antagonistic
molecular forces. The parameter x is proportional to the
Hamaker constant [29], and A is the minimum of the potential
V defined as

V(h) = —/ I1(h) dh
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FIG. 1. Graphs of v(h) (blue) and Ph — C (red) versus h. The
five possible situations results in five qualitatively different solutions
of Eq. (7) for any n and m. The particular case between (a) and (b),
where the straight line is tangent to v(h), is analyzed as a limiting
case in the text.

a= 2P cay=T0 0 d v =2 s
kh? K *

Replacing them in Egs. (1) and (2) and omitting the hats for
ease of reading, the first one remains unchanged and the second
takes the form

d [3%h
—_p2 |
u=~nh |:8 5 —i—rr(h)} (6)

It is convenient to point out that to derive Eq. (6), it
was assumed that i’r—*|8h /0x| < 1 so that the curvature was

approximated by 8%k /dx.

III. STATIC SOLUTIONS

To look for static solutions of Eqgs. (1) and (6) one has to
require that u = 0. Integrating twice, we get an equation that
rules the shape of static profiles,

W = +v2/v(h) — Ph +C, (7

where the prime denotes derivation with respect to x, and P
and C are integration constants. Equations equivalent to Eq. (7)
were previously obtained in Refs. [7,18,30].

The shape of v is independent of n and m and only
quantitative details depend on these exponents: the potential
diverges for 7 = 0, decreases in the interval (0,1), grows in
(1,00), has an inflection point at h;,r = (n/m)"/"=™ and
tends to O for & — oo. To guarantee that the solution # is real,
the radicand in Eq. (7) must be nonnegative, i.e.,

v(h) > Ph — C. (8)

Therefore, from a graph of v(k) and Ph — C versus h it is
possible to find out how many different static profiles exist
and their general features.

Figure 1 shows all the possible scenarios. To analyze these
graphs it is necessary to realize that: (1) there is solution only
for those values of & where the curve v(h) is above of the
straight line Ph — C, (2) the points where they intersect each
other are the values of & where A’ = 0, and (3) the points
where the tangent straight line to the curve v(h) is parallel
to Ph — C are the inflection points (a similar analysis was
done in Ref. [31] but restricted to only one of the solutions
that will be shown here). Thus, in Fig. 1(a) the solution goes
from & = 0, where the slope diverges, to a finite 4 > 1, where
slope vanishes, given by the intersection of the curve and the
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FIG. 2. Drop-shaped solutions. (a) Solution D1 for P = 0.05 and
C = 0.552; (b) solution D2 for P = 0.16 and C = 0.74; (c) solution
D3 for P =0.05 and C =0.551; n =3 and m = 2 in the three
cases.

straight line. If P < Py ax = (m/n)™@=™ — (m/ny"/=m
[the maximum slope of v(h)], the solution has inflection points
with two different values of 4" and its slope goes from infinity
to zero but in a non-monotonous way. The profile is depicted
in Fig. 2(a) and we shall denote this kind of solution as D1.
On the contrary, if P > P, nax, the solution is like the just
described one but without inflection points and we shall call
it D2, as shown in Fig. 2(b). The case shown in Fig. 1(b)
allows two kinds of solutions. The first one is a D2 solution
(here with & < 1). The second one, which we shall call D3,
has a minimum and a maximum [where 4’(x) = 0] and one
inflection point between them. The D3 solution has a positive
curvature at the minimum. Then, the profile is not allowed to
decrease to zero and results in a periodic solution, as shown in
Fig. 2(c). The last possibility for P > 0 is shown in Fig. 1(c),
where the solution is a D2 kind droplet but with 2 < 1.

The last two scenarios correspond to P < 0. In Fig. 1(d)
there are two solutions, one is a D2 solution and the other,
which we shall call ND1, is unbounded. The minimum occurs
ath > 1, it has no inflection point and the curvature is positive
in the whole domain. Finally, in Fig. 1(e) there is one solution,
which goes from & = 0 to h = o0, in both extremes h’' = oo,
and it has one inflection point. We will denote this kind of
solution as ND2. Both ND1 and ND?2 are presented in Fig. 3.

Varying the slope and the intercept of Ph — C one realizes
that the situations just described cover all the possibilities and,
as the shape of the potential v(h) is independent of n and m,
this is true for any n and m. Then, the conclusion is that for
any n and m there are five nontrivial solutions of Eq. (7): D1,
D2, D3, which have shape of droplets, and ND1 and ND2,
which are nondroplet solutions. Below we summarize their
main features:

(1) Solution D1 is a drop mounted over a finite-length
precursor film of thickness iy > 1, as depicted in Fig. 2(a).
It has a finite area and two inflection points in each half.
The maximum height satisfies Ay, > 1 and is the unique
point where the slope of the profile is null. To the best of
our knowledge, this solution has not been described in the
literature, except in the limit case when the width of the
precursor film is infinite, as, for example, in Ref. [18].
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FIG. 3. Nondroplet solutions. (a) Solution ND1 with P = —0.1
and C = 0.404; (b) solution ND2 with P = —0.1 and C = 0.405;
n = 3 and m = 2 in both cases.

(2) Solution D2 is a drop without precursor film, as shown
in Fig. 2(b). This solution has a finite area, it does not have
inflection points and its maximum height may be less than 1.
This solution may have different appearances: like the one in
Fig. 2(b) with no limit for the height of the central parabolic
cap, an small-area droplet with an almost half-circle profile, or
may have a width much larger than its height with its central
region almost horizontal as the “pancake” profile described in
Refs. [7,13]. The transitions between these different shaped
D2 solutions are smooth on P and C.

(3) Solution D3 is an infinite succession of equally spaced
identical drops mounted over a precursor film [see Fig. 2(c)].
Here & > 1 and the solution has two inflections points (at
the same height) in each cycle. It was previously studied
extensively in Refs. [14,15,18].

(4) Solution ND1 is a symmetric divergent solution with
a minimum [see Fig. 3(a)]. Its concavity is positive. When
gravity is considered, this solution becomes the hole solution
presented in Ref. [18].

(5) Solution ND2 is an asymmetric divergent solution with
a precursor film [see Fig. 3(b)]. The solution has a single
inflection point and the solution goes from 4 = 0 to h = oco.
When the width of the precursor film diverges and gravity is
considered, this solution becomes the kink solution presented
in Ref. [18]. In Refs. [7,32], a similar solution is studied which
describes an advancing contact line.

In Fig. 4 we show in a plane (C, P) the regions where each
solution is obtained. The limits of each region result from
the analysis of Fig. 1. It can be deduced that the boundaries
of these regions are the horizontal straight line P = 0, the
horizontal half-line given by P = P, max (this value is the
generalization of that given in Ref. [33] forn = 4 and m = 3)
and C > Cymax = (m" /0" HYVO=M (0 —m)/(n — 1)(m —
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FIG. 4. Occurrence of each of the five solutions in the parameter
space P vs. C. The regions are delimited by the horizontal axes,
the curve (C,, P,) with h; > 0 [see Eq. (9)], and the half line with
P = P, nax and C > Cy ax.
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where P, and —C, are the slope and the ordinate of the tangent
of v(h), respectively, and iy > 0. Figure 4 allows us to see
how the solutions change with P and C. For example, starting
from a solution D1, keeping C fixed and decreasing P, the
droplet will increase its area which will become infinity for
P = 0. For smaller values of P the solution becomes of ND2
type, which can be seen as describing the precursor film of an
infinitely large drop. On the other hand, if P is kept constant
and C (g C,) is decreased, the precursor film becomes longer
without any other change in the drop and it diverges when
C = C,. For smaller values of C, the solution becomes of the
D3 kind with a decreasing period.

For the case n = 3 and m = 2, which corresponds to the
competition of London van der Waals (n = 3) and ionic-
electrostatics forces (m = 2) [29,34], Eq. (7) has an analytical
implicit solution for any P and C which contains all the five
solutions D1 to ND2:

2
X —xo =,/ m((hl — h3)E(y,7) — i F(y, 7)),

(10)

P, =

hs —h
h3—h2’

T_h3—h2
 hy—hy’

Y = arcsin

where &1, hy, and h3 are the roots of the polynomial —2Ph +
2Ch? — 2h + 1,and F(y, ) and E(y, 7) are incomplete elliptic
integrals of the first and second kind, respectively.

To the best of our knowledge, Eq. (7) cannot be solved
analytically for general values of n and m. In the cases n = 3
and m = 2 in Ref. [29], and n = 4 and m = 3 in Ref. [35]
(corresponding to retarded and non retarded effects in London—
van der Waals interactions), particular closed form solutions
are presented which describe drops with a laterally unbounded
precursor film (in Fig. 4 these solutions live in the left boundary
of the region where D1 solutions live). Those solutions are
only valid in the particular cases where P = P, and C = C,,
being /s, the constant thickness of the precursor film with
1 <hy < (n/m)"@=™_ Thus, Eq. (10) is a general solution
of Eq. (7) thatincludes the particular case analyzed in Ref. [29].
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FIG. 5. Phase plane &’ versus h for fixed P and different values
of C. (a) P =0.2,(b) P =0.12, and (c) P = —0.1. In each panel
the lines correspond to equally spaced values of C.

Analytical solutions for P = 0and C =m/(m — 1) —n/(n —
1) are given withn = 4 and m = 3 in Ref. [35] and withn = 5
and m = 3 in Ref. [36].

Notice that the slope of solutions D1, D2, and ND2 diverges
when & — 0, which is a gross violation of the assumptions of
lubrication approximation. However, this does not mean that
these solutions have to be discarded, it just imply that they
are not reliable near 7 = 0 (see Refs. [37,38] for a lengthy
discussion about this point). The divergence of the slope when
h — 0 is due to the divergence of v(h) in the same limit.
Of course, this divergence of v is non-physical and sometimes
solved by introducing a cutoff (molecular) length that modifies
the potential close to & = 0, as we will do later in the text. The
introduction of this cutoff only introduces small variations to
the solution in the region close to the substrate.

The five stationary solution can also be analyzed in a phase
plane spanned by % and /', as it was done in Refs. [18,30]. In
Fig. 5 we show three of such phase plane plots, each one with
fixed P and varying C. In the upper panel P > P, max so that,
according to Fig. 4, each curve correspond to a D2 solution.
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In Fig. 5(b), with 0 < P < P, max, there are solutions D1, D2,
and D3, depending of the value of C, which are separated
by the thick red curve. Inside of the loop of this separatrix are
located the D3 solutions, out of the loop and to the right are the
D1 solutions, and to the left are the D2 solutions. In Fig. 5(c),
with P < 0, there are solutions D2 to the left, ND1 to the right,
and ND2 over and below the separatrix. From this analysis
can be confirmed that there is no other solution that those we
describe here. Besides, the separatrix represents one of these
five solution but in some limit (with P = P, and C = C,), and
its characteristics can be deduced from the kind of solutions
that are at each side of it. For example, the loop of the thick red
curve in the middle panel of Fig. 5 represents a D1 solution with
an infinite precursor film, or equivalently, a D3 solution with
infinite period, and the rest of the thick red curve represents
two D2 solutions with a semi-infinite width (one with 2’ > 0,
and the other with 2’ < 0). To the left of this separatrix, but
very close to it, the D2 solution looks like a pancake-shaped
droplet [7,13] (this is also true for the Fig. 5(c)). The analytical
expression for the solution given by the separatrix is given in
Refs. [29,35]forn = 3,m = 2andn = 4, m = 3, respectively.
The phase planes shown in Fig. 5 are slightly different from
those depicted in Refs. [18,30], because in these works IT is
different from Eq. (3) and gravity was included. In Ref. [30]
a periodic solution as D3 is extensively studied, but no other
stationary solution was described. In Ref. [18], the authors
describe three kinds of solutions: unbound solutions, similar
to solutions ND1 and ND2; localized solutions, which are
drops or depressions mounted over an infinite precursor film;
and periodic solutions, which are analog to D3. However, they
do not describe solutions with a finite lateral extension such
as the solutions D1 and D2. Besides, we do not have “hole” or
“kink” solutions (see Fig. 6 in Ref. [18]), because we do not
include gravity in our problem.

The integration constants P and C may be chosen so that the
solution has specific geometric characteristics. For example, if
one looks for a solution with an inflection point at 4 = h; and
a maximum (minimum) at h = h,, > h; (h,, < h;), then P =
—m(h;) and C = —v(h,,) — 7w (h;)h,,, or if the contact angle
(defined as the angle of the interface at the upper inflection
point, although other definition is possible, see Ref. [39]) has a
predetermined value 6, then C = %tan2 0 — v(h;) — mw(h;)h;.
On the other hand, from Eq. (7) it is possible to see the
physical meaning of P and C. If one derives this equation, it is
obtained that P = —h"” — 7 (h), so that P is the dimensionless
excess pressure, which means that if P is positive (negative)
the pressure inside the liquid is larger (smaller) than the
pressure in the ambient gas [34] (all these pressures were
nondimensionalized by «). Now, considering a macroscopic
drop and evaluating Eq. (7) in the upper inflection point where
its contact angle 6; is measured, the radicand of Eq. (7) can
be very well approximated by C and this constant can be
expressed as

C = ltan’0,. (11)

Furthermore, using the Young equation y; = yy + y cos ©,
where ©; is the contact angle for a large drop in dimen-
sion variables [from Eq. (5) tan®; = i’—*_tan&,], Eq. (11)
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FIG. 6. Effect of P and C in the length w,, of the precursor film.
(a) P = P, is kept constant and C — C, = 107" with 3 < n < 12.
Here P, = 0.02 and C, = 0.520209 is a point on the curve given by
Eq. (9). The shape of the bulk is unchanged and only the precursor film
increases its width. (b) The length w), of the precursor film measured
as the difference between x.,q where h = 0, and xy,y, the position
with the largest curvature, i.e., where h = (n/m)"/®#~™_ The blue,
red, black, and yellow points corresponds to P = 0.1,0.05,0.01, and
0.001, respectively. In this figure (n,m) = (3,2).
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where y,; and y; are the interfacial tensions solid-liquid and
solid-gas, respectively, and S is the spreading coefficient.
Then, C is the dimensionless difference of energies between
the substrate covered with a liquid layer [thick enough to
disregard v(h)] and the dry substrate. Therefore, C must be
positive for the case of partial wettability and C = O for total
wettability, so that more wettable is the solid, lesser is C,
but always C > 0, and very importantly, given a pair solid
substrate-liquid a unique value of C is determined.

C

(12)

IV. THE SOLUTION D1

The solution D1 is particularly attractive because it repre-
sents a droplet surrounded by a finite-length precursor film.
The natural question is how this thickness profile depends on
the parameters of the problem.

The height of the droplet, which is given by the unique real
root of Eq. (7), decreases with P and increases with C, and it
diverges for P = 0 or C — o0.

The thickness h; of the precursor film can be defined as
the height at the lowest inflection point, so that its value is
a solution of m(h;) = —P and is not dependent on C. Its
value ranges from 1 for P = 0to (n/m)"/"=™ for P = P, max.
Notice that the lower limit for /; implies that excess pressure
P must be positive, as expected for droplets [34]. The upper
limit is also the maximum thickness of uniform stable films,
so D1 solution can be interpreted as a sessile drop over a stable
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liquid film [12]. The length of the precursor film is increased
when C is reduced or when P becomes larger.

The area of D1 solution varies not monotonically when P or
C is modified. It increases as the values of P and C approach
the boundaries of the region, diverging at the lower and the
left boundaries. However, very near to the left boundary [curve
(Cy, Py)], the increase of the area is due to the enlargement of
the film precursor (as can be seen in Fig. 6), but the bulk of
the drop remains unchanged. On the contrary, very near to the
lower boundary the area accumulates in the bulk of the drop
while the film precursor remains finite.

When C — oo the profile is parabolic with maximum
thickness C/P, width 2/2C /P, and cross-sectional area
2(2C)*? /(3 P?). This limit corresponds to the classical case of
large droplets for which the effect of the disjoining-conjoining
pressure is negligible and the curvature for the whole profile is
P. More interesting is the limit C — C;". Figure 6(a) shows
that for a given value of P = P,, as C decreases the shape
in the bulk region of the droplet keeps constant and, notably,
the length of the precursor film, w,, increases following a
—ay loglax(C, — C)] law, as shown in Fig. 6(b). The values of
the positive constants a; and a, depends on P. Interestingly,
solutions D3 and D1 with the same P and |C — C,| share
similar macroscopic profiles, and the period of D3 solutions
for C — C, also follows a logarithmic law.

In Ref. [17] Starov and Velarde studied static drops with
infinite precursor film imposing only qualitative conditions
for the disjoining pressure [the disjoining pressure given by
Eq. (3) satisfies these conditions]. They found that a drop
can be described as having three regions: a central circular
cap, where capillary force dominates, a flat equilibrium film
in front of the drop, and a transition zone between the two
previous ones, where both capillary and disjoining-conjoining
pressures are equally important. In this transition region, the
profile tends asymptotically to the equilibrium thickness in
a exponential way. It is expected that these results hold for
D1 solution, with some modifications due to the finiteness of
the precursor film. Its thickness was defined as the value of
h in the lowest inflection point, so to get a simple expression
for the precursor film we solved Eq. (7) replacing v(h) by
its expansion up to second order around the inflection point,
where 7 (h) = — P. From this, one obtains

h=h + \/%sinh[\/z(xi - X)), (13)

where x; is the place where the inflection point is located,

hi = h(x;), a = v(h;) — Ph; + C, and b = £%(h;). Notice
that according to Eq. (13), & decays exponentially to A;, in
the same way as was shown in Ref. [17], but near the extreme
of the precursor film & moves away exponentially. This last
behavior was not observed in Ref. [17] because the authors
considered only infinite precursor films. Besides, Eq. (13) also
describes the profile around the highest inflection point. On the
other, expanding v() up to first order around the maximum
height A, of the drop [defined by v(h,,) = Ph,, + C], from
Eq. (7) an approximated expression for the central region of
the profile is obtained,

h = hy — 3m(hy) + Plx>, (14)
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FIG. 7. Comparison of the solution D1 (thick black line) with the
approximate solutions given by Eq. (14) describing the apex (thin red
line), and by Eq. (13) describing the precursor film (thin dotted blue

line) and the transition region between the previous ones (thin dashed
green line).

where the expression inside the brackets is the opposite of the
curvature at the apex. Notice that the disjoining pressure plays
a role in the central region of the drop and, when #4,, is high
enough to consider that 7 (h,,) =~ 0, only the surface tension is
involved in agreement with Ref. [17]. In Fig. 7 we compare the
solution D1 of Eq. (7) with the approximate solutions given by
Eq. (13) for both inflection points and Eq. (14) for the central
cap. It can be observed that with these three approximations
almost the whole profile is successfully covered. Finally, note
that Egs. (13) and (14) do not depend on the specific expression
adopted for v(h) (as that used here), so that the results shown in
this paragraph are valid for any v() with the same qualitative
shape as in Fig. 1.

V. STATIC SOLUTIONS WITHOUT ASSUMING
THE LUBRICATION APPROXIMATION

The solutions presented in Sec. III were obtained assuming
that «|h'| < 1, where a = h,/x., which means that the slope
of the profile with its dimensions restored must be small. Thus,
the dimensionless curvature k was simplified to

h//
k= ——m————
[+ @7 P2
However, the condition «|h’'| <1 is not satisfied by the
solutions D1, D2 (for & — 0), ND1 and ND2 (for 7 — 00),
and it may be not satisfied by solution D3. This fact justifies
to analyze what happens with the static solutions when the

complete expression for the curvature is considered. In this
case, the Eq. (7) is modified to

~ 0. (15)

1 1
h =+— — 1. 16
ot\/{<)12[v(iz)—sz+C]—1}2 (16)
Now, to ensure that / is real it must be satisfied that
2
Ph—C+—2>v(h)>Ph—C. a7
o

Then, a graph of v(h), Ph — C,and Ph — C + 2/0[2 versus h
is necessary to analyze the possible static profiles. Notice that
now it is possible that the profile has points with infinite slope
and nonvanishing %, and these points are the intersections of
v(h) with Ph — C + 1/a>.

A strong novelty introduced in Eq. (16) compared to Eq. (7)
is that there is no solution with # = 0, as can be deduced from
the behavior of v(h) when &7 — 0 and requiring nonnegativity
of the radicand of Eq. (16). Therefore, solutions D1, D2, and
ND2 are destroyed when the full expression of curvature is
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10, (@

0 2 4 6 8

FIG. 8. The black full lines denote the D1 and D2 solutions ob-
tained solving Eq. (7) given by the lubrication approximation, with the
potential without cutoff. Complete curvature solutions numerically
obtained from Eq. (16) with potential given by Eq. (18) are presented
in red dashed lines. The blue dotted lines correspond to numerical
solutions obtained by means of the lubrication approximation, Eq. (7),
combined with the modified potential given by Eq. (18). In (a) the
values of P and C for the three profiles are the same employed as that
in Fig. 2. In (b) and (c) the values of P and C for the solution with
full curvature were chosen to maximize the agreement between the
profiles (P = 0.049745 and C = 0.55135 for D1 and P = 0.15712
and C = 0.732 for D2). In all cases n =3, m =2, a = 1, and the
values of i. were chosen to obtain 4’ = 0 for 4 = 0 when the full
curvature is considered.

considered. However, this is an artifact due to the nonphysical
divergent behavior of v for & — 0 (v still is singular at & = 0
when the lubrication approximation is used, but the radicand
of Eq. (7) is positive when & — 0, so no problem arises).
To avoid this problem we introduce a cutoff, so that I1(h) is
changed slightly only about 2z = 0 to eliminate the divergence
but without changes for larger 4. One (arbitrary) way to do
this is introducing a prefactor in the expression for 7 (k) as it
was done in Ref. [40]:

— 1 — o~ /)" i — i

mh)y=1[1—e ](h” hm)’ (18)
with A, > 0. Figure 8 compares the solutions D1 and D2
obtained considering the full expression of curvature k with the
molecular interaction modeled by Eq. (18) with those shown
in Fig. 2. We also show, in dotted blue lines, the profiles
obtained by means of the lubrication approximation, Eq. (7),
combined with the modified potential given by Eq. (18) to
appreciate to what extent the differences come from using the
complete expression for the curvature and to what extent from
introducing the cutoff in the disjoining-conjoining pressure.

PHYSICAL REVIEW E 96, 063109 (2017)

0 5 10 15 20 25 30

FIG. 9. Comparison of the solution D1 for the 2D case (black
full line) with the corresponding 3D solution (red dashed line). For
both solutions n =3 and m =2, and P and C as in Fig. 2 for the
plane symmetry, and P = 0.07617 for the axial symmetry, which was
chosen so that both solutions have the same radius.

As expected, the lubrication solutions shown in Fig. 2 are
only slightly modified in the region close to 7 =0 when
the modified potential 7 is employed. In Fig. 8(a) both
profiles were obtained with the same values of P and C as
in Fig. 2. Although there is an acceptable agreement between
these profiles, the differences can be even smaller choosing
adequately the values of P and C for the solution with full
curvature as is shown in Fig. 8(b). In Fig. 8(c) we compare the
solution D2.

From Egs. (15) and (16) it is clear that the solutions
presented here tend to the solutions with complete expression
of curvature as o becomes smaller. In Fig. 8, the red dashed
line has o = 1, and if this value were smaller the profile
would be more like the profile obtained from the lubrication
approximation (the black full line). Besides, for Figs. 8(a)
and 8(b) the maximum slope (in the bulk of the drop,
omitting the precursor film) is around 0.517, which implies
that the contact angle is 27°. It can be observed that there
are minor differences between the profile obtained by means
of the lubrication approximation with that obtained using the
complete expression of curvature, even for a contact angle
close to 30° (agreeing with Ref. [41]). This reinforces the idea
that the lubrication approximation gives confident results even
in cases where the contact angle is not close to zero.

VI. COMPARISON BETWEEN 2D AND AXISYMMETRIC
3D STATIC SOLUTIONS

Up to here we have assumed plane symmetry. Now, we shall
change the symmetry and we look for axisymmetric solutions
and compare them with the 2D solutions. In this case, assuming
again that a|h’| < 1 the curvature can be approximated,

h/ h//
k= +
[T+ @272 1+ (@h' 2172

where x is now the radial coordinate. The equation for # is

1
~—h +1", (19)
X

l(xh/)’ +7=—P. (20)
X

Figure 9 compares the planar symmetry solution D1 with the
corresponding axial-symmetry one. The parameters of these
solutions were chosen so that they have the same height and
width. It can be observed that the solutions are quite similar.
The same was found for the solution D2. The periodic solution
D3 in the axially symmetric case becomes an oscillating
solution whose amplitude decreases as x is larger.
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VII. DISCUSSION AND CONCLUSIONS

We have presented the complete family of solutions
describing the static free surface of a fluid that rests on a
solid flat substrate with which interacts through the potential
Eq. (3). This potential includes a repulsive and an attractive
term, and it is characterized by the exponents n and m. There
are five nontrivial solutions for all n and m. Three of them can
be described as dropletlike solutions, which we called D1, D2,
and D3, and the other two, ND1 and ND?2, are divergent. For
the widely employed potential withn = 3 andm = 2 [5,8], we
present a closed form solution, Eq. (10), which comprises the
five solutions. The most interesting solution is D1, because it
describes a finite volume droplet with a finite-length precursor
film. Varying the integration constants P and C it is possible to
vary the extension of the precursor film, the width, the height,
and the volume of the droplet. To the best of our knowledge,
this is the first time that the analytical solution for droplets
with finite-length precursor films is reported. A similar family
of solutions was numerically obtained in Ref. [42], but for a
disjoining pressure, which includes a dependence on the slope
of the profile and withn = 9 and m = 3.

Equation (7) and its five static solutions were obtained with
two assumptions: plane symmetry and small slope, what it
allows to approach the curvature by h”. Here we analyzed the
effects of these assumptions and the limits that they impose.
Plane symmetry is a quite strong condition for real situations,
so that strict applicability of the solutions presented here is
limited to few situations. For example, they may be useful to
describe the transversal profile of a long straight rivulet flowing
steadily down an inclined surface [41,43], or to describe a drop
of liquid sandwiched between two vertical plates separated by a
very narrow gap [44]. However, the comparison shown in Fig. 9
between a 2D solution with the corresponding 3D solution with
axial symmetry shows that the relevance of these 2D solutions
mainly lies on the possibility of that they can be used to de-
scribe the transverse cross section of the axisymmetric shapes.

We compare solutions D1 and D2 with the equivalent ones
obtained using the full expression of curvature. The main
conclusion is that there are tiny differences between them
which are not sufficient to invalidate the results obtained with
the lubrication approach. Thus, the lubrication approximation
is also useful to describe situations where the contact angle is
even as large as 30°.

To employ the full expression of the curvature and obtain
solutions with 4 = 0, it is necessary to avoid the nonphysical
divergence at h = 0, and this can be done by introducing
a cutoff in the disjoining-conjoining pressure w(h), i.e., a
parameter &, such that for 4 < h, the disjoining-conjoining
pressure saturates and tends to a finite value [34]. In this
way the solutions are not modified in the bulk of the droplet
and only the details of the profile for A < h. depend on
the way the cutoff is introduced. The exact form of m for
h < h,. has a negligible effect on the profile, so one just make
a choice which makes the algebra simpler. To do this, we
arbitrarily adopt the expression given in Eq. (18) just to be
able to calculate the profiles with full curvature (other ways to
introduce a cutoff can be seen in Refs. [45-47]). At this point
it is convenient to mention that disjoining-pressure may be
obtained from molecular dynamic simulations [39] and from
density functional theory [48].
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FIG. 10. Dimensionless area a as function of P for three fixed
values of C (0.64, 0.67, and 0.7). The dark (blue) part of each curve
is for D1 solution and the gray (red) one is for D2.

In a real situation, the volume of liquid deposited on a
substrate is obviously always finite and, in consequence, the
static shape that the surface finally reached after a transient
period will be described by the solution D1 or D2 (if the limits
of the substrate are not reached by the liquid). Then, a question
naturally emerges: given a pair liquid-solid substrate, which
implies according to what is shown toward the end of Sec. IIl a
unique given value of C, and a given value of the area (volume
in the three dimensional case) of the liquid, what shape will
the drop adopt, D1 or D2? We can give some partial answers
to this question. When C < C,, min only D2 drops are possible,
independently of the amount of liquid. To see what happens
when C > C, nin Wwe show in Fig. 10 the dimensionless area
a = f hdx as function of P with constant C, for three values of
C (for this figure we use n = 3 and m = 2 because in this case
a closed expression for a can be obtained; see the Appendix).
It can be observed that if C,, pin < C < Cy max. there is a local
minimum of the area a,, so that for an area lesser than a,,
only a D2 solution is possible, and for a bigger area two D1
and one D2 solution exist. For C bigger than C, ,x but very
close to it, the curve has also a local maximum a,, such as if
a > ay only a solution of the kind D1 can be attained, and
for a,, < a < ay one D1 and two D2 solutions are possible.
For bigger values of C the curve decreases monotonically and
for large or small areas only D1 or D2 solutions are possible,
respectively. So, for those values of C and a for which there is
only one possible solution, this solution will describe the final
shape of the drop, but in situations with more than one possible
solution the selected final state depends on the stability and on
the energy of those solutions, an issue out of the scope of the
present work.

Finally, the previous paragraph may induce to think that the
solutions D3, ND1, and ND2 are irrelevant because they have
infinite area. However, they may be relevant to describe the
final shape of the free surface of a finite amount of a liquid
inside a recipient with a finite extension (this situation was
analyzed in Ref. [12] in the simplest case when the contact
angle with the lateral walls is 90°).
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APPENDIX: THE AREA AND HALF-WIDTH OF D1
ANDD2FORn=3ANDm =2

Here we show the derivation and the final expression of the
dimensionless area a for the solutions D1 and D2 whenn = 3
and m = 2, defined as

Xend
a= 2/ hdx.
0

We have assumed that the solutions are symmetric around
x = 0, and x¢pq is the place where & = 0.

Inthe case n = 3 and m = 2, Eq. (7) can be written as (only
the decreasing half is taken)

h’:—ﬁ\/l L

202 h

(A1)

Ph+C

1
=5 V2P = h)(h = ho)(h = h3), (A2)

where h, h,, and h3 are the roots of =2 Ph3 + 2Ch? — 2h + 1.
In the case of solutions D1 and D2 this polynomial has only
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one real root, which is the maximum height of the solution,
and in the following we assume is &;. By means of a change
of variable and using Eq. (A2), Eq. (A1) can be written as

I
[\S)
|
Q.
=

a

0 h2
—2/ dh.
m ~/=2P(h — h1)(h — hy)(h — h3)

The last integral can be calculated, and after some algebra the
expression for the dimensionless area is

~3p

2
LRy m[ﬂlﬁh:mf) - F(I//|h=hl»f)]}»

where ¢ and t were defined in Eq. (10), and x.yq is the half-
width of the solution D1 or D2:

/ 2
Xend = m{(hl — h3)[E(¥ |p=0,7) — E(W|h=h1777)]

— hi[F(¥|n=0,7) — F(¥ lp=pn,, D1}

2
a —{1 4+ 2CXend
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