

contained in this volume are to be published in future issues of the journal.

Please be aware that during the production process

errors may be discovered which could affect the

content.

All legal disclaimers that apply to the journal pertain.

Submitted: August 16th, 2016 - Accepted: February 17th, 2017

To link and cite this article:

doi: 10.5710/AMGH.17.02.2017.3048

PLEASE SCROLL DOWN FOR ARTICLE

1	SYSTEMATIC REVISION AND EVOLUTIONARY HISTORY OF ACARECHIMYS
2	PATTERSON IN KRAGLIEVICH, 1965 (RODENTIA, CAVIOMORPHA,
3	OCTODONTOIDEA)
4	
5	MICHELLE ARNAL ^{1,6} , MARÍA G. VUCETICH ^{2,6} , DARIN A. CROFT ³ , M. SUSANA
6	BARGO ^{1,7} , JUAN C. FERNICOLA ^{4,5,6} AND SERGIO F. VIZCAINO ^{1,6}
7	¹ Unidades de Investigación, Anexo Museo de La Plata, FCNyM-UNLP, Av. 122 y 60, CP
8	1900, La Plata, Argentina. michoarnal@gmail.com.ar; msbargo@fcnym.unlp.edu.ar;
9	vizcaino@fcnym.unlp.edu.ar
10	² Museo de La Plata, Museo de La Plata, FCNyM-UNLP, Paseo del Bosque s/n, CP 1900,
11	La Plata, Argentina. vucetich@fcnym.unlp.edu.ar
12	³ Department of Anatomy, Case Western Reserve University School of Medicine, 10900
13	Euclid Ave., Cleveland, OH 44106-4930, USA. darin.croft@case.edu
14	⁴ Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Av. Ángel Gallardo 470,
15	1405DJR, Ciudad Autónoma de Buenos Aires, Argentina. jctano@yahoo.com
16	⁵ Departamento de Ciencias Básicas, Universidad Nacional de Luján Ruta 5 y Avenida
17	Constitución, 6700 Luján, Buenos Aires, Argentina.
18	⁶ CONICET
19	⁷ CIC
20	
21	53 pages, 7 figures, 3 tables, 3 Supplementary Appendices
22	ARNAL ET AL.: REVISION AND HISTORY OF ACARECHIMYS (RODENTIA,
23	HYSTRICOGNATHI).
24	*Corresponding author: michoarnal@gmail.com

25 Abstract. The octodontoid rodent Acarechimys was abundant during the early Miocene and 26 had the widest temporal and geographic distribution of any extinct caviomorph. Despite 27 this extensive fossil record Acarechimys has not been well characterized. In this work, we 28 systematically revise Acarechimys, describe new early-middle Miocene fossils from 29 Argentina and Bolivia, corroborate its monophyly, and study its evolutionary history. 30 Acarechimys has brachydont molars, retained deciduous premolars, four crests on upper 31 molars, lowers with variably developed mesolophid and metalophulid II, and absence of 32 mental foramen in the mandible. Acarechimys includes: Acarechimys leucotheae (late 33 Oligocene, Chubut, Argentina), A. gracilis and A. constans (early Miocene, Chubut and 34 Santa Cruz, Argentina), and A. minutus and A. minutissimus (early-middle Miocene of 35 Patagonia Argentina, Bolivia, and Colombia). The temporal and geographic distributions 36 suggest that Acarechimys could have evolved in Patagonia, by the early late Oligocene. Its 37 acme was during the late early Miocene in Southern Patagonia. By the middle Miocene, 38 Acarechimys decreased in diversity and was last recorded in high latitudes of South 39 America (Patagonia). In lower latitudes, the oldest record is from the late early Miocene of 40 Chucal, northern Chile, and during the late middle Miocene, the genus is recorded in 41 localities of Colombia, Bolivia, and Peru. The available evidence suggests that 42 Acarechimys was probably not present in lower latitudes (N of $\sim 30^{\circ}$ S) before the early 43 Miocene. The reasons Acarechimys dispersed northward at this time remain to be 44 elucidated, but the timing coincides with a massive disappearance of other octodontoids 45 from Patagonia.

Key Words. Octodontoid. Oligocene. Miocene. South America. Evolutionary history.

49 Resumen. REVISIÓN SISTEMÁTICA E HISTORIA EVOLUTIVA DE

50 ACARECHIMYS PATTERSON EN KRAGLIEVICH, 1965 (RODENTIA,

51 CAVIOMORPHA, OCTODONTOIDEA). El roedor octodontoideo Acarechimys fue 52 abundante durante el Mioceno temprano y tuvo la distribución geográfica y temporal más 53 amplia para un caviomorfo viviente. A pesar de su amplio registro fósil Acarechimys nunca 54 fue caracterizado correctamente. En este trabajo, realizamos la revisión sistemática de 55 Acarechimys, describimos nuevos materiales del Mioceno temprano-medio de Argentina y 56 Bolivia, corroboramos su monofilia y estudiamos su historia evolutiva. Acarechimys 57 presenta dientes braquiodontes, retención de premolares deciduos, cuatro crestas en molares 58 superiores, desarrollo variable del mesolófido y el metalofúlido II en molares inferiores y 59 ausencia de foramen mentoniano en la mandíbula. Acarechimys incluye: Acarechimys 60 leucotheae (Oligoceno tardío, Chubut, Argentina), A. gracilis y A. constans (Mioceno 61 temprano, Chubut y Santa Cruz, Argentina), y A. minutus y A. minutissimus (Mioceno 62 temprano-medio de Patagonia Argentina, Bolivia y Colombia). Su distribución temporal y 63 geográfica sugiere que Acarechimys habría evolucionado en Patagonia en el Oligoceno tardío-temprano. Su acmé fue en el Mioceno temprano-tardío en el sur de Patagonia. Para el 64 65 Mioceno medio Acarechimys disminuyó su diversidad y tiene su último registro en 66 latitudes altas de América del Sur (Patagonia). En latitudes bajas, el registro más antiguo 67 proviene del Mioceno temprano-tardío de Chucal, norte de Chile, y durante el Mioceno 68 medio se lo registra en localidades de Colombia, Bolivia y Perú. La evidencia disponible 69 sugiere que Acarechimys probablemente no estuvo presente en bajas latitudes (N de 70 30°S)antes del Mioceno temprano. Las causas de su dispersión hacia el norte deben ser

- 71 todavía estudiadas, aunque la misma coincide con la desaparición masiva de
- 72 octodontoideos en Patagonia.
- **Palabras clave.** Octodontoideo. Oligoceno. Mioceno. América del Sur. Historia evolutiva.

77	ACARECHIMYS is an extinct rodent genus, part of the richest and most diverse clade of
78	caviomorphs: Octodontoidea. It represents a successful evolutionary lineage with unusually
79	wide temporal (late Oligocene-late Miocene) and geographic distributions (southern
80	Argentinean Patagonia to Colombia); it was one of the most abundant octodontoids during
81	the Burdigalian (late early Miocene; Santacrucian South American Land Mammal Age,
82	SALMA; Pascual et al., 1965) of Santa Cruz Province, Argentina.
83	Ameghino (1887), while working at the Museo de La Plata (MLP), erected the
84	genera Acaremys, Stichomys, and Sciamys, and recognized the species: Acaremys minutus,
85	A. minutissimus, Sciamys tenuissimus, and Stichomys constans. Subsequently, he named
86	additional species of these genera (Ameghino, 1889, 1891, 1894). Scott (1905) performed
87	an exhaustive revision of the rodents from the Santa Cruz Formation based on fossils
88	collected by the Princeton Expeditions to Patagonia (1896–1899; housed at the Yale
89	Peabody Museum, New Haven, USA) and the collections housed in the museums of
90	Buenos Aires and La Plata that he visited in 1902. As a result, he described additional
91	materials and performed detailed descriptions of Acaremys minutus, A. minutissimus,
92	Sciamys tenuissimus, Stichomys constans, and Stichomys diminutus. Bryan Patterson
93	studied the paleontology collections deposited at the MLP and MACN in the years 1952-
94	1954 (Olson, 1985) and performed an exhaustive investigation of caviomorphs that was
95	never published. Nevertheless, in his unpublished manuscript (UMS, available at the
96	Vertebrate Paleontology Section, MACN), Patterson provided information that was later
97	used by Pascual (1967) and by the authors of this work (see below). The genus
98	Acarechimys was first mentioned by Kraglievich (1965) in a footnote, explaining: 'Ce nom,
99	inédit, a été appliqué par B. Patterson à l'espèce Acaremys minutus Amegh. (Patterson et

100	Kraglievich, ms.)'. Later, based on Patterson UMS, Pascual (1967) mentioned the genus
101	Acarechimys with the species Acarechimys minutus, Acarechimys minutissimus, and
102	Acarechimys constans, and provided collection numbers of the lectotype of each species.
103	Finally, Patterson (in Patterson and Wood, 1982) characterized the genus Acarechimys for
104	the Santacrucian SALMA of Patagonia, with Acarechimys minutus as the type species
105	(synonym: Stichomys gracilis Ameghino, 1891) and Acarechimys minutissimus as the only
106	other referred species (synonyms: Stichomys diminutus Ameghino, 1891, Sciamys
107	tenuissimus Ameghino, 1894, and provisionally Stichomys constans Ameghino, 1887).
108	Since the 1990s, the genus Acarechimys has been recognized at numerous localities beyond
109	Santa Cruz Province: Vucetich et al. (1993a) extended its biochron by describing
110	Acarechimys sp. from the Langhian (early middle Miocene, Colloncuran SALMA) of
111	Neuquén Province, Argentinean Patagonia; Walton (1997) identified Acarechimys cf. A.
112	minutissimus from the Serravallian (late middle Miocene, Laventan SALMA) of La Venta,
113	Colombia, and Croft et al. (2011) described new specimens of Acarechimys from the
114	Serravallian (late middle Miocene, Laventan SALMA) of Quebrada Honda, Bolivia. Flynn
115	et al. (2002, 2008) and Croft et al. (2007) mentioned Acarechimys for the early to middle
116	Miocene of Chile, Antoine et al. (2016) for the early Miocene of Contamana, Peru, Tejada-
117	Lara et al. (2015) for middle Miocene of the Fitzcarrald Arch in the Peruvian Amazonia,
118	and Esteban et al. (2014) for late Miocene-early Pliocene of the Andalhuala and Chiquimil
119	formations in Catamarca Province, Argentina.
120	Vucetich et al. (2010) transferred the species Protacaremys pulchellus Ameghino,
121	1902 to Acarechimys, erecting the new combination Acarechimys pulchellus (Ameghino,
122	1902) for the Aquitanian-Burdigalian (early Miocene, Colhuehuapian SALMA) of
123	Patagonia. This taxonomic assignation was corroborated later by Arnal (2012) with a

124	cladistic analysis. Vucetich et al. (2015a) described the most ancient species of the genus,
125	Acarechimys leucotheae, from the Chattian (late Oligocene, Deseadan SALMA c.a. 29.4-
126	24.2 Ma) of Cabeza Blanca, Chubut Province, Argentina. Recently, Verzi et al. (2016)
127	reviewed and revised specimens included in this genus.
128	In this contribution, we review nearly all of the material hitherto assigned to
129	Acarechimys, and describe new specimens with precise geographic and stratigraphic
130	provenance from the Santa Cruz Formation (late early Miocene of Santa Cruz Province,
131	Argentina), Collon Curá Formation (early middle Miocene of Neuquén Province,
132	Argentina), and an unnamed formation in southern Bolivia (late middle Miocene of
133	Quebrada Honda).
134	[FIGURE 1 ABOUT HERE]
135	
136	MATERIALS AND METHODS
137	A total of 127 specimens were studied (Supplementary appendix 1). Dental nomenclature
138	follows Marivaux et al. (2002), Candela and Rasia (2012), and Arnal et al. (2014).
139	Mandibular and cranial nomenclature follows Wible et al. (2005) and Woods and Howland
140	(1979) (Fig. 1).
141	Institutional abbreviations. MACN-A, Museo Argentino de Ciencias Naturales
142	'Bernardino Rivadavia', Ameghino National Collection, Buenos Aires, Argentina; MACN-
143	PV, Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Vertebrate
144	Paleontology Collection, Buenos Aires, Argentina; MLP, Museo de La Plata, La Plata,
145	Argentina; MPM-PV, Museo Regional Provincial 'Padre Manuel Jesús Molina',
146	Vertebrate Paleontology Collection, Santa Cruz, Argentina; UATF-V, Universidad

147 Autónoma Tomás Frías, Vertebrate Paleontology Collection, Potosí, Bolivia; **YPM-VPPU**, 148 Princeton University Collection of the Yale Peabody Museum, New Haven, USA. 149 Systematic revision. Recognition of the type series used by Florentino Ameghino (1887, 150 1889) was necessary to identify the specimens recovered by Carlos Ameghino during his 151 filedtrip of 1887 in the cliffs of the Santa Cruz River, Santa Cruz province, Argentina (Fig. 152 2). In performing this investigation, we took into account different sources of information: 153 Ameghino's catalog at the MACN, the MLP catalog, Patterson's UMS, collection labels 154 and file cards, and the account of the history of the conflict between F. Ameghino and 155 Moreno when the Santacrucian species were erected (Fernicola, 2011). Patterson studied 156 the paleontology collections deposited at the MLP and MACN, but identified lectotypes 157 and syntypes of fossils housed at the MLP [information that was published by Pascual 158 (1967)]. Patterson mentioned and studied specimens figured by Ameghino (1889) and 159 deposited at the MACN but dismissed the possibility that they might be holotypes because 160 he believed that the fossils collected by C. Ameghino in 1887 were deposited exclusively at 161 the MLP (UMS, pers, comm.). Fernicola (2011) determined that those fossils figured in the 162 Atlas by Ameghino (1889) and housed in the MACN were collected by his brother Carlos 163 in 1887, and therefore these fossils could be part of the type series of taxa founded in 1887 164 by F. Ameghino. Additionally, we have inferred that Patterson may have had access to 165 labels with Ameghino's handwriting and other certain provenance information, since his 166 UMS stresses differences among 'labeled materials', 'improperly labeled materials', and 167 'materials that agree with Ameghino's original descriptions'. Thus, with some exceptions 168 (see below), we accept the information provided by Patterson in his unpublished 169 manuscript and discuss the implications for each particular species.

170 Statistical analyses. In order to test for size differences among Acarechimys species, we 171 performed statistical analyses using m1 and m2 length, as these allowed for the largest 172 sample sizes. Sixty-nine m1 and 62 m2 measurements were used in the analyses. Statistical 173 analyses were performed using JMP Pro (SAS Institute, Inc., 2013). 174 *Cladistic analysis.* In order to test the monophyly of the genus, we used an expanded and 175 modified version of the data matrix of Arnal and Vucetich (2015) (Supplementary 176 appendices 2 and 3). In total, it consists of 186morphological characters and 59 taxa. These 177 include 19morphological characters from Verzi et al. (2016) that were added in order to 178 evaluate comparable data matrices. The living *Abrocoma* was included in order to test 179 whether some Acarechimys species group within Abrocomidae. The data matrix was 180 analyzed under equally weighted parsimony using TNT 1.5 (Goloboff and Catalano, 2016). 181 A heuristic search of 1,000 replications of Wagner trees (with random addition sequence) 182 followed by tree bisection and reconnection (TBR) branch-swapping algorithm (holding 10 183 trees per replicate) was conducted. The best trees obtained at the end of the replicates were 184 subjected to a final round of TBR branch swapping. Thirty-one characters were treated as ordered. The robustness of the obtained MPTs was calculated with relative and absolute 185 186 Bremer supports (Bremer, 1994; Goloboff and Farris, 2001). 187 188 SYSTEMATIC PALEONTOLOGY 189 Order RODENTIA Bodwich, 1821 190 Suborder HYSTRICOGNATHI Tullberg, 1899 191 Parvorder CAVIOMORPHA Wood, 1955 192 Superfamily OCTODONTOIDEA Waterhouse, 1839 193 Genus Acarechimys Patterson in Kraglievich, 1965

- 194 Type species. Acaremys minutus Ameghino, 1887.
- 195 Stichomys Ameghino, 1887 partim
- 196 Sciamys Ameghino, 1887 partim
- 197 Ameghinomys Verzi et al., 2016
- 198

199 Stratigraphic and geographic occurrences. Upper levels of the Sarmiento Formation at

200 Cabeza Blanca (Chubut, Argentina), late Oligocene, Deseadan SALMA (Vucetich et al.,

- 201 2015 a); Sarmiento Formation (Chubut, Argentina), early Miocene, Colhuehuapian
- 202 SALMA (Vucetich et al., 2010); Pinturas Formation (Santa Cruz, Argentina), late early
- 203 Miocene, 'Pinturan' age (Kramarz and Bellosi, 2005); Santa Cruz Formation, (Santa Cruz,
- 204 Argentina), late early Miocene, Santacrucian SALMA (Ameghino, 1887, 1889; Scott,
- 205 1905; Vizcaíno et al., 2012); Chucal Formation (Región XV, Chile), late early Miocene,
- 206 Santacrucian SALMA (Croft et al., 2007); unnamed formation (Pampa Castillo, Región XI,
- 207 Chile), late early Miocene, Santacrucian SALMA (Flynn et al., 2002); Curá Mallín
- 208 Formation (Región VIII, Laguna del Laja, Chile), early to middle Miocene (Flynn et al.,
- 209 2008); Collon Curá Formation (Neuquén, Argentina), early middle Miocene, Colloncuran
- 210 SALMA (Vucetich et al., 1993a); Villavieja Formation (Colombia), late middle Miocene,
- 211 Laventan SALMA (Walton, 1997); unnamed formation (Quebrada Honda, Bolivia), late
- 212 middle Miocene, Laventan SALMA (Croft et al., 2011); unspecified formation, Fitzcarrald
- 213 Arch (Peru), middle Miocene, Laventan SALMA (Negri et al., 2010; Tejada-Lara et al.,
- 214 2015); Pebas Formation, Contamana (Peru), late? Miocene (Antoine et al., 2016).
- 215

216

- [FIGURE 2 ABOUT HERE]
- 217

218	Emended diagnosis [from Vucetich et al. (2015a); autapomorphies marked with an
219	asterisk]. Small to very small sized caviomorph. Brachydont cheek teeth* (see
220	Phylogenetic Analysis, below). Clearly evident cusps and thin crests separated by wide
221	flexi/ids. Retention of deciduous premolars throughout life. Upper molars with four straight
222	crests (anteroloph, protoloph, metaloph, and posteroloph); antero- and posteroloph fused
223	labially in juveniles with proto- and metaloph delimiting the antero- and metafossette,
224	respectively. Lower molars with variably developed metalophulid II: interrupted or absent
225	on m1-m2, absent or interrupted on m3; presence of accessory cusp on lowers molars*.
226	Lower deciduous premolar with variably developed metalophulid II and mesolophid united
227	with or near the metaconid. Lower incisor long, with its posterior end located posterior to
228	m3. Well-developed masseteric crest of the mandible, mental foramen generally absent, and
229	masseteric fossa moderately to very deep anteriorly. Skull with a moderately developed
230	groove for the passage of the nerve infraorbitalis *.
231 232	Acarechimys minutus (Ameghino, 1887)
233	Figure 3.1–5
234	
235	Acaremys minutus Ameghino, 1887
236	Ameghinomys constans Verzi et al., 2016 partim
237	
238	<i>Type series</i> . MLP 15-410a, left mandible with m1-3; MACN-A 237, right mandible with
239	dp4-m3; MACN-A 238, right mandible with dp4-m3; MACN-A 4075, right mandible with
240	dp4-m1.
241	Lectotype. MLP 15-410a Patterson (UMS, pers, comm.) and Pascual, 1967.

- 242 Paralectotypes. MACN-A 237, MACN-A 238, MACN-A 4075.
- 243 *Referred material.*(Supplementary appendix 1).

244 *Geographic and stratigraphic occurrences*. Santa Cruz and Neuquén provinces, Argentina;

- 245 Quebrada Honda, Bolivia. Santa Cruz Formation, late early Miocene, Santacrucian
- 246 SALMA; Collon Curá Formation, early middle Miocene, Colloncuran SALMA; unnamed
- formation, late middle Miocene, Laventan SALMA (Supplementary appendix 1).
- 248 *Emended diagnosis*. Smaller than *A. constans* and *A. gracilis*. Upper deciduous premolar
- tending toward reduction and loss of the metaloph, unlike A. constans. Lower deciduous
- 250 premolar with variably developed metalophulid II and mesolophid, a combination not
- 251 present in the remaining species. Lower molars with metalophulid II reduced to a small
- spur on m1-2 and absent on m3, as in A. leucotheae; presence of accessory cups in m1-2 and
- variable presence of the posterior extension of the metalophulid I in m1-2; presence of
- 254 posterior arm of the metaconid on m1-3, as in A. gracilis. Lower incisors laterally
- 255 compressed, unlike A. constans and A. gracilis. Mandible with the notch for the insertion
- 256 pars infraorbitalis of the masseter muscle (nmmpio) located below dp4-m1, unlike A.
- 257 constans and A. gracilis.
- 258 *Remarks.* MLP 15-410a (left mandible with m1-m3) is labeled as 'lectotype' and MLP 15-
- 410b (maxilla with right and left M1-M3) as 'type?' of Acarechimys minutus in the MLP
- 260 collection. Based on the catalog information of this museum, we confirm that both
- specimens belong to the 'old collections', which include specimens from the expedition of
- 262 C. Ameghino in 1887 and expeditions performed by other staff of the MLP in subsequent
- 263 years (Vizcaíno *et al.*, 2013). Unfortunately, the available information does not allow us to
- 264 know which of these fossils were recovered by C. Ameghino (no labels or catalog written
- 265 by Ameghino are available). However, according to the unpublished work of Patterson,

266 MLP 15-410a is the lectotype of Acarechimys minutus since 'in fact the only specimen 267 labeled as *minutus* or attributable to the species is M.L.P. n°15-410a, a portion of left ramus 268 with base of I, roots of dm4, m1-3. This individual thus becomes the lectotype.' Thus, 269 based on the confirmation made by Patterson, we interpret that MLP 15-410a could have 270 had a label made by F. Ameghino. On the contrary, we think that MLP 15-410b was not 271 available for Patterson in the 1950s, since in his UMS he stated that the palatal fragment 272 described by Ameghino for this species was lost. Only later was MLP 15-410b relocated 273 and available for study in the MLP collections. We believe that this took place after the 274 accession of fossils belonging to old assemblages into the MLP collections, an occurrence 275 that has taken place many times since the 1960s (Reguero and Tonni, pers. comm., 2016). 276 The specimen file card of MLP 15-410b includes a note by R. Pascual that it possibly 277 corresponds to the palatal fragment used by Ameghino in 1889 for the description of 278 Acaremys minutus (handwriting by Pascual). We agree with Pascual that this specimen 279 matches Ameghino's description; nevertheless, there is no evidence that it was part of the 280 collection studied by Ameghino. Therefore, we have not included MLP 15-410b among the 281 syntypes of Acarechimys minutus. We recognize three additional specimens housed at the 282 MACN collection as part of the original type series: MACN-A238 and MACN-A 4075, 283 which are illustrated in the atlas of Ameghino (Ameghino, 1889; plate IV, figs. 22-23), and 284 MACN-A 237, which is mentioned in the catalog of Ameghino (MACN) as being a 285 member of the same stock as MACN-A238. In summary, we identify four fossils used by F. Ameghino to erect the species Acaremys minutus: MLP 15-410a, MACN-A237, MACN-286 287 A 238, and MACN-A 4075.

Pascual (1967) stated that MLP 15-410a was the lectotype of *Acarechimys minutus*.
Although this material corresponds to an old specimen with the occlusal surface very worn,

we agree with Patterson's assignation. By default, the remaining specimens of the originaltype series are paralectotypes.

Based on dental morphology (symmetric absence of mure on the M2 delimiting an antero- and posterofossette and a relatively large and fully tetralophodont M3) we can not assign MLP 15-410b to any recognized caviomorph species. It probably represents a new octodontoid (Arnal and Vucetich, personal observation) and will be the subject of future investigations.

297 *Description.* Upper cheek teeth. Both tooth rows are parallel to each other but are obliquely
298 implanted with respect to the palatal plane.

299 The upper cheek teeth are wider than long (Tab. 1), slightly terraced, and 300 tetralophodont. Molars have a long anteroloph that reaches the paracone and delimits an 301 anterofossette in juvenile specimens (Fig. 3.1). The protoloph is anteriorly oblique and 302 curved. The metaloph departs from the junction of the mure and the anterior arm of the 303 hypocone, and its labial end, which includes the metacone, turns back to fuse with the 304 posteroloph, delimiting a metafossette in juveniles (Fig. 3.1). The M3 has a labially placed 305 hypocone, and a hypofossette is formed in adult specimens (Fig. 3.1). The anterofossette 306 and metafossette are equally deep and extend further across the occlusal surface than the 307 mesoflexus. The hypoflexus is the deepest flexus and is anteriorly oriented.

The DP4 is molarized and resembles the molars but usually differs in the presence of a reduced metaloph that does not reach the labial end of the posteroloph, by the presence of a short protoloph that does not reaches the paracone, and by a less oblique protoloph and hypoflexus (Fig. 3.1).

312 Upper incisors are oval in section. The anterior face is straight and the lingual face313 is curved.

314	<i>Skull</i> . The description is based on an almost complete skull (YPM-VPPU 15806; Fig. 3.2)
315	and maxillary fragments (MACN-A 4070, MPM-PV 15088). The nasals extend posteriorly
316	to the dorsal root of the zygoma. Posteriorly, the frontal bones have concave lateral
317	margins. The premaxillae occupy the anterior half of the lateral wall of the snout (Fig. 3.2);
318	the ascending processes of the premaxillae are slightly exposed on the skull roof and are a
319	little longer than the nasals, unlike in Acaremys murinus, in which they are broadly exposed
320	on the skull roof. The rostral masseteric fossa (sensu Patterson and Wood, 1982) is shallow,
321	subtriangular, and limited ventrally by the incisor tuberosity (Fig. 3.2), unlike in Acaremys
322	murinus, Pseudoacaremys kramarzi, and Sciamys principalis, in which the incisor
323	tuberosity is included in the rostral masseteric fossa (Arnal and Vucetich, 2015). The dorsal
324	root of the zygoma continues ventrally with a robust vertical ramus of the zygoma, similar
325	to Sciamys principalis (Fig. 3.2). This vertical ramus is mainly straight, as in Prospaniomys
326	priscus, rather than posteriorly oblique as in most octodontoids (Arnal and Kramarz, 2011).
327	The ventral root of the zygoma extends slightly in front of the DP4 (Fig. 3.2), and its
328	antero-posterior diameter is similar to its dorso-ventral diameter, unlike Pseudoacaremys
329	kramarzi, where the antero-posterior diameter is twice the dorso-ventral one (Arnal and
330	Vucetich, 2015). In ventral view, the masseteric tuberosity (for the origin of the masseter
331	superficialis muscle, pars anterior) is conspicuous and continuous laterally with a shallow
332	fossa for the origin of the masseter lateralis muscle. Posterior to the masseteric tuberosity is
333	a small foramen of uncertain homology. On the dorsal face of the ventral root of the
334	zygoma is a faint furrow for the passage of the infraorbitalis nerve. The horizontal ramus of
335	the zygoma is high in lateral view (Fig. 3.2), unlike Prospaniomys priscus in which it is low
336	(Arnal and Kramarz, 2011). It is formed mainly by the jugal bone, which lies at the base of
337	the vertical ramus of the zygoma along with the maxillary bone (Fig. 3.2); this suture is

338 straight and oblique. The paraorbital process is conspicuous and formed by the jugal and a 339 small portion of the squamosal. The jugal fossa (for the origin of the posterior masseter 340 muscle) is well-developed; it is antero-posteriorly long, dorso-ventrally high, and medio-341 laterally deep, unlike *Prospaniomys priscus*, in which it is short and shallow.

342 The diastema is longer than the tooth row and widens posteriorly but is shorter than

343 in Acaremys murinus and Pseudoacaremys kramarzi. The large incisive foramina are

damaged but seem to be wider than long. Posteriorly, they are continuous with the well-

345 developed diastemal furrows that extend to the DP4s. The posterior palatine foramina are

346 conspicuous and located between the M1s. The openings of the posterior nares are

347 positioned near the posterior half of the M2.

348 *Lower cheek teeth.* The molars are of similar size (Tab. 1). The dp4 is longer than wide

349 (Fig. 3.3; Tab. 1). The metalophulid I is curved and joins the protoconid and metaconid.

350 The ectolophid is relatively short and oblique. A short but variably developed metalophulid

351 II extends from the postero-lingual border of the protoconid (Figs. 3.3–4) as in some

352 specimens of *A. minutissimus* and *A. constans*. The mesolophid is also variably developed;

it varies from long and fused with the metaconid (MPM-PV 15089), as in A. constans, to

reduced, forming a spur of the ectolophid, as in *A. gracilis* (Fig. 3.3). The hypolophid is

355 straight and merges with the entoconid. The posterolophid is long and reaches the labial

356 side of the tooth. The anterofossettid/anteroflexid is rounded, shallow, and merged with the

357 mesoflexid when the mesolophid is reduced (Figs. 3.3–4). The posteroflexid is closed in

adult specimens. The hypoflexid is the deepest flexid and is posteriorly oblique. In adult

359 specimens, the dp4 becomes simplified with an oval outline (MACN-A 4071).

360 The molars have three main crests; a fourth crest, second in position (metalophulid361 II), is variably developed (Fig. 3.3). The metalophulid I is straight, unlike in *A. constans*

362	and A. gracilis, where it is curved. The metalophulid II is reduced to a spur of the
363	ectolophid near the area of the protoconid in m1-2 and is absent in m3 (Fig. 3.3). An
364	accessory cusp of uncertain homologies is lingually aligned with this crest and often united
365	to the metalophulid I by a posterior extension of the metalophulid I (Fig. 3.3). The posterior
366	arm of the metaconid is present in m1-3. The hypolophid and posterolophid are as in dp4.
367	The lingual end of the posterolophid lies near the entoconid, unlike in the dp4. The
368	antero+mesoflexid is as broad and deep as the posteroflexid.
369	The lower incisors are laterally compressed and long, extending below the tooth row
370	to the base of the coronoid process.
371	Mandible. The mandible is robust. The diastema is shorter than the tooth row, unlike the
372	condition in the cranium. The diastema is concave, and the lowest part is immediately
373	anterior to the dp4 (Fig. 3.5). A mental foramen is generally absent; when present, it is
374	small and located below the anterior half of dp4. The nmmpio is conspicuous, antero-
375	posteriorly long, slightly oblique, and the anterior half is located mainly below the dp4
376	(Fig. 3.5), as in A. minutissimus. The masseteric crest is well-developed, laterally
377	projecting, and ventro-posteriorly oriented (Fig. 3.5). The masseteric fossa is deep in its
378	anterior part as in A. gracilis but shallower than in species of Acaremys. This fossa is
379	antero-dorsally limited by a faint furrow that extends from the posterior border of the
380	nmmpio to the base of the coronoid process. The coronoid process extends postero-laterally
381	from the m2 and delimits a retromolar fossa lateral to m3. On the lingual side of the
382	mandible, the mandibular symphysis extends posteriorly to the posterior border of m1. The
383	mandibular chin is at the level of the dp4.
384	

386	
387	Acarechimys constans (Ameghino, 1887)
388	Figure 4. 1–4
389	Stichomys constans Ameghino, 1887
390	Acarechimys pascuali Verzi et al., 2016 partim
391	Ameghinomys constans Verzi et al., 2016 partim
392	
393	Type series. MACN-A 246, palatal fragment with left and right DP4-M2; MACN-A 247,
394	left mandible with m1-2 and right mandible with dp4-m2;MLP 15-39, left mandible with
395	m1-3; MLP 15-57, right mandible with m2-3 and broken m1; MLP 15-200, right mandible
396	with dp4-m2; MLP 15-346, left mandible with dp4-m2; MLP 15-391, right mandible with
397	dp4-m3; MLP 15-391a, right mandible with dp4-m2; MLP 15-391b, right mandible with
398	m1-3; MLP 15-391c, left mandible with broken dp4-m1.
399	Lectotype. MLP 15-391 Patterson (UMS, pers, comm.) and Pascual (1967).
400	Paralectotypes. MACN-A 246, MACN-A 247, MLP 15-39, MLP 15-57, MLP 15-200,
401	MLP 15-346, MLP 15-391a, MLP 15-391b, MLP 15-391c.
402	Referred material. (Supplementary appendix 1).
403	Geographic and stratigraphic occurrence. Santa Cruz Province. Santa Cruz Formation,
404	late early Miocene, Santacrucian SALMA (Supplementary appendix 1).
405	Diagnosis. Larger than A. minutus, A. minutissimus, and A. leucotheae. Lower deciduous
406	premolars with well-developed or reduced metalophulid II; mesolophid conspicuous, unlike
407	in A. gracilis. Lower molars with metalophulid II well-developed on m1 and reduced or
408	absent on m2-3, unlike A. minutus and A. minutissimus; accessory cusp on m1 variable

409 present and conspicuous posterior arm of the metaconid absent, unlike A. gracilis. Lower

incisors not compressed medio-laterally,	unlike A. n	ninutus and A.	minutissimus.	Mandible

411 with the masseteric fossa and numpio located more posteriorly than in *A. minutus*, *A.*

412 *minutissimus*, and *A. leucotheae*.

410

413 **Remarks.** We followed the same procedures as for Acarechimys minutus in identifying the 414 original type series used by Ameghino to describe Stichomys constans. In the MLP 415 collections, the specimen MLP 15-391 is catalogued as lectotype and MLP 15-391a, b, and 416 c are catalogued as syntypes of *Acarechimys constans*. Based on the MLP catalog, we have 417 confirmed that these specimens belong to the 'old collections' of the MLP. Patterson stated 418 that this species was based 'on a series of incomplete mandibles in the Museo de La Plata, 419 nos. 15-39, MLP 15-57, MLP 15-200, MLP 15-346, MLP 15-391 and MLP 15-391a-d 420 (UMS, pers. comm.). Of these, 15-391 agrees most closely with the type description and is 421 therefore designated as the lectotype'. Thus, it is evident that these fossils were available to 422 Patterson, who did not hesitate in considering them as part of Ameghino's original type 423 series. Additionally, three specimens figured in Ameghino (1889; Atlas: plate VI, figs. 6-8) 424 housed at the MACN also belong to the original type series (MACN-A 246 and MACN-A 425 247). Patterson (UMS, pers. comm.) stated that the palatal fragment described by 426 Ameghino as Stichomys constans (MACN-A 246; Atlas 1889: plate VI, fig. 8) should be 427 referred to Adelphomys candidus Ameghino, 1887, an assignation with which we agree. 428 Patterson (UMS, pers. comm.) and Pascual (1967) stated that MLP 15-391 was the 429 lectotype of Acarechimys constans. We agree with this assignation. By default, the 430 remaining specimens of the original type series constitute the paralectotypes. Nevertheless, 431 among the paralectotypes, MLP 15-200 has been lost since December 1978 (information 432 provided by the specimen label), and we refer MLP 15-346, MLP 15-391, and MLP 15-433 391b to Acarechimys gracilis based on molar and mandibular morphology (see below).

434	Patterson (in Patterson and Wood, 1982) 'provisionally' considered Stichomys
435	constans a synonym of Acarechimys minutissimus. However, this assignation is odd, and
436	we think it could have been an error, since Patterson in his UMS considered Acarechimys
437	constans as a valid species (pers, comm.). Additionally, based on its size and dental
438	morphology, this species has traditionally been considered a distinct species (Vucetich et
439	al., 1993 a? b?, 2010, 2015a; Kramarz, 2004; Croft et al., 2011; Arnal, 2012). Recently,
440	Verzi et al. (2016) erected the new genus Ameghinomys to include this species
441	(Ameghinomys constans) based on materials referred to Acarechimys minutus, Acarechimys
442	pulchellus, Acarechimys constans, and other previously undescribed specimens. The
443	conclusions of our systematic revision of Acarechimys differ from those of this publication.
444	Verzi et al. (2016) associate the palatal fragment labeled as 'type?' (MLP 15-410b) of
445	Acarechimys minutus mentioned in the previous section with the lectotype of Acarechimys
446	constans (MLP 15-391). They argue that MLP 15-410b is proportionally larger than
447	Acarechimys minutus, that it has a short mure comparable to the short ectolophid present in
448	lower molars of Acarechimys constans, and that although Ameghino (1887, 1889) did not
449	mention cranial fragments for Stichomys constans, he figured one in 1889 (Verzi et al.,
450	2016). Nevertheless, the mentioned palatal fragment (Ameghino, 1889; Atlas: plate VI, fig.
451	8) is MACN-A 246 (Fernicola 2011; pag. 52), and not MLP 15-410b as indicated by Verzi
452	et al. (2016). Ameghino (1889) did provide the following description for Stichomys
453	constans: ['la primera muela superior tiene también tres raíces, como en la especie
454	anterior (Stichomys regularis); y las cuatro muelas superiores ocupan un espacio
455	longitudinal de 9 milímetros, como las cuatro inferiores'] ['the first upper molar also has
456	three roots, as in the preceding species (Stichomys regularis); and the four upper cheek
457	teeth occupy a longitudinal space of 9 millimeters, like the four lowers'] (1889; pag. 247).

458 Additionally, MLP 15-410b isconsiderably smaller than S. constans [M1-3 are 6.85mm] 459 long, more than 2mm smaller than the value listed for *Stichomys constans* (9mm)]. Lastly, 460 since relatively short ectolophids are common in small rodents, we do not think that the 461 superficial resemblance to a 'short mure' on the upper molars (absent on both M2 of MLP 462 15-410b) can be used to refer unassociated upper and lower dentitions to the same species. 463 **Description.** Upper cheek teeth. As in A. minutus, both tooth rows are parallel to each 464 other(Fig. 4.1) and are obliquely implanted labially with respect to the palatal plane. The 465 upper cheek teeth are tetralophodont and wider than long (Fig. 4.1–2; Tab. 1). All molars 466 and the DP4 have a subquadrangular occlusal outline. The molars have a short anteroloph 467 that does not reach the paracone(Fig. 4.2), unlike in A. minutus, where it is long and fused 468 with this crest. The protoloph is oblique anteriorly and curved. The metaloph is straight, 469 departs from the junction of the mure and the anterior arm of the hypocone, and its labial 470 end fuses with the posteroloph, delimiting a metafossette in juveniles (Fig. 4.2). The 471 anterofossette and metafossette are equally deep and penetrate the occlusal surface slightly 472 further than the mesoflexus. The hypoflexus is the deepest flexus and is posteriorly 473 oriented.

The DP4 has a conspicuous metaloph, unlike in *A. minutus*, in which it is usually
reduced(Fig. 4.2). It is fully molarized.

476 *Skull*. The description is based on MPM-PV 15002, a partial palatal fragment.

477 The ventral root of the zygoma extends slightly in front of the DP4(Fig. 4.1), and its antero-

478 posterior diameter is similar to its dorso-ventral diameter, as in A. minutus. In ventral view,

the masseteric tuberosity is conspicuous. Posterior to the masseteric tuberosity is a small

480 foramen of uncertain homology(Fig. 4.1), as in the type species. On the dorsal face of the

481 ventral root of the zygoma is a faint furrow for the passage of the infraorbitalis nerve. In

482	palatal view, well-developed diastemal furrows are evident that extend posteriorly to
483	M1(Fig. 4.1), farther than in A. minutus. The posterior palatine foramina are conspicuous
484	and located between the M1s. The posterior nares open opposite the anterior half of the M2.
485	Lower cheek teeth. The dp4 is the longest tooth (Tab. 1). It has a curved metalophulid I. A
486	well-developed (MACN-A 4058; MACN-A 4061; MACN-A 4064; MLP 15-391) (Fig. 4.3)
487	or reduced (MACN-A 247a; MACN-A 4075) metalophulid II extends postero-lingually
488	from the protoconid. The ectolophid is oblique and extends posteriorly from the posterior
489	border of the protoconid. Near its posterior end, a well-developed mesolophid extends
490	lingually and usually reaches the metaconid (Fig. 4.3), as in A. minutissimus. The
491	hypolophid is straight or curved and reaches the entoconid. The posterolophid is long,
492	anteriorly concave, and does not contact the entoconid (Fig. 4.3). The anterofossettid is
493	rounded and relatively shallow, the metaflexid is narrow, and the posteroflexid is the
494	largest and deepest of the lingual flexids/fossettids. The hypoflexid is posteriorly oriented
495	and is deeper than the lingual flexids.
496	Lower molars have three main crests and a fourth, second in position, variably
497	developed (Fig. 4.3). The metalophulid I is curved, unlike in A. minutus and A.
498	minutissimus, where it is straight. A conspicuous metalophulid II is present in m1 but is
499	reduced or absent on m2-3 (Fig. 4.3). In some cases, a labio-lingually aligned accessory
500	cusp (Fig. 4.3) and/or a posterior extension of the metalophulid I is observed. These two
501	structures are generally reduced or absent in m2-3. The ectolophid is generally longer than
502	in the remaining species of the genus. The hypolophid and the posterolophid of the molars
503	resemble the condition in the dp4. In juveniles, the hypoflexid is confluent with the
504	posteroflexid (m2-3 in Fig. 4.3). The antero+mesoflexid is as broad and deep as the
505	posteroflexid.

506 Lower incisors are not laterally compressed, unlike in *A. minutus* and *A.*

minutissimus. They are long, with their posterior end located at the base of the coronoid508 process.

509	Mandible. The mental foramen, when present, is small and located opposite the anterior
510	half of dp4 or slightly anteriorly (Fig. 4.4). The nmmpio is more poorly developed than the
511	remaining species, antero-posteriorly short, and located mainly below m1 (Fig. 4.4), as in
512	A. gracilis. The masseteric crest is well-developed and is continuous with the posterior end
513	of the nmmpio; it extends laterally as in the remaining species of the genus. The masseteric
514	fossa is as deep as in A. minutus and A. gracilis; it is posteriorly positioned, with its anterior
515	border opposite m2 or the posterior end of m1 (Fig. 4.4). The furrow that delimits the
516	masseteric fossa antero-dorsally is poorly developed. The base of the coronoid process
517	extends anteriorly to a point between m2 and m3 (Fig. 4.4), unlike in the remaining species
518	of the genus in which it extends to m2. The mandibular symphysis extends posteriorly to
519	the level of m1, and a poorly developed chin is present just anterior to the anterior part of
520	the dp4.
521	
522	[FIGURE 4 ABOUT HERE]
523	
524 525	Acarechimys gracilis (Ameghino, 1891) comb.nov.
526	Figure 4.5–6
527	Stichomys gracilis Ameghino, 1891
528	Protacaremys pulchellus Ameghino, 1902
529	Acarechimys pascuali Verzi et al., 2016 partim

- 530 *Holotype*. MACN-A 4263, left mandible with dp4-m3.
- 531 *Referred material.* (Supplementary appendix 1).
- 532 *Geographic and stratigraphic occurrence*. Chubut and Santa Cruz provinces. Sarmiento
- 533 Formation, Colhué Huapi Member, early Miocene; Santa Cruz Formation, late early
- 534 Miocene (Supplementary Appendix 1).
- 535 *Emended diagnosis*. Within the size range of *A. constans* and slightly larger than *A.*
- 536 *minutus*. Lower deciduous premolars with well-developed metalophulid II and reduced
- 537 mesolophid, unlike remaining species. Lower molars with metalophulid II poorly
- developed in m1 and reduced in m2-3; accessory cusp and posterior arm of the metaconid
- 539 present, as in *A. minutus*. Lower incisors not laterally compressed, as in *A. constans*.
- 540 Mandible with the numpio and masseteric fossa located posteriorly, unlike in *A. minutus*,
- 541 A. minutissimus, and A. leucotheae.
- 542 *Remarks*. Stichomys gracilis was originally described by Ameghino (1891). Patterson (in
- 543 Wood and Patterson, 1982) considered *S. gracilis* to be a junior synonym of *Acaremys*
- 544 *minutus*, upon which he based the genus *Acarechimys* (Patterson and Wood, 1982).
- 545 Nevertheless, we do not think that MACN-A 4263 (holotype of *S. gracilis*) is assignable to
- 546 Acarechimys minutus; rather, it is indistinguishable from MACN-A 52-128, the holotype of
- 547 Acarechimys pulchellus (Ameghino, 1902). Thus, Acarechimys pulchellus is a junior
- 548 synonym of *Stichomys gracilis*, and we erect the new combination *Acarechimys gracilis*
- 549 (Ameghino, 1891).
- 550 *Description.* Lower cheek teeth. The m2 is the largest tooth in the dental series (Tab. 1).
- 551 The dp4 has a curved metalophulid I. The ectolophid and the metalophulid II extend
- 552 posteriorly from the protoconid. The metalophulid II is conspicuous and postero-lingually
- oblique, as in *A. minutissimus* and *A. constans* (Fig. 4.5). The mesolophid is reduced to a

short spur that extends from the posterior end of the metalophulid II and delimits a fossettid
(Fig. 4.5). The hypolophid is long and straight. The posterolophid is long and curved but
does not contact the lingual end of the hypolophid (Fig. 4.5). The hypoflexid is the deepest
flexid and is posteriorly oblique.

The lower molars have three main crests and a fourth, second in position, variably developed (Fig. 4.5). The metalophulid I is curved, as in *A. constans*. The metaconid extends posteriorly to form the posterior arm of the metaconid, which is well-developed in m1-3 (Fig. 4.5), unlike in *A. constans*, in which is absent. The metalophulid II is reduced but more developed in m1 than in m2-3(Fig. 4.5). An accessory cusp is present, including in m3, unlike in other species of the genus (Fig. 4.5). The hypolophid and posterolophid are as in dp4.

565 The lower incisors are robust and not laterally compressed. They have a thick 566 enamel layer, a straight lingual border, and a curved labial one. This tooth is long, as in the 567 remaining species of the genus, with its posterior end posterior and labial to m3 (Fig. 4.6). 568 *Mandible*. A short, concave diastema is present, as in the remaining species (Fig. 4.6). The 569 mental foramen is generally absent, but a very small foramen is present anterior to the dp4 570 in MPM-PV 17430. The nmmpio is long, conspicuous, and mostly located below m1 (Fig. 571 4.6). The masseteric crest is well-developed, continuous with the numpio, and projects 572 laterally. The masseteric fossa is slightly deeper than in A. constans but shallower than in A. 573 *minutissimus* (Fig. 4.6). The furrow that delimits the masseteric fossa antero-dorsally is 574 poorly developed, as in the remaining species. The coronoid process extends anteriorly to 575 the level of m2; it is postero-laterally extended and delimits a retromolar fossa lateral to 576 m2-3. Its anterior border is straight, and its dorsal tip is dorsal to the cheek teeth.

577	Posteriorly the mandibular notch is shallow. Lingually, the mandibular symphysis extends
578	posteriorly to the level of dp4; posteriorly, the mental process is moderately developed.
579	
580	Acarechimys leucotheae Vucetich et al., 2015
581	Figure 5. 1
582	
583	Type and only material. MPEF-PV 10677, left mandibular fragment with dp4-m3 and
584	incisor.
585	Geographic and stratigraphic occurrence. Chubut Province, Argentina.
586	Upper levels of Sarmiento Formation at Cabeza Blanca, late Oligocene; Deseadan
587	SALMA.
588	<i>Diagnosis</i> [modified from Vucetich <i>et al.</i> (2015a)]. Very small, within the size range of <i>A</i> .
589	minutissimus. Cheek teeth brachydont and terraced to a greater degree than in other species
590	of the genus. Lower molars with three crests plus a very short metalophulid II and an
591	accessory cusp in m1-2, as in A. minutus; posterior arm of the metaconid and posterior
592	extension of the metalophulid I absent; posterolophid more transverse than in the other
593	species, resulting in a more open posteroflexid. Lower deciduous premolar with the
594	ectolophid conspicuously separated from the protoconid, very oblique, and more
595	perpendicular to the antero-posterior axis of the tooth than in the other species of the genus;
596	metalophulid II reduced, as in some specimens of A. minutus and A. constans. Mandible
597	with the notch for the insertion of tendon of the masseter medialis pars infraorbitalis more
598	oblique than in the remaining species; mental foramen absent, as in A. minutissimus and A.
599	minutus.

600	Remarks. This species was recently described by Vucetich et al. (2015a) based on a single
601	specimen (Fig 5.1). No new specimens or additional information are available.
602	
603	[FIGURE 5 ABOUT HERE]
604	
605	Acarechimys minutissimus (Ameghino, 1887)
606	Figure 5. 2–4
607	Stichomys diminutus Ameghino, 1891
608	Sciamys tenuissimus Ameghino, 1894
609	
610	Type series. MACN-A 256, left mandible with dp4-m3; MACN-A 257, left mandible with
611	dp4-m3; MACN-A 258, right mandible with incisor and dp4-m3; MLP 15-188, left
612	mandible with dp4-m3.
613	Lectotype. MLP 15-188 Patterson in Pascual, 1967.
614	Paralectotypes. MACN-A 256, MACN-A 257, MACN-A 258.
615	Referred material. (Supplementary appendix 1).
616	Geographic and stratigraphic occurrence. Santa Cruz and Neuquén provinces, Argentina;
617	La Venta, Colombia. Pinturas, Santa Cruz, and Collon Curá formations, early Miocene, late
618	early Miocene, and middle Miocene, 'Pinturan' age, Santacrucian and Colloncuran
619	SALMAs; Villavieja Formation, middle Miocene, Laventan SALMA (Supplementary
620	appendix 1).
621	<i>Emended diagnosis</i> . Very small, within the size range of <i>A. leucotheae</i> . Cusps conspicuous
622	in young specimens. Lower deciduous premolar with reduced metalophulid II and well-
623	developed mesolophid, unlike the remaining species of the genus. Metalophulid II

624 generally absent in the lower molars or present in m1 as a bulge into the ectolophid, unlike 625 in the remaining species of the genus; accessory cusp in antero+mesoflexid of m1-2 626 variably present, and posterior arm of the metaconid and posterior extension of the 627 metalophulid I absent, unlike in A. minutus. Lower incisors large relative to the mandible 628 size. Mandible with the numpio straight and below dp4-m1, as in A. minutus and A. 629 leucotheae. 630 Remarks. MLP 15-188 is labeled as the lectotype of Acarechimys minutissimus. The MLP 631 collections include several specimens from the 'old collections' referable to A. 632 minutissimus (MLP 15-1, MLP 15-188a, MLP 15-398, MLP 15-408), but unfortunately the 633 available information does not indicate whether they were collected by C. Ameghino (as is 634 the case for A. minutus and A. constans). Patterson (UMS, pers, comm.) mentioned MLP 635 15-188 as the type of the species. Thus, we can infer that only MLP 15-188 was available 636 to him. Two specimens were figured by Ameghino (1889; Atlas: plate IV, figs. 24, 25). 637 Figure 24 corresponds to MACN-A 257, but the specimen corresponding to figure 25 could 638 not be found [Fernicola (2011) erroneously stated the reverse, that the figure 24 specimen 639 could not be found and that figure 25 specimen is MACN-A 257]. Additionally, MACN-A 640 256 and MACN-A 258 are mentioned in Ameghino's catalog as belonging to the same 641 stock as MACN-A 257. In fact, Ameghino (1889) mentioned that this species was 642 represented by several mandibles. Thus, we conclude that four specimens (MLP 15-188, 643 MACN-A 256, MACN-A 257, MACN-A 258) are part of the original type series used by 644 Ameghino to erect A. minutissimus. 645 Patterson (UMS, pers, comm.) and Pascual (1967) determined MLP 15-188 to be

the lectotype of the species. As a consequence, the remaining specimens of the original

647 species are considered to be paralectotypes.

648	Description. Upper cheek teeth. Tooth rows labially obliquely implanted with respect to the
649	palatal plane, as in A. minutus. Cheek teeth with four crests (Fig. 5.2). The M2 is slightly
650	larger than DP4 and M1 (Tab. 1). Cusps discernable and molars slightly terraced.
651	The molars have a subquadrangular occlusal outline(Tab. 1) and well-defined
652	paracone and metacone (Fig. 5.2). The protocone area is more rounded than in A. minutus.
653	The anteroloph is short, unlike in the type species, but an anterofossette forms with little
654	wear since the paracone does not extend very far anteriorly (M2; Fig. 5.2). The protoloph is
655	slightly curved. The metaloph is straight and ends labially in the metacone, which is
656	posteriorly extended and contacts the relatively short posteroloph. Consequently, the
657	antero- and posterofossettes are delimited in juvenile specimens (Fig. 5.2). The
658	paraflexus/fossette is the smallest and shallowest fossette, and extends across the occlusal
659	surface as far as the mesoflexus. The hypoflexus is the deepest flexus and is anteriorly
660	oriented.
661	The DP4 resembles the molars but differs in its rounded occlusal outline and in the
662	absence of an anteriorly oriented paracone. Unlike in A. minutus, the anteroloph is short
663	and oblique (Fig. 5.2), and in some specimens, the metaloph is reduced (MACN-A 4145),
664	as in A. minutus.
665	The upper incisors are oval in section, as in A. minutus. The enamel is thick, and the

666

668 Skull. The description is based on two small, poorly preserved skull fragments (MACN-A

669 12683; YPM-PVPU 15178). In the ventral aspect of the skull, the incisive foramina are

anterior face is straight and the labial face is curved.

670 well-developed, as in *A. minutus*. Posteriorly, they are continuous with well-developed

671 diastemal furrows that extend posteriorly to the anterior border of the DP4s. The ventral

672 root of the zygoma extends just in front of the DP4, and its antero-posterior diameter is 673 similar to its dorso-ventral diameter, as in the type species. The masseteric tuberosity is 674 well-developed, and the lateral furrow for the insertion of the lateral masseteric muscle is 675 shallow. Unlike in *A. minutus*, there is no foramen of uncertain affinities posterior to the 676 masseteric tuberosity. On the dorsal face of the ventral root of the zygoma is a faint furrow 677 for the passage of the infraorbital nerve.

678 Lower cheek teeth. Juveniles have terraced cheek teeth with the metaconid and entoconid

higher than the protoconid and hypoconid, and adults have flat occlusal surfaces. The dp4

of this species is most variable: it has a curved metalophulid I whose lingual and labial

681 portions can be separated from each other (MACN-A 4076; MACN-A 4083). The

682 metalophulid II is usually reduced, as in *A. minutus*, *A. leucotheae*, and some specimens of

683 A. constans(Fig. 5.3), but in some cases, it reaches the mesolophid. The ectolophid is

684 lingually concave, and in juveniles (MACN-A 1896; MPM-PV 15098), as well as in those

685 specimens from the Pinturas Formation, it is not connected to the protoconid. The

686 mesolophid is always well-developed, as in A. constans, and reaches the metaconid to

delimit an anterior fossettid (Fig. 5.3). In some cases, this crest is disconnected from the

688 ectolophid (MACN-A 4094). The hypolophid is straight or curved, and reaches the lingual

side of the tooth. The posterolophid is long and curved, unlike in A. leucotheae. The

anterofossettid is rounded and shallow and disappears with the posterofossette in adults.

691 The straight mesoflexid and the posteriorly oblique hypoflexid are the deepest flexi and

692 remain open in adults.

693 The molars have three crests. The metalophulid II is absent or reduced to a minute 694 bulge on m1 (Fig. 5.3). The metalophulid I is straight, unlike in *A. constans* and *A. gracilis*,

695 with a labio-lingually aligned protoconid and metaconid or a metaconid that is slightly

696 anterior to the protoconid (Fig. 5.3). The hypolophid and posterolophid are as in the dp4. 697 Antero+mesoflexid are merged owing to the absence of metalophulid II (Fig. 5.3). An 698 accessory cusp is usually present on m1 and m2 (Fig. 5.3). This cusp can be connected to 699 the metalophulid I by a posterior extension of the latter (MLP 15-398). The posterior arm of 700 the metaconid is not present. In some juvenile specimens (MACN-A 4083; MACN-A 4092; 701 MACN-A 4093; MLP 15-398), the hypoflexid is united with the posteroflexid. 702 Antero+mesoflexid and posteroflexid are similar in depth; the hypoflexid is the deepest 703 flexid and is posteriorly oblique. 704 Lower incisors are laterally compressed and very large relative to mandible size 705 (Fig. 5.4). The enamel layer is thick, and the anterior face is straight and the labial face is 706 curved. The incisors are long, extending below the m3 and ending in a bulge on the base of 707 the coronoid process or in a furrow in broken specimens (Fig. 5.4). 708 *Mandible*. The mandible of this species has a conservative morphology that contrasts with 709 the great variability of the lower cheek teeth. It is robust, and the diastema is dorsally 710 concave and shorter than the tooth row as in the remaining Acarechimys species (Fig. 5.4). 711 The mental foramen is nearly always absent (only on MACN-A 4081 is a very small 712 foramen located anterior to the dp4). The numpio is straight and conspicuous, and extends 713 below the dp4-m1 (Fig. 5.4). The masseteric crest is continuous with the posterior border of 714 the numpio and protrudes laterally. The masseteric fossa is deep anteriorly, as in A. 715 *minutus*(Fig. 5.4). The furrow that delimits this fossa antero-dorsally is poorly developed. 716 The base of the coronoid process extends forward to the level of m2, as in A. minutus and 717 A. gracilis, thereby delimiting a retromolar fossa lateral to m3. The mandibular symphysis 718 extends posteriorly to m1, and a moderately developed chin is present anteriorly, which 719 delimits the notch for the insertion of the digastric muscle.

721 Statistical Analysis. We tested for size differences among Acarechimys species using m1 722 and m2 length, as these allowed for the largest sample sizes. ANOVAs of both m1 length 723 (N = 69) and m2 length (N = 62) were highly significant (p < 0.0001). Based on Tukey's 724 HSD (Tab. 2), two subgroups of *Acarechimys* are statistically distinguishable: a group of 725 larger species consisting of A. constans, A. gracilis, and the sample from Quebrada Honda 726 (referred here tentatively to A. minutus and A. minutissimus), and a smaller group consisting 727 of A. leucotheae, A. minutissimus, and A. minutus. These size groupings are distinct in a 728 bivariate plot of m1 vs. m2 length (Fig. 6; N = 58). 729 Two conclusions can be drawn from this analysis. First, size does not appear to be a 730 useful criterion for distinguishing A. minutissimus from A. minutus, even though this was 731 the main criterion used by Ameghino (1887) for distinguishing these species. Although the 732 smallest Acarechimys specimens do pertain to A. minutissimus, and m1 and m2 lengths are 733 statistically different between these species (though only at the p < 0.05 to 0.005 level), 734 there is significant size overlap between larger specimens of A. minutissimus and smaller 735 specimens of A. minutus (Fig. 6). The single known specimen of A. leucotheae plots very 736 close to this area of overlap. Acarechimys constans and A. gracilis show a pattern similar to 737 A. minutissimus and A. minutus but with even greater size overlap (Fig. 6); the two species 738 show virtually the same range of values for both m1 and m2 length and cannot be 739 distinguished from one another based on size alone. 740 The other noteworthy result of this analysis is that the specimens in the *Acarechimys* 741 sample from Quebrada Honda, tentatively identified as both A. *minutus* and A. 742 minutissimus, are significantly larger than Patagonian specimens referred to these species,

744 Honda populations referred to A. minutus and A. minutissimus evolved in parallel toward 745 larger size in this region during the late middle Miocene, or that they represent different 746 species from those from Patagonia. If the first hypothesis is correct, the differences in size 747 could be the result of similar responses to a common environmental factor such as climate 748 or habitat. Body size change in response to climate has been documented in other extinct 749 species (e.g., Gingerich, 2003; Chew, 2015) and climate change has been proposed to have 750 had a significant effect on the evolution of body size in North American Cenozoic 751 mammals (Lovegrove and Mowoe, 2013). In this case, it is curious that the single specimen 752 of Acarechimys from La Venta, Colombia, here referred to A. minutissimus, is similar in 753 size to Patagonian specimens of this species (m1 length = 1.56 mm; Walton, 1990, tab. 1). 754 If climate (temperature) were primarily responsible for the larger size of Quebrada Honda 755 specimens, one might expect a similar pattern at La Venta, which is the same age as 756 Ouebrada Honda and also located in tropical latitudes. Testing this hypothesis requires 757 studying additional specimens of Acarechimys collected at Ouebrada Honda since the 758 publication of Croft *et al.* (2011) and incorporating data from ongoing paleoenvironmental 759 studies at the site (Cadena et al., 2015; Catena et al., 2016). It should also be noted that 760 three A. minutus specimens from Patagonia are particularly large and fall within the range 761 of specimens from Quebrada Honda (the first two are represented only by m1): MLP 82-762 XII-1-31 (Santa Cruz Province, exact provenance unknown), MLP 91-IX-1-200 (Collon 763 Curá Formation at Cañadón del Tordillo), and MPM-PV 4193 (Puesto La Costa, costal 764 Santa Cruz Province; Fig. 6). Each of these represents a relatively large individual within 765 an otherwise small-bodied population and provides no systematic explanation for the 766 relatively large size of the Quebrada Honda sample.

767

769

770 Phylogenetic Analysis

771 The cladistic analysis resulted in 12 Most Parsimonious Trees (MPTs) of 798 steps 772 each (Consistency index=0.318; Retention index=0.544) and the best score hit 57 times out 773 of 1,000. The strict consensus tree (Fig. 7) has a well-resolved topology. Results are in 774 general agreement with previous analyses, but minor differences are present with respect to 775 the relationships of some groups. One interesting aspect is the basal position of 776 Draconomys verai (early Oligocene of Chubut province, Argentina) within caviomorphs. 777 The phylogenetic relationships of some species originally described as basal octodontoids 778 (e.g., D. verai; Eosallamys simpsoni, Eoespina woodi, and Eosachacui lavocati from the 779 late Eocene?-early Oligocene of Peru; Changquin woodi from the late Oligocene of Chubut 780 province; and *Dudumus ruigomezi* from the early Miocene of Chubut province, Argentina) 781 and of those taxa from the late middle Eocene of Contamana, Peru (*Cachiyacuv* 782 contamanensis and Canaanimys maquiensis) are not clear and vary in different analyses 783 (Antoine et al., 2012; Arnal et al., 2014; Arnal and Vucetich, 2015). Therefore, the 784 relationships of these species will be the subject of a future study focused on basal 785 caviomorphs. 786 Pan-Octodontoidea (node 1) is characterized by six synapomorphies [metaloph on 787 DP4 indistinct, probably fused to the posteroloph (character 13:1); mesostyle on DP4

indistinct or absent (character 15:0); mesolophule slightly oblique on M1-M2 (character

- 42:1); presence of an anterior flexid in metalophulid I of p4 (character 70:0); short
- mesolophid on p4 (character 73:0); nmmpio at the middle of the mandible high

(character111:1)]. Nevertheless, node 1has a low support (Fig. 7), since most of thosecharacters are scored in only a few taxa.

793 Within stem-Octodontoidea, several clades previously recovered in other analyses 794 are also recovered here. Node 2 (Fig. 7) is the sister-clade to remaining octodontoids and 795 includes *Eosallamys simpsoni*, *Migraveramus beatus*, and several other species including 796 the enigmatic Plesiacarechimys koenigswaldi from the middle Miocene of Neuquén 797 Province (Argentina). Later-diverging clades include (*Eoespina woodi* + Sallamys? 798 *minutus*), Acaremyidae, (*Caviocricetus lucasi* + *Dudumus ruigomezi*), and the five species 799 of Acarechimys. The phylogenetic relationships of crown Octodontoidea (Fig. 7) should be 800 considered tentative because the taxonomic sample of this study is not focused on this part 801 of the tree.

802 Acarechimys is recovered as a monophyletic genus of stem-octodontoids (Fig. 7) 803 characterized by the presence of brachydont cheek teeth (character 3:0), the presence of an 804 accessory cusp on m1-2 (character 97:0), and a groove for the passage of the nerve 805 infraorbitalis (character 139:1). Acarechimys minutus, the earliest-diverging species, is 806 distinguished by a metacone that is slightly lingual to the paracone on M2 (character 39:1). 807 The clade of Acarechimys gracilis + A. constans is characterized by a lack of compressed 808 lower incisors (character 101:1) and by having the nmmpio positioned beneath m1 809 (character 110:0). Its sister clade, A. minutissimus + A. leucotheae, is characterized by the 810 presence of terraced occlusal surfaces in all cheek teeth (character 9:0) and a deep anterior 811 portion of the masseteric fossa (character 113:2). A striking aspect of these results is the 812 reacquisition of very low cheek teeth by the genus (interpreted as a reversal within 813 octodontoids), although such a reversal has never been postulated for octodontoids. 814 Analyses underway will further test this hypothesis. Lastly, unlike the proposal of Verzi et
al. (2016) *Abrocoma cinerea* is not directly related to any species of *Acarechimys*; rather, it
is the earliest-diverging crown-Octodontoidea.

- 817 [FIGURE 7ABOUT HERE]
- 818
- 819

Discussion and Conclusions

820 The systematic and phylogenetic analyses performed here allow us to define the content of 821 the Acarechimys group and to better discriminate the included species. Acarechimys is 822 characterized by a unique mix of states that are plesiomorphic (e.g., low-crowned cheek 823 teeth) and apomorphic (retention of the deciduous premolar, absence of mental foramen, 824 presence of an accessory cusp on m1-2, and presence of a groove for the passage of the 825 nerve infraorbitalis) among octodontoids. Additionally, Acarechimys species differ from 826 each other by the presence/absence of dental and mandibular structures (Tab. 3). Our 827 statistical analyses demonstrate that size is not a relevant feature for distinguishing A. 828 minutus from A. minutissimus. Traditionally, this was the main feature used for 829 distinguishing species, albeit tentatively (Vucetich et al., 1993a), but our metric analyses 830 demonstrate that there are significant overlaps in size among specimens referred to these 831 species (see above; Fig. 5).

The temporal and geographic distributions of *Acarechimys* species suggests that the genus could have evolved in Patagonia by at least the early late Oligocene (in the first Patagonian radiation event; Arnal and Vucetich, 2015). The geologically oldest species is the minute *Acarechimys leucotheae*, which has only been identified at the late Oligocene (Deseadan SALMA) site of Cabeza Blanca, in Chubut Province, Argentina (Fig. 2). Cabeza Blanca has produced the greatest diversity of late Oligocene rodents in South America, nearly three times as many species as any other site of this age (Vucetich *et al.*, 2015a).This

839 is likely due, at least in part, to the large number of rodent specimens that have been 840 collected there and the thorough taxonomic investigations that have focused on this site 841 (see Wood and Patterson, 1959; Vucetich et al., 2015a), though only a single specimen of 842 A. leucotheae has been identified from the site thus far. This suggests that Acarechimys was 843 relatively rare at that time, a conjecture that is supported by the absence of specimens 844 referable to the genus from La Flecha, the other rich Patagonian locality. Nevertheless, it is 845 noteworthy that no specimens of *Acarechimys* have yet been identified from Salla, Bolivia, 846 which has also produced a rather diverse and rich fauna of late Oligocene rodents (Lavocat, 847 1976; Patterson and Wood, 1982; Vucetich, 1991). Thus, the present evidence suggests that 848 Acarechimys could have originated in Patagonia. 849 Acarechimys apparently continued to be rare prior to the late early Miocene, as 850 Acarechimys gracilis, from the Colhuehuapian SALMA of Chubut Province (Fig. 2), is 851 known only through one specimen, the holotype of *Protacaremys pulchellus* (Ameghino, 852 1902; Vucetich et al., 2010). Kramarz et al. (2004) mentioned the presence of Acarechimys 853 for the Colhuehuapian beds of Chichinales Formation in Río Negro (Fig. 2), but we have 854 studied this specimen and determined that it does not belong to *Acarechimys*. Despite the 855 rich octodontoid fossil record and the great morphological disparity of this group prior to 856 the late early Miocene, Acarechimys remained poorly diversified during this interval (about

half of Colhuehuapian caviomorphs are octodontoids; Vucetich *et al.*, 2010, 2015b).

By the late early Miocene, *A. minutissimus* is recorded for the 'Pinturan' age of Santa

859 Cruz Province (Fig. 2) (Kramarz, 2004; see Kramarz and Bellosi, 2005 and Perkins et al.,

860 2012 for a discussion about the overlap of some parts of the 'Pinturan' and Santacrucian

861 levels). The acme of the genus was during the Santacrucian SALMA (Santa Cruz

862 Formation), where four of the five recognized species lived in what is today

863	ArgentineanSanta Cruz Province (A. minutus, A. constans, A. gracilis, and A.
864	minutissimus). This great diversity could partly be attributable to the fact that the Santa
865	Cruz Formation exposures have a wide distribution (Fig. 2), and have been broadly
866	prospected since the nineteenth century, resulting in an unparalleled collection of fossils
867	(Ameghino, 1887, 1889; Scott, 1905; Vizcaíno et al., 2012; Fernicola et al., 2014).
868	Acarechimys has also been recovered at other Santacrucian localities in Chile (Flynn et al.,
869	2002, 2008; Croft et al., 2007), but these materials have not yet been figured nor described
870	in detail. In general, Santacrucian caviomorphs are quite distinct from those of the
871	Colhuehuapian and also from those of the 'Pinturan' age (Vucetich et al., 2015b),
872	exhibiting a marked tendency toward increased hypsodonty (Kramarz, 2001; Pérez and
873	Vucetich, 2012; Arnal and Pérez, 2013). This ecological shift in rodents is generally
874	thought to be a consequence of climatic deterioration in Patagonia between Colhuehuapian
875	and Santacrucian intervals (Vucetich, 1986; Pérez and Vucetich, 2012; Arnal and Pérez,
876	2013). However, the evidence for such deterioration is equivocal. Global temperatures
877	remained relatively stable across this interval (Zachos et al., 2008), and open habitats were
878	present at least episodically during both the Colhuehuapian and Santacrucian SALMAs
879	(Dunn et al., 2015), though arid-adapted shrubs only became dominant in Patagonia after
880	the late Miocene (Palazzesi and Barreda, 2012). Kay et al. (2012) interpreted the
881	paleoenvironment of coastal Santa Cruz as highly seasonal with a mosaic of vegetation
882	including both forested and more open areas. It is possible that an increase in exogenous
883	grit, such as volcanic ash, may have driven the trend toward increased hypsodonty and a
884	replacement of caviomorph species across this interval, but it is difficult to test such a
885	hypothesis at present due to a paucity of studies that include data from both the
886	Colhuehuapian and Santacrucian SALMAs. Regardless of the precise causes of the

ecological shifts in other rodents, *Acarechimys* is noteworthy in being the only octodontoid
lineage that retained generalized, brachydont cheek teeth into the late early Miocene in high
latitudes.

890 The Patagonian fossil record is scarce for the middle Miocene, and known fossil sites 891 have a more northerly location compared to the early Miocene (Pascual and Ordreman 892 Rivas, 1971; Pascual and Ortiz Jaureguizar, 1990; Pérez, 2010; Arnal and Pérez, 2013). 893 Rodents are represented in few Colloncuran localities (Colloncuran SALMA; earliest 894 middle Miocene) in Neuquén and Río Negro provinces (e.g., Cañadón del Tordillo and 895 Pilcaniveu Viejo respectively: Bondesio et al., 1980; Vucetich et al., 1993a; Fig. 2). During 896 the Mayoan (latest middle Miocene), rodents have been reported from several small 897 faunules in western Chubut and Santa Cruz provinces (Kraglievich, 1930; Bondesio et al., 898 1980; Vucetich and Pérez, 2011; Pérez et al., 2016), as well as the locality of El Petiso in 899 Chubut Province, whose age is estimated to be post-Colloncuran (Villafañe *et al.*, 2008; 900 Arnal and Pérez, 2013). Among these middle Miocene localities, Acarechimys has only 901 been identified at Cañadón del Tordillo and Estancia Collon Curá. In a recent preliminary 902 revision of unpublished caviomorphs of Cañadón del Tordillo and Estancia Collon Curá, a 903 very high octodontoid diversity was identified (Vucetich and Arnal, pers. obs.). However, 904 Acarechimys diversity appears to be lower than during the Santacrucian. During this time, 905 northern Patagonia experienced a short period of regreening; forests and more humid 906 conditions are inferred for Cañadón del Tordillo based on the presence of monkeys and a 907 high diversity of porcupines (Candela, 2003; Dunn et al., 2015; Vucetich et al., 2015b), as 908 well as many low-crowned octodontoids (Vucetich and Arnal, pers. obs.). Few late 909 Miocene sites are known from Patagonia. These have yielded only fragmentary remains of

910 rodents and no octodontoids (Pascual and Bondesio, 1985; Vucetich *et al.*, 2005; Dozo *et al.*, 2010).

912 A variety of fossil sites are known from central and northern Argentina and lower 913 latitudes of the continent during the Eocene to Miocene interval. Sites of Eocene and 914 Oligocene age are known from Peru, Bolivia, Brazil, and Uruguay. In general, the fossil 915 record of these localities (with the exception of Salla, Bolivia) is very poor, and no 916 Acarechimys or closely similar taxa have been described (Lavocat, 1976; Mones and 917 Castiglione, 1979; Patterson and Wood, 1982; Vucetich, 1991; Vucetich et al., 1993b; 918 Bond et al., 1998; Vucetich and Ribeiro, 2003; Frailey and Campbell, 2004; Antoine et al., 919 2012). An unidentified species of Acarechimys was mentioned for the late early Miocene of 920 Chucal, northern Chile (~18° S; Croft et al., 2007), and the genus has been recorded at the 921 late middle Miocene of La Venta, Colombia (~3° N; Walton, 1997), Quebrada Honda, 922 Bolivia (~22° S; Croft et al., 2011), and the Fitzcarrald Arch in Peruvian Amazonia (~11° 923 S; Tejada-Lara et al., 2015: fig. 9N) (Fig. 2). Other early and middle Miocene localities 924 have yielded remains of caviomorphs, but there is no record of Acarechimys (e.g., Madre de 925 Dios Subandean Zone, Peru; Antoine et al., 2013). For the late Miocene, Campbell et al. 926 (2006) mentioned the possible presence of Acarechimys in the Madre de Dios Formation in 927 the Amazonia region, and Antoine et al. (2016) did the same for the Pebas Formation of 928 Peru. Based on our firsthand study of the material of the Madre de Dios Formation and 929 examination of photos of specimens from the Pebas Formation, we do not believe 930 Acarechimys occurs at these sites. Instead, the specimens from the Amazonia region 931 represent a new caviomorph species that is broadly represented in southwest Amazonia 932 (Brazil and Peru) during the late Miocene (Vucetich et al., in prep). The phylogenetic

relationships of this new taxon relative to *Acarechimys* will be the subject of futureresearch.

935 Based on available evidence. Acarechimys was apparently not present in lower latitudes 936 of the continent (north of 35° S) before the early Miocene; the factors favoring its dispersal 937 after this time remain to be elucidated. The change in its distribution toward low latitudes 938 after the early middle Miocene is broadly reminiscent of a pattern of range contraction seen 939 in several other groups of mammals including vermilinguan xenarthrans, platyrrhine 940 primates, and astrapothere ungulates (Pascual et al., 1996;Ortiz Jaureguizar and Cladera, 941 2006; Croft *et al.*, 2016), and it raises the possibility of a common environmental or 942 ecological cause. Paleoecological studies of Acarechimys are necessary to provide 943 additional insights into how and why this tiny caviomorph was able to achieve the widest 944 temporal and geographic distribution of any caviomorph genus, while retaining a 945 persistently brachydont dentition.

946

947 AKNOWLEDGMENTS

948 We are grateful to A. Kramarz (MACN), M. Reguero, M. De los Reyes, and A. Sacarano

949 (MLP-PV), F. Anaya (UATF), and Dirección de Patrimonio Cultural and MPM-PV for

providing access to specimens under their care; the photographer of the MLP, B. Pianzola,

951 for assistance photographing specimens; to M. Reguero and E. Tonni (MLP) for discussion

952 of possible locations of Ameghino's fossils; to D. Brinkman and N. Upham, Division of

953 Vertebrate Paleontology of the Peabody Museum of Natural History, Yale University, New

954 Haven, Connecticut, USA for kindly providing photographs of YPM-VPPU

955 15806(photographed by Jamie Henderson); to M. E. Pérez, L. Marivaux, and A. Otero for

956 their valuable comments that improved the final version of the manuscript. This is a

- 957 contribution to the projects PICT 2014-2734 (MA), PICT 2012-1483 and UNLP 11/N674
- 958 (MGV), NSF EAR 958733 and EAR 1423058 (DAC), PIP 781 and UNLu CCD-CD:
- 959 054/12 (JCF), PICT 2013-0389 and UNLP 11/N750 (SFV).
- 960

961 **REFERENCES**

- 962 Ameghino, F. 1887. Enumeración sistemática de las especies de mamíferos fósiles
- 963 coleccionadas por Carlos Ameghino en los terrenos eocenos de la Patagonia austral.
- 964 Boletín del Museo de La Plata 1: 1–26.
- 965 Ameghino, F. 1889. Contribución al conocimiento de los mamíferos fósiles de la República

966 Argentina. Actas de la Academia Nacional de Ciencias en Córdoba 6: 1–1027.

- 967 Ameghino, F. 1891. Nuevos restos de mamíferos fósiles descubiertos por Carlos Ameghino
- 968 en el Eoceno inferior de la Patagonia austral. Especies nuevas, adiciones y

969 correcciones. *Revista Argentina de Historia Natural* 1: 289–328.

- 970 Ameghino, F. 184. Enumération synoptique des espéces des mammiferes fósiles des
- 971 formations éocenes de Patagonie. *Boletín de la Academia Nacional de Ciencias de*
- 972 *Córdoba* 13: 259–452.
- 973 Ameghino, F. 1902. Première contribution à la connaissance de la faune mammalogique
 974 des couches à *Colpodon. Boletín de la Academia Nacional de Ciencias en Córdoba*975 17: 71–138.
- 976 Antoine, P.-O., Marivaux, L., Croft, D.A., Billet, G., Ganerod, M., Grégory Fanjat, C.,
- 977 Rousse, S., and Salas-Gismondi, S. 2012. Middle Eocene rodents from Peruvian
- 978 Amazonia reveal the pattern and timing of caviomorph origins and biogeography.
- 979 *Proceedings of the Royal Society B* 279: 1319–1326.

980	Antoine, PO., Roddaz, M., Brichau, S., Tejada-Lara, J., Salas-Gismondi, R., Altamirano,
981	A., Louterbach, M., Lambs, L., Otto, T., and Brusset, S. 2013. Middle Miocene
982	vertebrates from the Amazonian Madre de Dios Subandean Zone, Perú. Journal of
983	South American Earth Sciences 42: 91–102.
984	Antoine, PO., Abello, M.A., Adnet, S., Altamirano Sierra, A.J., Baby, P., Billet, G.,
985	Boivin, M., Calderón, Y., Candela, A., Chabain, J., Corfu, F., Croft, D.A., Ganerod,
986	M., Jaramillo, C., Klaus, S., Marivaux, L., Navarrete, R.E., Orliac, M.J., Parra, F.,
987	Pérez, M.E., Pujos, F., Rage, JC., Ravel, A., Robinet, C., Roddaz, M., Tejada-
988	Lara, J., Vélez-Juarbe, J., Wesselingh, F.P., and Salas-Gismondi, R. 2016. A 60-
989	million-year history of western Amazonian ecosystems in Contamana, eastern Peru.
990	Gondwana Research 31: 30–59.
991	Arnal, M. 2012. [Sistemática, filogenia e historia evolutiva de roedores Octodontoidea
992	(Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al
993	origen de la familia Octodontidae. Tesis doctoral, Facultad de Ciencias Naturales y
994	Museo, Universidad Nacional de La Plata, La Plata, 317 p. Unpublished.].
995	Arnal, M., and Kramarz, A.G. 2011. First complete skull of an octodontoid (Rodentia,
996	Caviomorpha) from the early Miocene of South America and its bearing in the early
997	evolution of Octodontoidea. Geobios 44: 435-444.
998	Arnal, M., and Perez, M.E. 2013. A new acaremyid rodent (Hystricognathi, Octodontoidea)
999	from the middle Miocene of Patagonia (South America) and considerations on the
1000	early evolution of Octodontoidea. Zootaxa 3616: 119-134.
1001	Arnal, M., Kramarz, A.G., Vucetich, M.G., and Vieytes, C.E. 2014. A new early Miocene
1002	octodontoid rodent (Hystricognathi, Caviomorpha) from Patagonia (Argentina) and

- 1003 a reassessment of the early evolution of Octodontoidea. Journal of Vertebrate 1004 Paleontology 34: 397-406. 1005 Arnal, M., and Vucetich, M.G. 2015. Main radiation events in Pan-Octodontoidea 1006 (Rodentia, Caviomorpha). Zoological Journal of the Linnean Society 175: 587-606. 1007 Bond, M., López, G., Reguero, M., Scillato-Yané, G.J., and Vucetich, M.G. 1998. Los 1008 mamíferos de la Fm. Fray Bentos (Oligoceno superior?) de las provincias de 1009 Corrientes y Entre Ríos, Argentina, Asociación Paleontológica Argentina, 1010 Publicación Especial 5: 41–50. 1011 Bondesio, P., Rabassa, J., Pascual, R., Vucetich, M.G., and Scillato-Yané, G.J. 1980. La 1012 Formación Collón Curá de Pilcaniyeu Viejo y sus alrededores (Río Negro, 1013 República Argentina). Su antigüedad y las condiciones ambientales según su 1014 distribución, su litogénesis y sus vertebrados. 2º Congreso Argentino de 1015 Paleontología y Bioestratigrafía y 1º Congreso Latinoamericano de Paleontología 1016 (Buenos Aires), Actas 3: 85–99. 1017 Bowdich, T.E. 1821. An analysis of the natural classifications of Mammalia for the use of 1018 students and travelers. Smith p. 115. 1019 Bremer, K. 1994. Branch support and tree stability. *Cladistics* 10: 295–304. 1020 Cadena, E.A., Anaya, F., and Croft, D.A. 2015. Giant fossil tortoise and freshwater chelid 1021 turtle remains from the middle Miocene, Quebrada Honda, Bolivia: Evidence for 1022 lower paleoelevations for the southern Altiplano. Journal of South American Earth 1023 Sciences 64: 190–198.
- 1024 Campbell Jr., K.E., Frailey, C.D., and Romero-Pittman, L. 2006. The Pan-Amazonian
- 1025 Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the

- 1026 modern Amazon River system. *Palaeogeography*, *Palaeoclimatology*,
- 1027 *Palaeoecology* 239: 166–219.
- Candela, A.M. 2003. A new porcupine (Rodentia, Hystricognthi, Erethizontidae) from the
 early and Middle Miocene of Patagonia. *Ameghiniana* 40: 483–494.
- 1030 Candela, A.M., and Rasia, L.L. 2012. Tooth morphology of Echimyidae (Rodentia,
- 1031 Caviomorpha): homology assessments, fossils and evolution. *Zoological Journal of*1032 *the Linnean Society* 164: 451–480.
- 1033 Catena, A.M., Saylor, B., and Croft, D.A. 2016. Using ichnofossils and paleosols to
- 1034 reconstruct the middle Miocene paleoenvironment of Quebrada Honda, Bolivia.
- Journal of Vertebrate Paleontology, SVP Program and Abstracts Book 2016: 112–
 1036 113.
- 1037 Chew, A.E. 2015. Mammal faunal change in the zone of the Paleogene hyperthermals
 1038 ETM2 and H2. *Climate of the Past* 11: 1223–1237.
- 1039 Croft, D.A., Flynn J.J., and Wyss, A.R. 2007. A new basal glyptodontid and other
- 1040 Xenarthra of the early Miocene Chucal fauna, northern Chile. *Journal of Vertebrate*1041 *Paleontology* 27: 781–797.
- 1042 Croft, D.A., Chick, J.M.H, and Anaya, F. 2011. New middle Miocene caviomorph rodents
 1043 from Quebrada Honda, Bolivia. *Journal of Mammalian Evolution* 18: 245–268.
- 1044 Croft, D.A., Carlini, A.A, Ciancio, M.R., Brandoni, D., Drew, N.E., Engelman, R.K., and
- 1045 Anaya, F. 2016. New mammal faunal data from Cerdas, Bolivia, a middle-latitude
- 1046 Neotropical site that chronicles the end of the Middle Miocene Climatic Optimum
- 1047 in South America. *Journal of Vertebrate Paleontology*. DOI:
- 1048 10.1080/02724634.2016.1163574.

1049	Dozo, M.T., Bouza, P., Monti, A., Palazzesi, L., Barreda, V., Massaferro, G., Scasso, R.A.,
1050	and Tambussi, C.P. 2010. Late Miocene continental biota in Northeastern Patagonia
1051	(Península Valdés, Chubut, Argentina). Palaeogeography, Palaeoclimatology,
1052	Palaeoecology 297: 100–109.
1053	Dunn, R.E., Strömberg, C.A.E., Madden, R.H., Kohn, M.J., and Carlini, A.A. 2015. Linked
1054	canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347: 258-
1055	261.
1056	Esteban, G., Nasif, N., and Georgieff, S.M. 2014. Cronobioestratigrafia del Mioceno
1057	tardío-Plioceno temprano, Puerta de Corral Quemado y Villavil, provincia de
1058	Catamarca, Argentina. Acta Geológica Lilloana 26: 165-192.
1059	Fernicola, J.C. 2011. Implicancias del conflicto Ameghino-Moreno sobre la colección de
1060	mamíferos fósiles realizada por Carlos Ameghino en su primera exploración al río
1061	Santa Cruz, Argentina. Revista del Museo Argentino de Ciencias Naturales 13: 41-
1062	57.
1063	Fernicola, J.C., Cuitiño, J.I., Vizcaíno, S.F., Bargo, M.S., and Kay, R.F. 2014. Fossil
1064	localities of the Santa Cruz Formation (Early Miocene, Patagonia, Argentina)
1065	prospected by Carlos Ameghino in 1887 revisited and the location of the
1066	Notohippidian. Journal of South American Earth Sciences 52: 94–107.
1067	Flynn, J.J., Novacek, M.J., Dodson, H.E., Frassinetti, D., McKenna, M.C, Norell, M.A.,
1068	Sears, K.E., Swisher III, C.C., and Wyss, A.R. 2002. A new fossil mammal
1069	assemblage from the southern Chilean Andes: implications for geology,
1070	geochronology, and tectonics. Journal of South American Earth Sciences 15: 285-
1071	302.

1072	Flynn, J.J., Charrier, R., Croft, D.A., Gans, P.B., Herriot, T.M., Wertheim, J.A., and Wyss,
1073	A.R. 2008. Chronologic implications of new Miocene mammals from the Cura-
1074	Mallín and Trapa-Trapa formations, Laguna del Laja area, South Chile. Journal of
1075	South American Earth Sciences 26: 412–423.
1076	Frailey, C.D., and Campbell, K.E.2004. Paleogene rodents from Amazonian. In: K.E. Campell Jr.
1077	(Ed.), The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru. Natural
1078	History Museum of Los Angeles County, p. 71-130.
1079	Gingerich, P.D. 2003. Mammalian responses to climate change at the Paleocene-Eocene
1080	boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming.
1081	Geological Society of America Special Paper369: 463–478.
1082	Goloboff, P.A., and Farris, J.S. 2001. Methods for quick consensus estimation. Cladistics
1083	17: 25–34.
1084	Goloboff, P.A., and Catalano, S.A. 2016. TNT version 1.5, including a full implementation
1085	of phylogenetic morphometrics. Cladistics 32: 221-238.
1086	Kay, R.F., Vizcaíno, S.F., and Bargo, M.S. 2012. A review of the paleoenvironment and
1087	paleoecology of the Miocene Santa Cruz Formation. In: S.F. Vizcaíno, R.F. Kay,
1088	and M.S. Bargo (Eds.), Early Miocene Paleobiology in Patagonia: High-Latitude
1089	Paleocommunities of the Santa Cruz Formation. Cambridge University Press,
1090	Cambridge. p. 331–365.Kraglievich, L. 1930. La Formación Friaseana del río Frías,
1091	río Fénix, Laguna Blanca, etc. y su fauna de mamíferos. Physis 10: 127-161.
1092	Kraglievich, J. L. 1965. Speciation phyletique dans les rongeurs fossiles du genre
1093	Eumysops Ameghino (Echimyidae, Heteropsomyinae). Extrait de Mammalia 29:
1094	258–267.

1095	Kramarz, A.G. 2001. Un nuevo roedor Adelphomyinae (Hystricognathi, Echimyidae) del
1096	Mioceno medio inferior de Patagonia, Argentina. Ameghiniana 38: 163-168.
1097	Kramarz, A.G. 2004. Octodontoids and erethizontoids (Rodentia, Hystricognathi) from the
1098	Pinturas Formation, Early-Middle Miocene of Patagonia, Argentina. Ameghiniana
1099	41: 199–216.
1100	Kramarz, A.G., and Bellosi, E.S. 2005. Hystricognath rodents from the Pinturas Formation,
1101	Early-Middle Miocene of Patagonia, biostratigraphic and paleoenviromental
1102	implications. Journal of South American Earth Sciences 18: 199–212.
1103	Kramarz, A.G., Bellosi, E.S., Ribeiro, A.M., and Ortiz, R. 2004. Nuevos registros de
1104	vertebrados fósiles de la Formación Chichinales, Mioceno Temprano de la
1105	provincia de Río Negro, Argentina. Ameghiniana 41: 53R.
1106	Lavocat, R. 1976. Rongeurs caviomorphes de l'Oligocene de Bolivia. II, Rongeurs du
1107	bassin Deseadien de Salla-Luribay. Palaeovertebrata 7: 15-90.
1108	Lovegrove, B.G., and Mowoe, M.O. 2013. The evolution of mammal body sizes: responses
1109	to Cenozoic climate change in North American mammals. Journal of Evolutionary
1110	<i>Biology</i> 26: 1317–1329.
1111	Marivaux, L., Vianey-Liaud, M., Welcomme, JL., and Jaeger, JJ. 2002. The role of Asia
1112	in the origin and diversification of histricognathous rodents. Zoologica Scripta 31:
1113	225–239.
1114	Mones, A., and Castiglioni, 1979. Addition to the knowledge on fossil rodents of Uruguay
1115	(Mammalia, Rodentia). Palaeöntologische Zeitschrift 53: 77-87.
1116	Negri, F.R., Bocquetin-Villaneuva, J., Ferigolo, J., and Antoine, PO. 2010. Cenozoic
1117	development of terrestrial and aquatic biota: insights from the fossil record. In: C.
1118	Hoorn, and F.P. Wesselingh (Eds.), A review of Tertiary mammal faunas and birds

- 1119 from western Amazonia. Amazonia, Landscape and Species Evolution, A Look into
- 1120 *the Past.* Blackwell Publishing, Chichester, UK, p. 245–258.
- Olson, E.C. 1985. Bryan Patterson March10, 1909–December 1, 1979. *Biogeographical Memoirs National Academy of Sciences*. 55: 435–450.
- 1123 Ortiz Jaureguizar, E. and Cladera, G.A. 2006. Paleoenvironmental evolution of southern
- 1124 South America during the Cenozoic. *Journal of Arid Environments* 66: 498–532.
- Palazzesi, L., and Barreda, V. 2012. Fossil pollen records reveal a late rise of open-habitat
 ecosystems in Patagonia. *Nature communications* 3: 1294.
- 1127 Pascual, R. 1967. Los roedores Octodontoidea (Caviomorpha) de la Formación Arroyo
- 1128 Chasicó (Plioceno inferior) de la provincia de Buenos Aires. *Revista del Museo de*1129 La Plata 35: 259–282.
- 1130 Pascual, R., and Bondesio, P. 1985. Mamíferos terrestres del Mioceno medio-tardío de las

1131 cuencas de los ríos Colorado y Negro (Argentina): evolución ambiental.

- 1132 *Ameghiniana* 22: 133–145.
- 1133 Pascual, R., and Odreman Rivas, O.E. 1971. Evolución de las comunidades de los
- 1134 vertebrados del Terciario argentino; los aspectos paleozoogeográficos y
- 1135 paleoclimáticos relacionados. *Ameghiniana* 8: 372–412.
- Pascual, R., and Ortiz-Jaureguizar, E. 1990. Evolving climates and mammal faunas in
 Cenozoic South America. *Journal of Human Evolution* 19: 23–60.
- 1138 Pascual, R., Ortiz-Jaureguizar, E., and Prado, J.L. 1996. Land mammals: paradigm of
- 1139 Cenozoic South American geobiotic evolution. In: G. Arratia (Ed.), *Contribution of*
- 1140 Southern South America to Vertebrate Paleontology. Müncher
- 1141 Geowissenschaftliche Abhandlungen (A), p. 265–319.

1142	Pascual, R., Ortega Hinojosa, E.J., Gondar, D., and Tonni, E. 1965. Las edades del
1143	cenozoico mamalífero de la Argentina, con especial atención en aquellas del
1144	territorio Bonaerense. Anales de la Comisión de Investigaciones de Ciencias de
1145	Buenos Aires 6: 165–193.
1146	Patterson, B. (unpublished) Echimyidae y Octodontidae del Santacrucense (sin título
1147	definitivo).
1148	Patterson, B., and Wood, A.E. 1982. Rodents from the Deseadan Oligocene of Bolivia and
1149	the relationships of the Caviomorpha. Bulletin of the Museum of Comparative
1150	Zoology 149: 370–543.
1151	Pérez, M. E. 2010. A new rodent (Cavioidea, Hystricognathi) from the middle Miocene of
1152	Patagonia, mandibular homologies, and the origin of the crown group Caviodea
1153	sensu stricto. Journal of Vertebrate Paleontology 30: 1848-1859.
1154	Pérez, M. E., and Vucetich, M.G. 2012. A revision of the fossil genus Phanomys
1155	Ameghino, 1887 (Rodentia, Hystricognathi, Cavioidea) from the early Miocene of
1156	Patagonia (Argentina) and the acquisition of euhypsodonty in Cavioidea sensu stricto.
1157	Paläntologische Zeitschrift 86: 187–204.
1158	Perkins, M.E., Fleagle, J.G., Heizler, M.T., Nash, B., Bown, T.M., Tauber, A.A., and Dozo,
1159	M.T. 2012. Tephnochronology of the Miocene Santa Cruz and Pinturas formations,
1160	Argentina. In: S.F. Vizcaíno, R.F. Kay, and M.S. Bargo (Eds.), Early Miocene
1161	Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz
1162	Formation. Cambridge University Press, Cambridge, p. 23-40.
1163	SAS Institute. 2013. JMP Pro for Mac OS X, version 11.2.1. Cary, North Carolina.
1164	Scott, W.B. 1905. Mammalia of the Santa Cruz beds. In: Reports of the Princeton
1165	University Expeditions to Patagonia 1896-1899. Part III, Glires. 39: 348-487.

1166	Tejada-Lara, J., Salas-Gismondi, R., Pujos, F., Baby, P., Benammi, S.B., De Franceschi,
1167	D., Espurt, N., Urbina, M., and Antoine, PO. 2015. Life in proto-Amazonia: Middle
1168	Miocene mammals from the Fitzcarrald Arch (Peruvian Amazonia). Palaeontology
1169	58: 341–378.
1170	Tullberg, T. 1899. Über das System der Nagertiere: eine phylogenetische Studie. Nova Acta
1171	Regiae Societatis Scientiarium Upsaliensis 3: 1–514.
1172	Verzi, D.H., Olivares. A.I., and Morgan, C.C. 2016. Systematics and evolutionary
1173	significance of the small Abrocomidae from the early Miocene of southern South
1174	America. Historical Biology doi: 10.1080/08912963.2016.1168410
1175	Villafañe, A., Pérez, M.E., Abello, A., Bedatou, E., and Bond, M. 2008. Nueva Localidad
1176	Fosilífera del Mioceno Medio en el Noroeste de la Provincia del Chubut. 3º Congreso
1177	Latinoamericano de Paleontología de Vertebrados (Neuquén), Actas, 265.
1178	Vizcaíno, S.F., Kay, R.F., and Bargo, M.S. 2012. Background for a paleoecological study
1179	of the Santa Cruz Formation (late Early Miocene) on the Atlantic coast of Patagonia.
1180	In: S.F. Vizcaíno, R.F. Kay, and M.S. Bargo (Eds.), Early Miocene Paleobiology in
1181	Patagonia. Cambridge University Press, UK, p. 1-22.
1182	Vizcaíno, S.F., Bargo, M.S., and Fernicola, J.C. 2013. Expediciones paleontológicas
1183	durante los siglos XIX y XX a la Formación Santa Cruz (Mioceno Inferior,
1184	Patagonia) y destino de los fósiles. 3º Congreso Argentino de Historia de la Geología
1185	(Salta), Actas, 231–246.
1186	Vucetich, M.G. 1986. Historia de los roedores y primates en Argentina: su aporte al
1187	conocimiento de los cambios ambientales durante el Cenozoico. 4º Congreso
1188	Argentino de Paleontología y Bioestratigrafía, Actas, 2: 157–165.

1189	Vucetich, M.G. 1991. Los roedores de Salla y Lacayani (Bolivia) y su correlación con los
1190	de otras faunas de edad Deseadense (Oligoceno). In: R. Suárez-Soruco (Ed.), Fósiles
1191	y Facies de Bolivia-Vol. I Vertebrados. Yacimientos Petrolíferos Fiscales Bolivianos,
1192	Santa Cruz, Bolivia, p. 625–629.
1193	Vucetich, M.G., and Ribeiro, A.M. 2003. A new and primitive rodent from the Tremembé
1194	Formation (Late Oligocene) of Brazil, with comments on the morphology of the
1195	lower premolars of Caviomorph rodents. Revista Brasileira de Paleontología 5: 73-
1196	82.
1197	Vucetich, M.G., and Pérez, M.E. 2011. The putative cardiomyines (Rodentia, Cavioidea) of
1198	the middle Miocene of Patagonia (Argentina) and the differentiation of the Family
1199	Hydrochoeridae. Journal of Vertebrate Paleontology 31: 1382-1386.
1200	Vucetich, M.G., Mazzoni, M.M., and Pardiñas, U.F.J. 1993a. Los roedores de la Formación
1201	Collón Cura (Mioceno medio) y la Ignimbrita Pilcaniyeu. Ameghiniana 30: 361–381.
1202	Vucetich, M.G., Souza Cunha, F.L., and Ferraz de Alvarenga, H.M. 1993b. Un roedor
1203	Caviomorpha de la Formación Tremembé (Cuenca de Taubaté), Estado de Sao Paulo,
1204	Brasil. Anales de la Academia Brasilera de Ciencias 65: 247–251.
1205	Vucetich, M.G., Deschamps, C.M., Olivares, and A.I., and Dozo, M.T. 2005. Capybaras,
1206	size, time and shape: a model kit. Acta Paleontologica Polonica 50: 259-272.
1207	Vucetich, M.G., Kramarz, G.A., and Candela, M.A. 2010. Colhuehuapian rodents from
1208	Gran Barranca and other Patagonian localities: the state of the art. In: R.H. Madden,
1209	A.A. Carlini, M.G. Vucetich, and R.F. Kay (Eds.), The Paleontology of Gran
1210	Barranca Evolution and Environmental Change through the Middle Cenozoic of
1211	Patagonia. Cambridge University Press, New York, p. 202–219.

1212	Vucetich, M.G., Dozo, M.T., Arnal, M., and Pérez, M.E. 2015a. New rodents (Mammalia)
1213	from the late Oligocene of Cabeza Blanca (Chubut) and the first rodent radiation in
1214	Patagonia. Historical Biology 27: 236-257.
1215	Vucetich, M.G., Arnal, M., Deschamps, C.M., Pérez, M.E., and Vieytes, C.E. 2015b. A
1216	brief history of Caviomorph rodents as told by the fossil record. In: A. Vassallo, D.
1217	Antonucci (Eds.), Biology of Caviomorh rodents: Diversity and Evolution. SAREM
1218	series A: Investigaciones Mastozoológicas, Mastozoological Research, p. 11-62.
1219	Walton, A.H. 1990. [Rodents of the La Venta fauna, Miocene, Colombia: Biostratigraphy
1220	and paleoenvironmental implications. Ph.D. dissertation, Southern Methodist
1221	University, Dallas, USA, 159 p. Unpublished.].
1222	Walton, A. 1997. Rodents. In: R.F. Kay, R.H. Madden, R.H. Cifelli, and J.J. Flynn (Eds.),
1223	Vertebrate Paleontology in the Neotropics: The Miocene fauna of La Venta,
1224	Colombia. Smithsonian Institution Press, Washington, D.C. p. 499-519.
1225	Waterhouse, G.E. 1839. Observations on the Rodentia, with a view to point out the groups,
1226	as indicated by the structure of the crania in this order of Mammals. Magazine of
1227	Natural History 3: 90–96.
1228	Wible, J.R., Yuanqing, W., Chuankui, L., and Dawson, M.R. 2005. Cranial anatomy and
1229	relationships of a new tenodactyloid (Mammalia, Rodentia) from the early Eocene
1230	of Hubei Province, China. Annals of the Carnegie Museum 74: 91–150.
1231	Wood, A.E., and Patterson, B. 1959. The rodents of the Deseadan Oligocene of Patagonia
1232	and the beginnings of the South American rodent radiation. Bulletin of the Museum

- 1233 of Comparative Zoology 120: 282–428.
- 1234 Woods, C.A. and Howland, E.E. 1979. Adaptative radiation of capromyid rodents: anatomy
- 1235 of the masticatory apparatus. *Journal of Mammalogy* 60: 95–116.

1236	Zachos, J.C., Dickens, G.R., and Zeebe, R.E. 2008. An early Cenozoic perspective on
1237	greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283.
1238	

- 1239 Figure 1. Dental and mandibular nomenclature used in this work. 1, upper cheek teeth: Al, 1240 anteroloph; anterofl, anteroflexus; H, hypocone; M, metacone; Mel, metaloph; Mr, mure; 1241 P, protocone; Pa, paracone; Prl, protoloph; Psl, posteroloph; 2, lower cheek teeth: ac, 1242 accessory cusp; ecd, ectolophid; et, entoconid; hd, hypoconid; hld, hypolophid; md, 1243 metaconid; med I, metalophulid I; med II, metalophulid II; msd, mesolophid; pamd, 1244 posterior arm of the metaconid; **pemed**, posterior extension of the metalophulid I; **prd**, 1245 protoconid; psd, posterolophid; 3, mandible: cor, coronoid process; d, diastema; mac, 1246 masseteric crest: **maf**, masseteric fossa: **mf**, mental foramen: **mmpio**, notch for the 1247 insertion of the masseter muscle, pars infraorbitalis. 1248
- 1249 Figure 2. Map showing fossil localities where *Acarechimys* has been found or mentioned;
- 1250 1, Cabeza Blanca, Chubut, Argentina; 2, Gran Barranca, Chubut, Argentina; 3, Río Pinturas
- 1251 Valley, Santa Cruz, Argentina; 4, coastal localities of the Santa Cruz Formation, Santa
- 1252 Cruz, Argentina; 5, localities at the cliffts of the Río Santa Cruz, Santa Cruz, Argentina; 6,
- 1253 Pampa Castillo, Región XI, Chile; 7, Chucal Formation, Región XV, Chile; 8, Laguna del
- 1254 Laja (Curá Mallín Formation), Región VIII, Chile; 9, Cañadón del Tordillo, Neuquén,
- 1255 Argentina; 10, El Petiso, Chubut, Argentina; 11, Huemules River (Río Mayo Formation),
- 1256 Chubut, Argentina; 12, Quebrada Honda, Bolivia; 13, La Venta, Colombia; 14, Fitzcarrald
- 1257 Arch, Peru; 15, Puerta de Corral Quemado y Villavil (Andalhuala and Chiquimil
- 1258 formations), Argentina. A, B, and C refer to dismissed mentions of Acarechimys (A,

1259	Chichinales Formation, Río Negro, Argentina; B ; Madre de Dios Formation, Peru; C ;
1260	Pebas Formation, Peru).

1262	Figure 3. Acarechimys minutus; 1, MPM-PV 15088, left DP4-M3 (reversed); 2, YPM-
1263	VPPU 15806, right lateral view of the skull; 3,MACN-A 237, right dp4-m3(paralectotype);
1264	4, MLP 91-IX-1-97, right dp4; 5, MPM-PV 15089, external view of right mandible.
1265	Abbreviations: dzr, dorsal root of the zygoma; hramus, horizontal ramus of the zygoma;
1266	pmx-mx , premaxillary-maxillary; mx-j , maxillary-jugal; rmf , rostral masseteric fossa;
1267	vramus , vertical ramus of the zygoma; vrz , ventral root of the zygoma. Scale bars = 2mm.
1268	
1269	Figure 4. 1–4, Acarechimys constans; 1–2, MPM-PV 15002, palatal fragment with left
1270	and right DP4-M2; 2, left DP4-M2 (reversed); 3, MLP 15-391, right dp4-m3 (lectotype); 4,
1271	MACN-A 4064, external view of left mandible (reversed); 5-6, Acarechimys gracilis
1272	MACN-A 52-128; 5, right dp4-m3; 6, external view of the right mandible. Anterior to the
1273	right, except Figure 4.1. Abbreviations: ac, accessory cusp; Al, anteroloph; maf,
1274	masseteric fossa; med II, metalophulid II; Mel, metaloph; mf, mental foramen; msd,
1275	mesolophid; nmmpio , notch for the insertion of the masseter muscle, <i>pars infraorbitalis</i> ;
1276	pamd , posterior arm of the metaconid; Prl , protoloph. Scale bars = 2mm.
1277	
1278	Figure 5.1, Acarechimys leucotheae, MPEF-PV 10677, left mandible with dp4-m3
1279	(holotype; reversed); 2-4, Acarechimys minutissimus; 2, MACN-A 4076, right dp4-m3;3,
1280	MACN-A 258, right mandible with dp4-m3 (paralectotype;); 4, MACN-A 4093, left
1281	mandible. Anterior to the right. Abbreviations: ac, accessory cusp; Al, anteroloph; M,
1282	metacone; maf, masseteric fossa; med II, metalophulid II; Mel, metaloph; msd,

- 1283 mesolophid; **nmmpio**, notch for the insertion of the masseter muscle, *pars infraorbitalis*;
- 1284 **Pa**, paracone; **Prl**, protoloph; **Psl**, posteroloph. Scale bars = 1mm.

- 1286 **Figure 6.** Bivariate plot showing the relationship between m1 and m2 length (measured in
- 1287 mm) of the five species of *Acarechimys*.

1288

- 1289 Figure 7. Consensus tree of 12 MPTs showing the phylogenetic relationships of
- 1290 Acarechimys species (highlighted in green). Numbers at nodes separated by slash refer to
- 1291 absolute (anterior) and relative (posterior) Bremer supports values. Numbers in circles are
- 1292 nodes: 1- Pan Octodontoidea, 2- Basal octodontoid clade.

Table 1. Acarechi	mys denta	l measure	ements. A	bbreviat	ions: apl,	antero-po	osterior le	ength; mw	, maximui	m width
A. minutus	MACN	-A 237	MACN-	A 4070	MACN	-A 4073	MLP 1	.5-410a	MPM-	PV 15039
	apl	mw	apl	mw	apl	mw	apl	mw	apl	mw
dp4	1.62	1.30			1.56	1.18	-	-	1.44	1.22
m1	1.57	1.52			1.46	1.39	-	1.58	1.48	1.40
m2	1.58	1.48			1.50	1.49	1.62	1.62	1.42	1.38
m3	1.24	1.40			-	-	1.56	1.58	-	-
DP4-M3			6.92	-						
DP4			1.62	1.90						
M1			1.84	2.06						
M2			1.90	2.10						
M3			1.56	1.84						
A. constans	MLP 1	5-391	MACN	A 247a	MACN	A 247b	MPM-P	V 15002	MPM-	PV 15092
	apl	mw	apl	mw	apl	mw	apl	mw	apl	mw
dp4	2.22	1.64	-	-	2.36	1.64	-	1.56	2.33	1.53
m1	2.00	1.88	2.20	2.01	2.30	2.08	2.12	1.82	1.97	1.67
m2	2.01	1.94	2.36	2.16	2.20	2.16	-	-	1.94	1.96
m3	1.92	1.76	-	-	-	-	-	-	-	-
DP4-M2							5.04	-		
DP4							1.46	1.78		
M1							1.78	2.01		
M2							1.80	2.20		
A. leucotheae	MPEF-P	V 10677								
	apl	mw								
dp4	-	1.02								
m1	1.38	1.34								
m2	1.48	1.34								
m3	1.20	1.18								
A. minutissimus	MACN	-A 258	MACN	A 1894		MACN-	A 12683		ML	P 15-1
	apl	mw	apl	mw	apl	mw	apl	mw	apl	mw
dp4	1.22	1.11	1.51	1.12			1.41	1.19	1.32	1.12
m1	1.25	1.26	1.41	1.30			1.43	1.34	1.26	1.28
m2	1.46	1.46	1.43	1.31			1.40	1.32	1.30	1.30
m3	1.28	1.21	1.20	1.20			-	-	1.00	1.12
DP4-M2					3.96	-				
DP4					1.30	1.30				
M1					1.28	1.46				
M2					1.38	1.53				
A aracilis	ΜΔΟΝ-Δ	52-128	ΜΔΓΝ	A 4060	ΜΔΓΝ	-4 4263	MIP 1	5-3912	ΜΡΜ	PV 17430
A gracins	anl	mw	anl	mw	anl	mw	anl	mw	anl	mw
dp4	1.88	1.54	2.32	1.70	1.76	1.48	1.90	1.59	2.08	1.54
m1	1 96	1 74	2.52	1 98	1 91	1 89	1 81	1.55	2.00	1.54
m2	2.00	1 89	2 34	2 10	1 93	1 79	1 98	1 96	2 10	2.03
	2.01	1.05	2.54	2.10	1.55	1.75	1.50	1.50	2.10	2.05
dp4 m1 m2	MACN-A apl 1.88 1.96 2.01	52-128 mw 1.54 1.74 1.89	MACN- apl 2.32 2.10 2.34	A 4060 mw 1.70 1.98 2.10	MACN apl 1.76 1.91 1.93	-A 4263 mw 1.48 1.89 1.79	MLP 1 apl 1.90 1.81 1.98	5-391a mw 1.59 1.84 1.96	MPM- apl 2.08 2.15 2.10	PV 17430 mw 1.54 1.87 2.03

Table 2. Results of Tukey's HSD tests of mean m1 length (to left of diagonal) and mean m2 length (right of diagonal) among Acarechimys
samples. Only p-values for significant differences ($p < 0.01$) are listed. Abbreviations: N = number of specimens.

	A. constan s (N = 11)	A. gracilis (N = 13)	A. leucotheae (N = 1)	A. minutissimus (N = 14)	A. minutus (N = 9)	Quebrada Honda (N = 14)
A. constans (<i>N</i> = 15)	-	(none)	0.0170	< 0.0001	< 0.0001	(none)
A. gracilis (N = 14)	(none)	-	0.0143	< 0.0001	< 0.0001	(none)
A. leucotheae (N = 1)	0.0004	0.0014	-	(none)	(none)	(none)
A. minutissimus (N = 15)	< 0.0001	< 0.0001	(none)	-	0.0346	< 0.0001
A. minutus (N =11)	< 0.0001	< 0.0001	(none)	0.0042	-	0.0017
Quebrada Honda (N = 13)	0.0047	(none)	0.0345	< 0.0001	0.0080	n/a

Table 3. Main dental and mandibular characters of Acarechimys. Abbreviations: see Figure 1.						
	A. minutus	A. constans	A. gracilis	A. leucotheae	A. minutissimus	
dp4						
Metalophulid II	Variably-developed	Variably-developed	Well-developed	Reduced	Reduced to a spur	
	(usually reduced)	(conspicuous or				
	I lowelly reduced	reduced)	Deduced	Mall developed	Mall developed	
Mesolophid	Usually reduced	weii-developed	Reduced	weii-aevelopea	weii-developed	
<i>m</i> 1						
Metalophulid II	Reduced	Variably developed	Variably developed	Reduced	Reduced to a spur or	
,		(usually conspicuous)			absent	
Pamd	Present	Absent	Present	Absent	Absent	
Pemed I	Variably Present	Variably present	Variably-developed	Absent	Absent	
Accessory cusp	Present	Variably present	Present	Present	Present/ absent	
mz	Deduced	Deduced	Deduced	Deduced	Abaant	
Nietalophulla II	Reduced	Reduced	Reduced	Reduced	Absent	
Pamd	Present	Absent	Present	Absent	Absent	
Pemed I	Variably present	Variably present	Variably present	Absent	Absent	
Accessory cusp	Present	Variably present	Present	Present	Present/absent	
<i>m</i> 3						
Metalophulid II	Absent	Reduced	Reduced/ absent	Reduced	Absent	
Pamd	present	Absent	present	Absent	Absent	
Pemed I	Absent	absent	Variably present	Absent	Absent	
Accessory cusp	Absent	Variably present	Present	present	Present	
,						
Lower incisor						
Laterally compress	yes	no	no	-	yes	
Mandible						
Anterior border	Below dp4	Below dp4-m1	Below dp4-m1	Below dp4	Below dp4	
nmmpio		r -			r	
Mental foramen	Absent	Usually absent	Usually absent	Absent	Absent	

Supplementary Appendix 1. List of specimens assigned to *Acarechimys*. Abbreviations: CL, coastal localities; CSCr, cliffs of the Santa Cruz river; Fm, Formation; Mb, Member; SCP, Santa Cruz Province. Within parentheses are previous systematic assignations. For the 'old collections' localities we translate what is written in the collection labels. For a discussion about the localities names see Vizcaíno *et al.* (2012) and Fernicola *et al.* (2014).

Acarechimvs minutus	Description	Locality	Horizon
MACN-A 237 (syntype of	Right mandible with dp4-m3	Santa Cruz	Santa Cruz Fm. late
Acaremys minutus)	8		early Miocene
MACN-A 238 (syntype of	Right mandible with	Santa Cruz	Santa Cruz Fm. late
Acaremys minutus)	dp4(broken)-m3		early Miocene
MACN-A 4070	Left maxilla with DP4-M3	Seuhen SCP	Santa Cruz Fm late
			early Miocene
MACN-A 4071	Right mandible with dp4-m3 and	Seuhen SCP	Santa Cruz Fm late
	incisor	~~~~~	early Miocene
MACN-A 4072a	Right mandible with dp4-m3	Monte Observación SCP	Santa Cruz Fm late
10110111110724	rught multiple with up i mo		early Miocene
MACN-A 4073	Left mandible with dp4-m?	Monte Observación SCP	Santa Cruz Fm late
Miller 17 4075	Left manufole with up+ m2	Wonte Observacion, Ser	early Miocene
MACN-A 4082	Right mandible with dn4-m3	Santa Cruz	Santa Cruz Em late
MACIN-A 4002	Right manuface with upins	Santa Cruz	early Miocene
MACN A 4264	I aft mandibular fragment with	Sahuan SCD	Santa Cruz Em late
MACN-A 4204	dp4	Senden, SCI	Santa Cruz Fin, Iate
MACN DV SC4008	up4 Dight mandible with dn4 m1	Varailan SCD	Sonto Cruz Em ² loto
MACIN-FV SC4098	Right manufole with up4-inf	Karaiken, SCF	Salita Cluz Fill?, late
MID 15 4100 (grature of	I off mondibular frogmont with	CSC+ SCD	Sonto Cruz Em loto
MLP 13-410a (syntype of	mi ma	CSCI, SCP	Santa Cluz Fin, late
Acaremys minuius)	m1-m5 Dialat man dilala mith m 1	Santa Cara Dua inca	Carte Cree Free late
MLP 82-AII-1-31	Right manufole with mi	Santa Cruz Province	Santa Cruz Fm, late
MI D 01 IV 1 100-	Diskt with a war2	Q- 2- 1(- 1-1 T 1)]	early Miocene
MLP 91-1X-1-199a	Right m1 or m2	Canadon del Tordillo,	Collon Cura Fm,
		Neuquen Province	middle Miocene
MLP 91-1X-1-200	Left m1 or m2	Canadon del Tordillo,	Collon Cura Fm,
NO (D. D.V. 4102		Neuquen Province	middle Miocene
MMP-PV 4193	Left mandible with dp4-m3	Puesto La Costa, SCP	Santa Cruz Fm, late
NO (D. D.V. 15020			early Miocene
MMP-PV 15039	Right mandible with dp4-m2	Canadon Silva, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 15087	Right m2	Estancia el Tordillo, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 15088	Left maxilla with DP4-M3	Estancia el Tordillo, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 15089	Right mandible with dp4-m3 and	Rincón del Buque, SCP	Santa Cruz Fm, late
	incisor		early Miocene
MPM-PV 15090	Right mandible with dp4-m3	Rincón del Buque, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 17435	Right mandible with m1-m2	Rincón del Buque, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 17436	Right mandibular fragment with	Estancia El Tordillo, SCP	Santa Cruz Fm, late
	dp4		early Miocene
MPM-PV 17437	Left dp4	Estancia El Tordillo, SCP	Santa Cruz Fm, late
			early Miocene
MPM-PV 17440	Right maxilla with DP4	Rincón del Buque2, SCP	Santa Cruz Fm, late
			early Miocene
UATF-V-001262	Skull with left and right DP4-M3	Quebrada Honda, Bolivia	Unnamed Fm, middle
			Miocene

YPM-PU 15806	Skull with left and right DP4-M3 and incisors	Killik Aike, SCP	Santa Cruz Fm, late early Miocene
Acarechimys cf. A. minutus MLP 91-IV-1-15	Left mandible with m1-m2	Cañadón del Tordillo, Neuquén Province	Collón Curá Fm, middle Miocene
UATF-V-000934	Right mandible with dp4-m2 and incisor	Quebrada Honda, Bolivia	Unnamed Fm, middle
UATF-V-000935	Right mandible with dp4-m3	Quebrada Honda, Bolivia	Unnamed Fm, middle Miocene
UATF-V-000950	Right mandible with dp4(broken)-m3	Quebrada Honda, Bolivia	Unnamed Fm, middle Miocene
Acarechimys constans			
MACN-A 247 (syntype of	Left mandible with m1-m2 and	SCP	Santa Cruz Fm, late
Stichomys constans)	right mandible with dp4-m2		early Miocene
MACN-A 4058	Right mandible with dp4-m1	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4061	Left mandible with dp4-m3	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4064	Left mandible with dp4-m2 and broken incisor	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4074	Left mandible with dp4-m1	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4075 (syntype of <i>Acaremys minutus</i>)	Right mandible with dp4-m1	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MLP 15-57 (syntype of <i>Stichomys constans</i>)	Right mandible with m1 (broken)-m3	Santa Cruz	Santa Cruz Fm?, late early Miocene?
MLP 15-200 (syntype of	Right mandible with dp4-m2	CSCr	Santa Cruz Fm late
Stichomys constans)	(lost specimen)	0.501	early Miocene
MLP 15-319	Right mandible with m1-m3	CSCr	Santa Cruz Fm, late early Miocene
MLP 15-391 (syntype of <i>Stichomys constans</i>)	Right mandible with dp4-m3	CSCr, SCP	Santa Cruz Fm, late early Miocene
MLP 15-391c (syntype of	Left mandible with broken dp4-	Suppose 'curso inferior del	Santa Cruz Fm, late
Stichomys constans)	ml	río Santa Cruz'	early Miocene
MPM-PV 4223	Right mandible with dp4-m2	Puesto Estancia La Costa, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15002	Broken right mandible with dp4- m1, palatal fragment with both	Puesto Estancia La Costa, SCP	Santa Cruz Fm, late early Miocene
	DP4-M2, and isolated vertebra		
MPM-PV 15091	Right mandible with dp4-m2	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15092	Right mandible with dp4-m2 and incisor	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15093	Right mandible with dp4-m2	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15094	Left mandible with dp4-m1	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15095	Right mandible with m1-m3	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15096	Left mandible with dp4-m2	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
MPM-PV 15097	Right mandible with m2-m3	Estancia Cordón Alto, CSCr, SCP	Santa Cruz Fm, late early Miocene
Acarechimvs gracilis		·	. ,
MACN A 52 128 (holotype of	Left mandible with dn/ m3	Barranca sur del Colhue	Sarmianto Em. Colhua

MACN-A 52-128 (holotype of Left mandible with dp4-m3 *Protacaremys pulchellus*)

Barranca sur del Colhue Huapí Lake, Chubut Sarmiento Fm, Colhue Huapi Mb, early

		Province	Miocene
MACN-A 4060	Left mandible with dp4-m3 and	Monte Observación, Santa	Santa Cruz Fm. late
	incisor	Cruz	Early Miocene
MACN-A 4068	Right mandible with dp4-m2	Monte Observación, SCP	Santa Cruz Fm, late
	-		Early Miocene
MACN-A 4263 (holotype of	Left mandible with dp4-m2	Seuhen, SCP	Santa Cruz Fm, late
Stichomys gracilis)	-		Early Miocene
MLP 15-39 (syntype of	Left mandible with m1-m3	CSCr	Santa Cruz Fm, late
Stichomys constans)			Early Miocene
MLP 15-346 (syntype of	Left mandible with dp4-m2	Santa Cruz river?	Santa Cruz Fm?, late
Stichomys constans)			early Miocene
MLP 15-391a (syntype of	Right mandible with dp4-m2	Suppose 'curso inferior del	Santa Cruz Fm, late
Stichomys constans and		río Santa Cruz'	early Miocene
holotype of Acarechimys			
pascuali)			
MLP 15-391b (syntype of	Right mandible with m1-m3	Suppose 'curso inferior del	Santa Cruz Fm, late
Stichomys constans)		río Santa Cruz'	early Miocene
MPM-PV 17430	Left mandible with dp4-m3	Estancia Cordón Alto,	Santa Cruz Fm, late
		CSCr, SCP	early Miocene
MPM-PV 17431	Right mandible with m1-m3	Estancia Cordón Alto,	Santa Cruz Fm, late
		CSCr, SCP	early Miocene
MPM-PV 17432	Right mandible with $\frac{1}{2}$	Estancia Cordón Alto,	Santa Cruz Fm, late
MDM DV 17422	ap4(broken)-m3	USCr, SCP	early Miocene
MPM-PV 1/433	Left manuable with m1-m2	Estancia Cordon Alto,	Santa Cruz Fm, late
		CSCr, SCP	early Miocene
MPM-PV 1/434	Left mandible with dp4-m2	Estancia Cordon Alto,	Santa Cruz Fm, late
MDM DV 17420	Laft m1 in mandibular fragmant	CSCI, SCP Estancia El Tardillo, Santa	Sonto Cruz Em loto
WIPIM-PV 1/439	Left mi in mandioular fragment	Estancia El Tordillo, Santa	Santa Cruz Fm, Iate
		Cruz	earry whocene
Acarechimys leucotheae			
MPEF-PV 10677	Left mandible with dp4-m3 and	Cabeza Blanca, Chubut	Sarmiento Fm, late
	incisor	Province	Oligocene
Acarachimus minutissimus			
IGM 18/229	Left mandible with dn/_m3	La Venta, Colombia	Villa vieja Em. middle
IGWI 104229	Left manufole with up4-m5	La Venta, Colombia	Miocene
MACN-A 256 (syntype of	Left mandible with dn4-m3	SCP	Santa Cruz Em late
Acaremys minutissimus)	Lett multiple with up+ ins	5.51	early Miocene
MACN-A 257 (syntyne of	Left mandible with dn4-m3	SCP	Santa Cruz Em late
Acaremys minutissimus)	Lett multiple with up+ ins	5.51	early Miocene
MACN-A 258 (svntvne of	Right mandible with dp4-m3 and	SCP	Santa Cruz Fm. late
Acaremys minutissimus)	incisor		early Miocene
MACN-A 1894	Right mandible with dp4-m3	Exact provenance unknown	
	-		
MACN-A 1896	Left mandible with dp4-m3	Exact provenance unknown	
MACN-A 1897	Right mandible with m1-m2	Exact provenance unknown	
MACN-A 1898	Left mandible with m2	Exact provenance unknown	
MACN-A 4072b	Right mandible with dn/ m?	Monte Observación Santa	Santa Cruz Em lata
WIACIN-A 40/20	Right manufole with up4-m2	Cruz	early Miocene
MACN-A 4076	Right mandible with dn4-m3 and	Santa Cruz	Santa Cruz Em late
1012 101 1 1 1 1 1 1 1 1 1	incisor	Suntu Cruz	early Miocene
MACN-A 4077	Mandíbula izquierda casi	Santa Cruz	Santa Cruz Fm late
	manaroura izquioraa casi	Suntu Cruz	Sunta Cruz I III, Iato

	completa con m1-m3 e incisivo		early Miocene
MACN-A 4079	Right mandible with m1-m3 and incisor	Santa Cruz	Santa Cruz Fm, late early Miocene
MACN-A 4080	Right mandible with dp4-m3	Santa Cruz	Santa Cruz Fm, late
MACN-A4081	Right mandible with dp4-m1	Santa Cruz	Santa Cruz Fm, late
MACN-A 4083	Left mandible with dp4-m2	Santa Cruz	Santa Cruz Fm, late
MACN-A 4084	Edentulous left mandible with	Santa Cruz	Santa Cruz Fm, late
MACN-A 4085	Right edentulous mandible and a	Santa Cruz	early Miocene Santa Cruz Fm, late early Miocene
MACN-A 4086	Left mandible with m1-m2 and a m3 stick on the mandible	Santa Cruz	Santa Cruz Fm, late
MACN-A 4087	Right mandible with dp4-m2 and incisor	Santa Cruz	Santa Cruz Fm, late
MACN-A 4088	Left mandible with m1-m3	Santa Cruz	Santa Cruz Fm, late
MACN-A 4089	Left mandible with m1-m3	Santa Cruz	Santa Cruz Fm, late
MACN-A 4090	Right mandible with m1-m3 and	Santa Cruz	Santa Cruz Fm, late
MACN-A 4091	Left mandible with dp4-m1 and	Territorio de Santa Cruz	Santa Cruz Fm, late
MACN-A 4092	Right mandible with dp4-m2 and	Territorio de Santa Cruz	Santa Cruz Fm, late
MACN-A 4093	Left mandible with m1-m3	Territorio de Santa Cruz	Santa Cruz Fm, late
MACN-A 4094	Right mandible with dp4-m2 and incisor	Territorio de Santa Cruz	Santa Cruz Fm, late
MACN-A 4145 (syntype	Right maxillary fragment with	Monte Observación, SCP	Santa Cruz Fm, late
MACN-A 4146 (syntype Sciamys tenuissimus)	Left mandibular fragment with dp4 and right mandibular fragment with m2	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4265 (holotype Stichomys diminutus)	Right dp4-m1	Monte Observación, SCP	Santa Cruz Fm, late early Miocene
MACN-A 4266	Fragmento mandibular derecho	Monte Observación, SCP	Santa Cruz Fm, late
MACN-A10093	Fragmento mandibular derecho con dp4-m2	Yacimiento Dipilus 1897- 98 SCP	Santa Cruz Fm, late early Miocene
MACN-A 12683	Right mandible with dp4-m2;	Santa Cruz Province?	Santa Cruz Fm, late early Miocene
MACN-PV SC2158	Right mandible with dp4 and incisor	Portezuelo Sumich Norte, SCP	Pinturas Fm, late early Miocene
MACN-PV SC2589	Right dp4-m2	Toldos Sur, SCP	Pinturas Fm, late early Miocene
MACN-PV SC2590	Right maxillary with DP4-M1	Toldos Sur, SCP	Pinturas Fm, late early Miocene
MACN-PV SC4045	Right mandible with m1-m3	Gobernador Gregores, SCP	Pinturas Fm, late early Miocene
MACN-PV SC4091	Left mandible with dp4-m1	Lago Cardiel, SCP	Pinturas Fm, late early Miocene
MLP 15-1	Left mandible with dp4-m3 and	Santa Cruz	Santa Cruz Fm?, late

	incisor		early Miocene?
MLP 15-188 (syntype of	Left mandible with dp4-m3	CSCr, SCP	Santa Cruz Fm, late
Acaremys minutissimus)			early Miocene
MLP 15-188a	Right mandible with dp4-m2 and	CSCr	Santa Cruz Fm, late
	incisor		early Miocene
MLP 15-398	Left mandible with dp4-m2	CSCr	Santa Cruz Fm, late
	•		early Miocene
MLP 15-408	Left mandible with m1-m3	CSCr	Santa Cruz Fm, late
			early Miocene
MLP 91-IX-1-95	Left dp4	Cañadón del Tordillo,	Collon Curá Fm,
	I I I I	Neuquén Province	middle Miocene
MLP 91-IX-1-199b	Right m3	Cañadón del Tordillo.	Collon Curá Fm.
		Neuquén Province	middle Miocene
MLP 91-IX-1-201a	Right dn4	Cañadón del Tordillo	Collon Curá Em
	rught up i	Neuquén Province	middle Miocene
MI P 91-IX-1-201b	Right m1-m2	Cañadón del Tordillo	Collon Curá Em
MLA 91-124-1-2010	ragin ini inz	Neuquén Province	middle Miocene
MI P 91-IX-1-201 $_{\circ}$	Left M1 or M2	Cañadón del Tordillo	Collon Curá Em
WILL 71-121-2010		Neuquén Province	middle Miocene
MID 01 IV 2 169	Loft dn/	Estancia Callon Carré	Collon Curé En
WILF 91-1A-2-108	Lett ap4	Estancia Collon Cura,	collon Cura Fm,
MDM DV 15000		Enternalia Canalia Alt	
MPM-PV 15098	Left mandible fragment with dp4	Estancia Cordon Alto,	Santa Cruz Fm, late
	and incisor	CSCr, SCP	early Miocene
MPM-PV 15099	Left mandible with m1-m2 and	Estancia Cordón Alto,	Santa Cruz Fm, late
	incisor	CSCr, SCP	early Miocene
MPM-PV 15100	Right mandible with	Estancia Cordón Alto,	Santa Cruz Fm, late
	dp4(broken)-m2	CSCr, SCP	early Miocene
MPM-PV 15101	Right mandible with dp4-m2	Estancia Cordón Alto,	Santa Cruz Fm, late
		CSCr, SCP	early Miocene
MPM-PV 15102	Left mandible with m1	Estancia Cordón Alto,	Santa Cruz Fm, late
		CSCr, SCP	early Miocene
MPM-PV 17426	Right mandible with dp4-m1	Estancia Cordón Alto,	Santa Cruz Fm, late
	C 1	CSCr, SCP	early Miocene
MPM-PV 17427	Right mandible with dp4-m2 and	Estancia Cordón Alto.	Santa Cruz Fm. late
	incisor	CSCr. SCP	early Miocene
MPM-PV 17438	Left mandible with dp4-m2	Estancia El Tordillo CSCr	Santa Cruz Fm. late
	······································	SCP	early Miocene
MPM-PV 17429	Left mandible with dn4-m?	Rincón del Buque 2 SCP	Santa Cruz Fm late
	Left multiple with up+ 112	Tuneon del Duque 2, 501	early Miocene
MPM-PV 17441	Left dn4	Rincón del Buque 2 SCP	Santa Cruz Em late
	Lett up-	Kincoli dei Buque 2, SCI	early Miocene
VPM_PI115178	Partially preserved shull with	10 miles South of the Cov	Santa Cruz Em Jata
11 141-1 () 131/0	right DP4 M2 and left DD4 M1	Inlet SCP	early Miccore
Acarachimus of A	ngin Dr4-m2 and len Dr4-M1	miet, SCF	
Acarecnimys CI. A.			
	Dicht man dihalan Grannant (d	Oreshue de Harris Della	Line and Con
UAIF-V-000960	Right mandibular tragment with	Quebrada Honda, Bolivia	Unnammed Im,
	ap4-m1		middle Miocene
A 1.			
Acarecnimys sp.	Γ of mon dible1	Santa Cour Duration 2	Canto Com Eve 1-4-
MAUN-A 1895	Left mandible with m1	Santa Cruz Province?	Santa Cruz Fm, late
			early Miocene
MACN-A 4062	Left mandible with dp4-m3	Monte Observación, Santa	Santa Cruz Fm, late
		Cruz	early Miocene
MACN-A 4067	Left mandible with dp4-m3	Monte Observación, Santa	Santa Cruz Fm, late
		Cruz	early Miocene
Supplementary appendix 2. List of characters used in the phylogenetic analysis: an expanded version of the data matrix used by Arnal and Vucetich (2015). New characters are at the end of the list (168–186) and those from Verzi *et al.* (2016) are indicated as such; characters marked with an asterisk are modified with respect to the original version. The following characters are treated as ordered: 3, 14, 15, 22, 31, 38, 39, 44, 52, 54, 55, 59, 61, 67, 69, 75, 80, 83, 84, 99, 103, 104, 107, 109, 113, 118, 119, 128, 148, 161, and 164.

- (1) P3/DP3: present (0), absent (1).
- (2) Cingula: present (0), absent (1).
- (3) Hypsodonty: brachydont (0), mesodont (1), protohypsodont (2), euhypsodont (3).
- (4) Roots number on upper molars: three (0), four (1).
- (5) Tooth row: straight (0), convex (1).
- (6) Tooth rows: parallel (0), anteriorly slightly convergent (1), anteriorly very convergent (2), anteriorly slightly divergent (3).
- (7) Crest thickness in occlusal view: slenderer than flexi/ids (0), equal or broader than flexi/ids (1).
- (8) Deciduous premolars (Marivaux et al., 2004): normal replacement (0), retention (1).
- (9) Terraced occlusal surface: present (0), absent (1).
- (10) Cusp differentiation: yes, labial cusps of upper molars and lingual cusps of lower molars wider than their associated crests (0), no, cusps indistinct, entirely submerged in their associated crests (1).
- (11) Enamel on upper molars: complete and uniformly distributed (0), complete and not uniformly distributed (1), interrupted on the labial side (2), interrupted on the posterior wall of the posterior lobe (3).

- (12) Mesolophule on DP4: present (0), absent (1).
- (13) Metaloph on DP4: present and joined lingually to the anterior arm of the hypocone (0), present and joined lingually to the posteroloph (1), indistinct, probably fused to the posteroloph (2), connected to the metaconule (3).
- (14) Anterior arm of the metacone on DP4 (Antoine *et al.*, 2012): absent (0), weakly pronounced (1), high (2).
- (15) Mesostyle on DP4 (Antoine *et al.*, 2012): indistinct or absent (0), moderate (1), strong (2).
- (16) Hypocone on DP4: small (0), moderate (as large as the protocone) (1).
- (17) Size of P4 respect M1: P4 > or = M1 (0), P4 < M1 (1).
- (18) Crown outline of P4: transverse (0), oval (1), heart shape (2), quadrangular (3), reversed heart shape (4), subtriangular (5).
- (19) Anterocingulum on P4: small, short (0), long (1).
- (20) Anterocingulum on P4 (Antoine et al., 2012): low (0), high (anteroloph) (1).
- (21) Anterocingulum (or anteroloph) paracone connection (Antoine *et al.*, 2012):
 absent (0), present (via a parastyle or not) (1).
- (22) Mesolophule on P4 (Antoine *et al.*, 2012): absent (0), short (1), reaches the buccal side (2).
- (23) Metaloph on P4: present (0), absent (1).
- (24) Metaloph on P4: connected to the metaconule (0), connected to the anterior arm of the hypocone (1), connected to the posteroloph (2).
- (25) Metacone on P4: small (0), strong (1).
- (26) Hypocone on P4: absent (0), present (1).
- (27) Hypocone on P4: labial to protocone (0), lingually aligned to protocone (1).

- (28) Anterior arm of the hypocone on P4 (Antoine *et al.*, 2012): absent (0), present(1).
- (29) Posteroloph metacone connection on P4 (Antoine *et al.*, 2012): absent (0), present (1).
- (30) Hypoflexus on P4: absent (0), present (1).
- (31) Hypoflexus on P4: as a superficial lingual groove (0), as a moderately deep lingual groove separating protocone and hypocone, less penetrating than in molars (1), very deep, as in molars (2).
- (32) Endoloph on P4: absent (0), present (1).
- (33) Figure eight dental pattern in upper molars: absent (0), present (1).
- (34) Crest obliquity on M1-M3: transversal to the anteroposterior axis of the teeth(0), anterolabially-posterolingually oblique (1). All crests should be oblique to consider character state 1.
- (35) Anteroloph on M1-M3: moderately high (0), high (1).
- (36) Anteroloph on M1-M3: short, not reaching the paracone (0), reaches the paracone (1), long, reaches the labial border of the crown but not connected to the paracone (2).
- (37) Paracone on M1-M3: larger than metacone (0), equal to metacone (1).
- (38) Posterior arm of the paracone (Antoine *et al.*, 2012): absent (0), weakly pronounced (1), strong and high (2).
- (39) Paracone metacone position on M2 (Antoine *et al.*, 2012): mesiodistally opposed (0), metacone slightly lingual (1); metacone strongly lingual (2).
- (40) Anterolingual angle of the tooth on M1-M3: rounded or forming an obtuse angle(0), forming a right angle (1).
- (41) Mesolophule on M1-M3: present (0), absent (1).

- (42) Direction of the mesolophule: straight (transverse) (0), slightly oblique(distobuccally oriented) (1).
- (43) Metaloph on M1-M3: lingually joined to the anterior arm of the hypocone (0), lingually joined to the posteroloph (1), indistinct, probably fused to the posteroloph (2), lingually joined to the mesolophule (3).
- (44) Anterior arm of the metacone: absent (0), weakly pronounced (1), high (2).
- (45) Hypocone on M1: labial to protocone (0), lingually aligned to protocone (1).
- (46) Hypocone on M2: labial to protocone (0), lingually aligned to protocone (1).
- (47) Posteroloph metacone connection (Antoine *et al.*, 2012): absent (0), present
 (1).
- (48) Mure in juveniles/sub-adults: absent (0), present (1).
- (49) Mure connection (Antoine *et al.*, 2012): on the protoloph (central to the tooth)(0), on the protoloph more lingually (1).
- (50) Metacone size on M3 (Antoine *et al.*, 2012): distinct cusp (as large as the paracone) (0), reduced but distinct (1), crestiform (2).
- (51) Hypocone position in relation to the protocone on M3: more labial (0), strongly more labial (1), at the same level (2).
- (52) Hypoflexus orientation on M1-M3: anteriorly oblique (0), slightly anteriorly oblique or transverse to the anteroposterior axis of the tooth (1), posteriorly oblique (2).
- (53) Mesoflexus groove respect metaflexus groove in M1-M2: mesoflexus groove deeper than metaflexus groove (0), mesoflexus groove equal than metaflexus groove (1).
- (54) Size of M1 / M2: M1 < M2 (0), M1 = M2 (1), M1 > M2 (2).

- (55) Size of M3 / M2 (Antoine *et al.*, 2012): M3 < M2 (0), M3 = M2 (1), M3 > M2
 (2).
- (56) M1 length / width proportions: length = width (0), length < width (1), length > width (2).
- (57) M2 length / width proportions: length = width (0), length < width (1), length > width (2).
- (58) Upper incisors: laterally compressed (0), laterally no compressed (1).

Laterally compressed when anteroposterior diameter / transverse diameter ≥ 1.5 .

- (59) Posterior arm of the metaconid (metastylar fold) on dp4 (Marivaux *et al.*, 2004):absent (0), weak and low (1), well-developed and high (2).
- (60) Anteroconid on dp4 (Marivaux *et al.*, 2004): present (0), absent (1).
- (61) Metaconid position respect protoconid on dp4: anterior (0), aligned (1), posterior(2).
- (62) Metalophulid I on dp4: present (0), absent (1).
- (63) Metalophulid II on dp4: present (0), absent (1).
- (64) Metalophulid II on dp4: conspicuous (0), reduced (1).
- (65) Mesolophid on dp4: present (0), absent (1).
- (66) Mesolophid on dp4: conspicuous (0), reduced (1).
- (67) Ectolophid on dp4: absent (0), mesially interrupted (unconnected to the protoconid) (1), complete (connected to the protoconid) (2).
- (68) Metaconid position respect protoconid on p4: anterior (0), aligned (1).
- (69) Posterior arm of the metaconid (metastylar fold) on p4: absent (0), weak and low(1), well-developed, high, and long (2).
- (70) Flexid on anterior aspect of metalophulid I on p4 (Vucetich and Kramarz, 2003):present (0), absent (1).

- (71) Metalophulid II on p4: absent (0), present (1).
- (72) Mesolophid on p4: absent (0), present (1).
- (73) Mesolophid on p4 (Antoine *et al.*, 2012): short (0), long, reaches the lingual side(1).
- (74) Hypolophid on p4 (Marivaux *et al.*, 2004): absent (0), present (1).
- (75) Anterior arm of the hypoconid on p4 (Antoine *et al.*, 2012): absent (0), thin (1), strong (2).
- (76) Hypoconulid on p4 (Antoine *et al.*, 2012): minute to absent (0), moderate (1).
- (77) Posterolophid entoconid connection (Antoine *et al.*, 2012): absent (0), present
 (1).
- (78) Talonid on p4: sub-equal (0), wider than the trigonid (1).
- (79) Size of p4 / m1: p4 > or = m1 (0), p4 < m1 (1).
- (80) Proportion of p4: length clearly > width (0), length > width (1), length > or = width (2).
- (81) Enamel on lower molars: complete and uniformly distributed (0), complete and not uniformly distributed (1), interrupted on the anterior face and anterior face of hypoflexid (2).
- (82) Eight occlusal pattern on upper molars: absent (0), present (1).
- (83) Anterofossettid and metafossettid on lower molariforms: persistent (0), ephemeral (1), absent (2). Fossetids are considered ephemeral when they are lost in juvenile/sub-adult specimens.
- (84) Metaconid position respect protoconid on m1-m3: anterior (0), aligned (1), posterior (2).
- (85) Metalophulid II on m1-m2: present (0), absent (1).
- (86) Metalophulid II on m1-m2: complete (0), reduced (1).

- (87) Metalophulid II connection: mesiobuccally to the metaconid (0), distolingually to the metaconid, on the posterior arm of the metaconid (1), distolingually to the metaconid, on the mesostylid (2), do not contact neither (3).
- (88) Metalophular spur : absent (0), short (1).
- (89) Entoconid position respect hypoconid on m1-m3: aligned (0), anterior (1).
- (90) Posterolophid on m1-m2: short (0), long (1).
- (91) Posterolophid entoconid connection (Antoine *et al.*, 2012): absent (0), present
 (1).
- (92) Crest obliquity on m1-m3: transversal to the anteroposterior axis of the teeth (0), anterolabially-posterolingually oblique (1). All crests should be oblique to consider character state 1.
- (93) Anterior arm of the hypoconid: absent in unworn or little worn teeth (0), present in all stages (1).
- (94) Mesiodistal pinch of the hypoconid (Antoine *et al.*, 2012): absent (0), present(1).
- (95) Hypoconulid on m1-m3: recognizable (0), indistinct (1).
- (96) Spur of the posterior margin of metalophulid I on m1-m2: present (0), absent (1).
- (97) Accessory cusp posterior to metalophulid I on m1-m2: present (0), absent (1).
- (98) Posterior arm of metaconid on m1-m2: present (0), absent (1).
- (99) Hypoflexid orientation on m1-m3: posteriorly oblique, or opposed to the metaflexid or hypolophid (0), transverse or opposed to the hypolophid or mesoflexid
 (1) anteriorly oblique or opposed to the anteroflexid (2).
- (100) Size of m3 / m2 (Marivaux *et al.*, 2004): m3 = m2 (0), m3 < m2 (1).
- (101) Lower incisors: laterally compressed (0), laterally no compressed (1).

Laterally compressed when anteroposterior diameter is at least 1.5 the width.

- (102) Anterior face of lower incisors: curve (0), forming a right lingual border and a curved labial one (1), plane (2).
- (103) Lower incisors: long, passing beneath m3 (0), the base reaching m3 (1), short, the base does not reaches m3 (2).
- (104) Lower incisors enamel microstructure: multiserial HSB with acute IPM (0), multiserial HSB with transitional IPM (1), multiserial HSB with rectangular IPM (2).
- (105) Diastema length: shorter than the p4(dp4)-m1 distance (0), equal or larger than the p4(dp4)-m1 distance (1).
- (106) Mental foramen: present (0), absent (1).
- (107) Development of the mental foramen: small (0), conspicuous (1), large (2).
- (108) Orientation of the mental foramen: externally oriented (0), anteriorly oriented(1), dorso-anteriorly oriented (2).
- (109) Position of the mental foramen: anterior to the lowest part of the diastema (0), at the lowest part of the diastema (1), beneath p4/dp4 (2).
- (110) Position of the anterior border of notch for the masseter muscle pars infraorbitalis (nmmpio): beneath m1 (0), anterior to m1 (1).
- (111) Position of the numpio respect mandible high: above the mid high (0), at the middle of the mandible high (1).
- (112) Origin of the masseteric crest: includes the notch for the masseter muscle pars infraorbitalis (0), does not include the notch for the masseter muscle pars infraorbitalis (1).
- (113) Depth of the anterior portion of the masseteric fossa: shallow or flat (0), moderately deep (1), deep (2).
- (114) Anterior margin of the coronoid process: convex (0), straight (1), concave (2).

- (115) Mandibular notch: conspicuous (0), poorly developed or absent (1).
- (116) High of the coronoid process respect the mandibular condyle: same high (0), ventral to the condyle (1).
- (117) High of the mandibular condyle: higher than the occlusal surface (0), as the occlusal surface (1).
- (118) Posterior border of the mandibular symphysis: anterior to the premolars (0), at the level of the premolars (1), posterior to the premolars (2). It is measure with the tooth row horizontal to the floor.
- (119) Posterior extension of the premaxillaries related to nasals: shorter (0), equal (1), longer (2).
- (120) Frontal extension between nasals and premaxillaries: absent (0), present (1).
- (121) Nasals shape: parallel lateral margins (0), lateral margins wider anteriorly (1).
- (122) Incisor included into the rostral masseteric fossa: no (0), yes (1).
- (123) Incisor foramina: length (0), short (1). They are considered long when its length is equal or larger than the half of the length of the diastema.
- (124) Incisor foramina shape: laterally narrow (0), anteriorly narrow (1), posteriorly narrow (2), both extremes acute (3). They are considered narrow when they are equally wide along the length of the foramina.
- (125) Premaxillary-maxillay suture: at the posterior border of the incisor foramina (0), at the middle length of the incisor foramina (1); posterior to the incisor foramina (2).
- (126) Diastemal ridges: absent (0), present (1).
- (127) Diastemal ridges: poorly developed (0), conspicuous (1).
- (128) Frontals: wider anteriorly than posteriorly (0), straight lateral margins (1), narrower anteriorly than posteriorly (2); concave lateral margins (3).
- (129) Post-orbital process: absent (0), present (1).

- (130) Post-orbital process: small (0), conspicuous (1).
- (131) Conformation of the post-orbital process: build only by the frontal (0), build by the frontal and parietal (1).
- (132) Post-orbital constriction: absent (0), present (1).
- (133) Post-orbital constriction: small (0), conspicuous (1).
- (134) Position of the zygomatic dorsal root (ZDR): anterior to M1 (0), at the level of M1 or M1-M2 (1).
- (135) Exposition of the lacrimal onto the vertical or ZDR: little exposed (0), conspicuous (1), no exposed (2).
- (136) Ventral root of the zygomatic arch: similar anteroposterior and dorsoventral diameters (0), anteroposterior diameter twice dorsoventral or more (1).
- (137) ZVR respect the palatal level: at the same level (0), ZVR dorsal (1).
- (138) ZDR respect ZVR: aligned (0), posterior (1).
- (139) Groove for the infraorbitalis nerve within the infraorbital foramen: absent (0), present (1).
- (140) Groove for the passage of the infraorbitalis nerve within the infraorbital foramen: present with a small lateral rim (0), present with a large lateral rim (1).
- (141) Masseteric tuberosity (for the insertion of the masseteric superficial muscle):poorly developed (0), well developed (1).
- (142) Paraorbital process: present (0), absent (1).
- (143) Paraorbital process: build by the jugal and squamosal (0), build by the squamosal (1), build by the jugal (2).
- (144) Jugal fossa: present (0), absent (1).
- (145) Depth of the jugal fossa: superficial (0), deep (1).
- (146) High of the jugal fossa: low (0), high (1).

- (147) Length of the jugal fossa: antero posteriorly short (0), antero posteriorly long(1). It is considered long when its length is equal or longer than the length of the horizontal ramus of the zygoma.
- (148) Etmoidal foramen: at the level of M3 (0), at the level of M2-M3 (1), at the level of the M2-M1 (2); at the level of the M2 (3).
- (149) Sphenopalatine foramen: anterior to the M1 (0), at the level of M1 (1), posterior to M1 (2), groove located at the DP4-M1 level (3), groove located at the M1-M2 level (4).
- (150) Posterior palatine foramina: between palatines and Mx at the M1 (0), into the Mx at the level of the premolar (1), into the Mx at the level of M1.
- (151) Posterior palatine foramina: small (0), conspicuous (1).
- (152) Posterior nares: at the level of M3 (0), at the level of M2 (1).
- (153) Spheno-palatine vacuities: absent (0), present (1).
- (154) Spheno-palatine vacuities: small (0), conspicuous (1).
- (155) Buccinator and masticatory foramina: separated (0), fused (1).
- (156) Oval foramen: bounded by the aliesfenoid (0), bounded posteriorly by the tympanic bulla (1).
- (157) Ventral extension of the lateral process of the supraoccipital: exceeds the dorsal border of the bulla (0), extends until the dorsal border of the bulla (1); do not reach the dorsal border of the bulla (2).
- (158) Parietals on the skull roof: reach or are close to the occiput (0), retracted and not near the occiput (1).
- (159) Dorsal extension of the mastoid exposure: do not exceeds the dorsal border of the bulla (0), exceeds the dorsal border of the bulla (1), mastoid exposed on the skull roof (2).

- (160) Mastoid exposure on the occiput: absent (0), present (1).
- (161) Shape of the mastoid exposure: concave (0), plane (1), convex (2).
- (162) Dorsal exposition of the petrosal: absent (0), present (1).
- (163) Epitympanic sinus: small (0), conspicuous (1).
- (164) Hypotimpanic recess: small (0), inflated (1), hypertrophied (2).
- (165) Tympanic fenestra below MAE: absent (0), present (1).
- (166) Tympanic fenestra below MAE: small (0), conspicuous (1).
- (167) Paraoccipital process: ventrally oriented with its tip separated from the bulla and well developed (0), ventrally oriented, with its tip fused to the bulla (1), short, laterally oriented and completely fused to the bulla (2), short, ventrally oriented and completely fused to the bulla (3).
- (168) Premaxillary septum separating incisive foramina (Verzi *et al.*, 2016): with posterior ends of premaxillae joined medially, forming a pointed or rounded projection which may join an anterior apophysis of the maxilla (0), with posterior ends of premaxillae divergent, each one forming a small lateral apophysis (1).
- (169) Lacrimal foramen (Verzi *et al.*, 2016): opens into the orbital portion of the lacrimal (0); opens into the maxilla (1).
- (170) Portion of maxilla surrounding foramen into nasolacrimal canal (Verzi *et al.*, 2016)*: with a suture posterior to the foramen (0); continuous around the foramen (1); no portion of the mx surrounding the lacrimal foramen (2)
 Character stated 2 was included in order to scored *Dasyprocta azarae*.
- (171) Foramen into nasolacrimal canal (Verzi *et al.*, 2016): opens into maxilla only
 (0); surrounded posteriorly by lacrimal (1).

- (172) Relationship between zygoma and orbital region (Verzi *et al.*, 2016): dorsal margin of the zygoma concave, not restricting orbital region (0), dorsal margin of the zygoma very slightly concave or straight, restricting orbital region (1). We do not clearly understand the last part of each character state (not restricting orbital region/ restricting orbital region) since we interpreted that a concave dorsal margin of the zygoma should restrict, or delimit (if this is the sense), the orbital region. Nevertheless, we described this character as was done in Verzi *et al.* (2016) but scored them taking into account if the zygoma is concave or very slightly concave.
- (173) Contact among maxilla, lateral palatine plate and alisphenoid in basitemporal region (Verzi *et al.*, 2016): located posterior to the M3 alveolus (0); lateral to the M3 alveolus (1).
- (174) Pterigoid fossa in ventral view (between alisphenoid bridge and anterior margin of lateral palatine plate) (Verzi *et al.*, 2016)^{*}: subcircular, with anteroposterior and transverse diameters subequal (0), suboval, with anteroposterior diameter greater than transverse one (1), suboval, with labiolingual diameter greater than anteroposterior one (2).

Character stated 2 was included in order to scored Myocastor coypus.

- (175) Lateral margin of pterygoid fossa (Verzi *et al.*, 2016): oriented posterodorsally and not forming a flange extending posteriorly (0); forming a flange level with the medial margin and extending posteriorly toward the bulla (1).
- (176) Ventral margin of posterior process of squamosal (Verzi *et al.*, 2016): not laterally deflected (0); laterally deflected, thus forming a shelf (1).
- (177) Posterior process of squamosal (Verzi *et al.*, 2016): straight and deep at its origin, with its posterior portion wide (0); lower (dorso-ventrally narrow) at its

origin and with posterior portion narrow due to development of the epitympanic recess (petrosal bulla) (1).

(178) Lateral process of supraoccipital (Verzi *et al.*, 2016)*: short, located dorsal to mastoid process (0); long, ventrally extended overlapping the mastoid process or below the level of the latter (1); reaches the middle dorso-ventral length of the mastoid exposure (2).

Character stated 2 was included in order to modified some scores of Verzi *et al.*, 2016.

(179) Orientation of distal portion of paroccipital process (Verzi *et al.*, 2016)*: on a plane parallel or subparallel to occipital plane (0); rotated so that its external margin becomes posterolateral or posterior (1); rotated so that its external margin becomes anterolateral (2).

Character stated 2 was included in order to score *Proechimys poliopus*.

(180) Lateral crest (Verzi *et al.*, 2016)*: descending toward masseteric notch following same direction as the anterior margin of coronoid apophysis, or nearly so
(0); with trajectory uncoupled from that of the anterior margin of the coronoid apophysis, more ventral along the mandibular body, forming a markedly descending curve that rises at its anterior extreme, which corresponds to the anterior end of the notch (1); more ventral along the mandibular body (2).

Original character 19 of Verzi *et al.* (2016), which includes features of the lateral crest and the nmmpio, was decoupled in two characters (here characters 181 and 182).

(181) Mandibular notch for tendon of medial masseter muscle: subhorizontal (0);horizontal (1).

- (182) Anterior margin of base of coronoid apophysis: close to the alveolar edge of molars (0); more lateral and ventral with respect to alveolar edge of molars, even extending anteriorly as a more or less marked rim distinct from the lateral crest (1).
- (183) Lingual extreme of the protocone area (or posterior outgrowth of the protocone)in M1-2 of non-senile adults: oriented posteriorly (0); oriented more lingually (1).
- (184) Anteroloph on DP4: with no inflection on anterior or anterolingual surface (0); with weak inflection on anterior or anterolingual surface, from which point the orientation of this loph changes slightly to become more anterolabial (1).
- (185) Mesoflexus (or meso- + metaflexus) of M1-2: with bottom (lingual extreme) and labial extreme approximately equal in depth (0); markedly deeper at lingual extreme (1).
- (186) Metalophulid II of m1-2: originating from the protoconid area (0); originating from the metalophulid I (1); originating from the anterior part of the ectolophid (2).

Supplementary appendix 3. Character taxon matrix used for the phylogenetic analysis. The letters represent polymorphic scorings (*i.e.*, A =states 0 and 1; B =states 1 and 2; C =states 1 and 3; D = 0 and 2; E = 1 and 3).

	10	20	30	40	50	60	70
Bugtimys zafarullahi	000???00?0	0031111200	11001010	-100111200	0030001100	1001122?20	1100002120
Metaphiomys schaubi	000???0100	000101????	????????????	??00121100	00111?0101	10-0100?11	01001-2???
Phiomys andrewsi	100???0000	0?????1100	0001110101	0000001110	00111?010?	?000?11?01	1100002101
Garridomys curunuquem	11200?1011	2????0011	1002111111	2000111000	1-101110	2001011???	??????121
Eoviscaccia boliviana	?120??1011	2????0011	1???111111	2100111000	1-101?10-?	0101011???	???????1
Eoviscaccia frassinettii	?120??1011	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	???????1
Dasyprocta azarae	1120031011	00122?0311	120B111111	2000111200	00C2111112	011102212?	?000002??1
Cephalomys arcidens	112???101?	?????0511	00??1010	-?00121000	1-001?1102	?101?20???	??????101
Eosteiromys homogenidens	1110000010	0?????0311	?001010111	2000100010	0010001111	0000001?0	20000A2111
Steiromys detentus	1110000010	0010?10311	0001111111	2000110010	0010001111	0000001?1	10000021?1
Sallamys? minutus	?1????0010	????????????	???????????????????????????????????????	???????????	????????????	???????????	??????120
Paulacoutomys paulista	?11???0011	????????????	????????????	???????????	????????????	???????????	??????100
Migraveramus beatus	?11???0011	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	??????001
Llitun notuca	?11???0011	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	??????120
Leucokephalos zeffiae	?11???0011	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	??????100
Changquin woodi	?12???0?11	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	????????????
Dudumus ruigomezi	1110??0100	002001		001000A0	0A20A11111	1000D11?00	2001002
Prospaniomys priscus	1110000110	010001		00101010	1-00001110	10A0000100	10A1002
Protacaremys? adilos	?1????0???	????????????	????????????	???????????	????????????	???????????	???????????
Protacaremys prior	1110110110	010001		01111010	1-00111111	1001021?01	1000002
Acarechimys minutus	1100000110	010D01		00111010	1-00111111	1000011?21	100A0A2
Acarechimys leucotheae	?10???0100	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????????????????????????????????????	?001001
Acarechimys minutissimus	11000?0100	010001????	???????????????????????????????????????	??00111000	1-0011111-	-00?-11?01	10AA00B
Acarechimys constans	1100000110	010001????	???????????????????????????????????????	??00101000	1-0011111-	-000-11?21	100A002
Acarechimys gracilis	?10???0110	????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	???????01	1000012
Platypittamys brachyodon	1100000000	0????1201	001-00-010	-000100010	1-00001111	0000010??	??????001
Galilelomys baios	?1????0000	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	??????100
Galileomys antelucanus	1110??0000	0????1401	00A1010111	1010110010	1-00111111	000?000???	??????100
Acaremys murinus	1110000010	00200114A1	00A11111	1010111010	1-00111111	0000011001	?01-002100

Caviocricetus lucasi	1100??0100	002001		00001010	0120111111	10000D2?01	A100012
Plesiacarechimys koenigswaldi	11100?0110	002001		00100010	0110101111	0000011?01	10000A2
Stichomys regularis	1110011111	010001		0110-001	1-00111112	010A0DD101	10001-2
Xylechimys obliquus	?11???1?11	????????????	????????????	???????????????????????????????????????	????????????	???????????	???????????
Spaniomys riparius	1110001111	010001		0012-00A	1-00100102	1100000101	00001-2
Sallamys pascuali	?11???0010	0?????1101	00A2010?10	-100101010	0AE00?1102	0000011??0	2100001100
Adelphomys candidus	1110011111	010001		-?0112-001	1-00001102	1100022?01	20??1-2
Ethelomys loomisi	?11???0?11	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????????	???????????
Deseadomys arambourgi	?11???0011	0?????110?	001-110011	0?0010-000	1-00011112	1000002???	??????000
Draconomys verai	?100??0011	0?????????	????????????	??00121000	0011001112	100?111???	??????101
Eosallamys simpsoni	?10???00?0	0?????1101	000?110?10	-100121010	01E00011A2	0000011???	;00000;;;;
Eospina woodi	?10???0000	0?????1111	000?10-??0	-100101000	1-00000112	000?0???00	1100001110
Eosachacui lavocati	?10???00?0	0?????1111	1???100111	1000101000	1-00000102	200?011?01	10??002100
Eodelphomys almeidacomposi	?1????1?11	????????????	????????????	????????????	????????????	???????????	??????????
Cachiyacuy contamanensis	010???00?0	0012210110	0202111100	-100101000	00E0A?A101	1000111?01	200000110?
Canaanimys maquiensis	?10???0??0	0?????????	????????????	??00101100	00320?A100	0000011?2?	????002???
Eumysops laeviplicatus	1120011111	001001		0012-000	0AB0101112	200A0111?1	?0001-2
Myocastor coipus	1120021111	010001		0112-000	1-00001102	20001021?1	?000002
Echimys chrysurus	1111111111	010001		0012-000	1-0010A0-2	0100022001	0000??0
Proechimys poliopus	1120001111	010?01		0011-000	1-0?AA1102	00010000?1	?0001-2
Kannabateomys amblyox	1111011111	010001		0112-000	1-00100102	0111011101	00001-2
Neophanomys biplicatus	?12???1111	?????		????????	???????????????????????????????????????	???????1	10001-2
Chasicomys octodontiforme	1120??1111	0????1		1011-0?0	???00??10?	100???????	??????
Chasichimys bonaerense	?12???1111	?????		1???-???	???????????????????????????????????????	???????????	?0????2
Pithanotomys columnaris	113-02?111	0?????		101?-??0	????11?10?	01010221??	?0????2
Plataeomys brevis	113-02?111	0?????		101?-??0	????11?10?	01010221??	?0????2
Ctenomys australis	113-01?111	0?????		0?1?-?20	????11?1??	?20201??	?0????2
Octomys mimax	113-00?111	0?????		101?-?00	????11?10?	11010220??	?0????2
Octodontomys gliroides	113-03?111	0?????		101?-?20	????11?1??	01010220??	?0????2
Abrocoma cinerea	113-011?11	1???????????	???????????????????????????????????????	??101?-?1?	10-10-	02002111??	???????????????????????????????????????

	80	90	100	110	120	130	140
Bugtimys zafarullahi	1110211111	0000001110	0011011010	?0???02?10	?0?????????????????????????????????????	???????????	???????????
Metaphiomys schaubi	???????????	?000001110	0011011000	10?2001?10	001???????	???????????	????0?????
Phiomys andrewsi	10-0211111	0000013110	0011011100	0000?01?11	001???????	???????????	???????????
Garridomys curunuquem	0A01000100	1011011011	000?111001	100??02011	000????2??	???????????	?????01?0-
Eoviscaccia boliviana	?????0?100	202????011	10011???1?	?2???0??1?	???????????	???????????	???????????
Eoviscaccia frasinettii	?????0?110	102?????1	1?001???0?	????????????	???????????	???????????	???????????
Dasyprocta azarae	1111101001	000100A001	10111A?000	1000100201	0000010201	011320-111	111010110-
Cephalomys arcidens	10-1001100	?11100?001	1011111110	1000?0??11	100???????	???????????	-0??0??0
Eosteiromys homogenidens	0111201101	0001001001	101111100?	10?0?0??10	001????11?	10??110011	1100?0010-
Steiromys detentus	0111201101	0001001001	1011111000	1200001110	001????210	0003110010	1101?0110-
Sallamys? minutus	10-10011??	0?????????	????????????	????????????	???????????	???????????	???????????
Paulacoutomys paulista	10-1201101	0001001011	00111??000	?????0??01	?0?????????????????????????????????????	???????????	???????????
Migraveramus beatus	10-1200111	0001003011	001110000?	100?10211?	3003333535	???????????	???????????
Llitun notuca	1101201111	0001001001	001110000?	100?102111	?0?????????????????????????????????????	???????????	???????????
Leucokephalos zeffiae	10-1200111	0101003011	00111??001	110?102111	?00????1??	???????????	???????????
Changquin woodi	??????????	0001001001	001111100?	??0?????1	?01???????	???????????	???????????
Dudumus ruigomezi		000A000010	0011111101	1102?00011	101????2??	???????????	-0?00???
Prospaniomys priscus		0001001000	0A11111011	110?000011	A011000110	000110-110	011010000-
Protacaremys? adilos	???????????	0001000001	101111110?	????????????	???????????	???????????	???????????
Protacaremys prior		0001001001	0010111001	01020A0?11	100????1??	????11????	-0?00????
Acarechimys minutus		0001013011	00111A0001	01021A0021	10B????22?	?00?11130-	-0-0?00?10
Acarechimys leucotheae		0001013011	0011110101	??0??11	102???????	???????????	???????????
Acarechimys minutissimus		000AA13011	A01111A101	0?02111	102????2??	?????11???	?????00?10
Acarechimys constans		00010A3011	00111AA101	110?110	101????2??	?????11???	?????00?10
Acarechimys gracilis		0001A13011	00111A0001	110??A0010	?01????2??	???????????	???????????
Platypittamys brachyodon	10-0?01011	000A001010	00111A1A01	0102?0??01	00;5;5;00	0?????20-	-0-??0????
Galilelomys baios	?????01111	0101000000	0011????0?	010?101111	?02???????	???????????	???????????
Galileomys antelucanus	10-0?01111	01010A0010	001110010?	010??01011	003???????	???????????	?????0??10
Acaremys murinus	A0-0?01112	01A1000011	00111A1101	010?101011	00311??20?	1111111211	0111?01111
Caviocricetus lucasi		000001-010	0010010101	0101111	101????1??	????????????	????00?0-
Plesiacarechimys koenigswaldi		00010A1010	0011100001	0101?11	101???????	?0?????????	???????10
Stichomys regularis		0001A1-000	0111111111	0022100010	10020??100	1???11111?	01???00?0-

Xylechimys obliquus	???????????????????????????????????????	0001014000	0111101111	?11??????0	?00????????	???????????	???????????
Spaniomys riparius		00000-000	0111111111	0122100A11	1002???11A	011311111?	01?1?11110
Sallamys pascuali	10-1200101	00011011	0011100101	1001?0??11	?0?????????????????????????????????????	???????????	???????????
Adelphomys candidus		0001A1-000	0111111111	1202010	100???01??	???????????	???????0-
Ethelomys loomisi	???????????????????????????????????????	0001100A	011111111?	112??01011	?01???????	???????????	???????????
Deseadomys arambourgi	10-1??1111	00010A0011	0011111101	111?101?10	10????????	???????????	???????????
Draconomys verai	10-1101111	0001003001	0011111001	10???02010	???????????	???????????	???????????
Eosallamys simpsoni	10-12001?1	0001001001	0011111001	???????????????????????????????????????	???????????	???????????	???????????
Eospina woodi	1???001112	0001001001	001111100?	??0??02?11	?0?????????????????????????????????????	???????????	???????????
Eosachacui lavocati	1101101111	000100E011	00111AA001	???????????????????????????????????????	???????????	???????????	???????????
Eodelphomys almeidacomposi	???????????????????????????????????????	00011000	111111111?	???????????????????????????????????????	???????????	???????????	???????????
Cachiyacuy contamanensis	10-1100112	0001002101	00111A0000	???????????????????????????????????????	???????????	???????????	???????????
Canaanimys maquiensis	????????????	0001012001	0011110001	????????????	???????????	???????????	???????????
Eumysops laeviplicatus		00011011	00111??101	1102111	001??11120	010111110-	-0-100010-
Myocastor coipus		000200-001	0111111110	1022?10	1001010111	0111110110	011101110-
Echimys chrysurus		00011010	0110111121	11220A0011	1010010110	11?111120-	-0-001010-
Proechimys poliopus		0001A13011	1011111121	1102111	1020010200	010111120-	-0-121110-
Kannabateomys amblyox		00011011	0111111121	0002011	1010010201	111101010-	-10001110-
Neophanomys biplicatus		0111A13011	001111?101	0102?11	?01???????	???????????	???????????
Chasicomys octodontiforme		0111101?	00111???01	120???????	??1???????	???????????	???????????
Chasichimys bonaerense		01111011	001111?10?	120??11	101???????	???????????	???????????
Pithanotomys columnaris		0121??0?	?01?????11	120?010	001?110?10	110110-111	010110110-
Plataeomys brevis		0121??0?	?01?????11	1202110	011?1??111	?10110-???	???1?0110-
Ctenomys australis		002???????	??1?????1	1202111	1100000210	110110-110	010001110-
Octomys mimax		0121????0?	?01?????11	1102111	0110110121	101101120-	-101001111
Octodontomys gliroides		0122????0?	?01?????11	1002111	0111110210	101111120-	-101011111
Abrocoma cinerea	???????????????????????????????????????	102?1?11	011?111120	?222111	1110010010	010011?310	00-110110-

	150	160	170	180	186
Bugtimys zafarullahi	???????????	???????????????????????????????????????	???????????	????????????	???1?0
Metaphiomys schaubi	???????????	???????????????????????????????????????	???????????	?????????2	001112
Phiomys andrewsi	???????????	????????????	???????????	???????????	0?1112

Garridomys curunuquem	1?????????	???????????	???????????	????????2	0?10?-
Eoviscaccia boliviana	????????????	????????????	???????????	???????????	??10??
Eoviscaccia frasinettii	????????????	???????????	???????????	???????????	??10??
Dasyprocta azarae	11-0101110	0010122110	1011110002	-00000010	011?02
Cephalomys arcidens	1?????????	???????????	??????????????????????????????????????	???????????	??????
Eosteiromys homogenidens	??????02?	?1?????????	???????????	???????????	0?1?02
Steiromys detentus	1?????042	11????1???	?00????????	???????????	011102
Sallamys? minutus	???????????	???????????	??????????????????????????????????????	???????????	??????
Paulacoutomys paulista	???????????	???????????	33333333333	?????????2	0?1??0
Migraveramus beatus	???????????	???????????	33333333333	??????????????????????????????????????	0;5;50
Llitun notuca	???????????	???????????	33333333333	??????????????????????????????????????	0????0
Leucokephalos zeffiae	???????????	???????????	33333333333	?????????2	01???0
Changquin woodi	???????????	???????????	33333333333	??????????????????????????????????????	0????2
Dudumus ruigomezi	1?????????	???????????	33333333333	55555555555	0-1102
Prospaniomys priscus	0000001??0	1111??1111	21111120??	????01202	101102
Protacaremys? adilos	???????????	???????????	33333333333	??????????????????????????????????????	555550
Protacaremys prior	1?????????	???????????	33333333333	?????????2	101102
Acarechimys minutus	1000111??1	11????????	333333333333	?????????2	111002
Acarechimys leucotheae	???????????	???????????	??????????????????????????????????????	????????2	0????D
Acarechimys minutissimus	1?????????	1??????????	???????????	????????2	111002
Acarechimys constans	1?????????	11????????	???????????	????????2	011002
Acarechimys gracilis	????????????	???????????	???????????	????????2	0111?2
Platypittamys brachyodon	???????????	?1?????????	??????????????????????????????????????	???????????	0?1??2
Galilelomys baios	???????????	???????????	333333333333	?????????2	01???2
Galileomys antelucanus	0?????????	???????????	???????????	<u>}</u> ?????????0	011?12
Acaremys murinus	1???????1	00?????????	???????????????????????????????????????	????????2	1111?2
Caviocricetus lucasi	1?????????	????????????	???????????	<u>};;;;;;;0</u>	011102
Plesiacarechimys koenigswaldi	???????????	???????????	??????????????????????????????????????	???????????	0?1000
Stichomys regularis	0???????2	11????????	???????????	????????2	011002
Xylechimys obliquus	???????????	???????????	<u> </u>	??????????	01???0
Spaniomys riparius	??????1?2	11?????????	???????????????????????????????????????	?????????2	011000
Sallamys pascuali	???????????	???????????	<u> </u>	??????????	0?1?02
Adelphomys candidus	????????2	11????????	???????????	???????????????????????????????????????	01????
Ethelomys loomisi	???????????	???????????	33333333333	333333333333	???? -

Deseadomys arambourgi	??????????	??????????	??????????	??????????	0?1?02
Draconomys verai	??????????	???????????	???????????	???????????	0?1?02
Eosallamys simpsoni	??????????????????????????????????????	??????????????????????????????????????	??????????????????????????????????????	???????????	??1?02
Eospina woodi	????????????	???????????	???????????	???????????	0?1?02
Eosachacui lavocati	????????????	???????????	???????????	???????????	??1?02
Eodelphomys almeidacomposi	???????????	???????????	??????????????????????????????????????	???????????	??????
Cachiyacuy contamanensis	????????????	???????????	???????????	???????????	??1102
Canaanimys maquiensis	???????????	???????????	??????????	????????????	??A?02
Eumysops laeviplicatus	0000111020	10???10110	00000-0010	000??10102	01100-
Myocastor coipus	0000100022	10111?0110	0000-0000	1102100112	001000
Echimys chrysurus	0000111211	100-?10010	0000110000	10?0?00100	01100-
Proechimys poliopus	0010111300	1110120110	0000100011	0101110120	00101-
Kannabateomys amblyox	0020111211	100-??0010	10000-100?	?0???00??0	11100-
Neophanomys biplicatus	????????????	???????????	???????????	???????????	11???-
Chasicomys octodontiforme	???????????	???????????	??????????	????????????	01???-
Chasichimys bonaerense	???????????	???????????	??????????????????????????????????????	?????????2	A0???-
Pithanotomys columnaris	1?????????	?0?????????	???1??????	?????????0	11-0
Plataeomys brevis	1?????????	?1????????	??????????????????????????????????????	?????????0	11-0
Ctenomys australis	1020111130	1111110111	21000-2000	100??00200	11-0
Octomys mimax	1020111231	1111?20111	21110-210?	?1?0001?02	11-0
Octodontomys gliroides	1000111242	1111?20111	2111112100	1001000200	11-0
Abrocoma cinerea	1010011341	0111?01101	21110-2010	1000001200	011???