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Abstract: Wireless sensor networks are an important technology for making distributed autonomous measures in
hostile or inaccessible environments. Among the challenges they pose, the way data travel among them is
a relevant issue since their structure is quite dynamic. The operational topology of such devices can often
be described by complex networks. In this work, we assess the variation of measures commonly employed
in the complex networks literature applied to wireless sensor networks. Four data communication strategies
were considered: geometric, random, small-world, and scale-free models, along with the shortest path
length measure. The sensitivity of this measure was analyzed with respect to the following perturbations:
insertion and removal of nodes in the geometric strategy; and insertion, removal and rewiring of links in
the other models. The assessment was performed using the normalized Kullback-Leibler divergence and
Hellinger distance quantifiers, both deriving from the Information Theory framework. The results reveal
that the shortest path length is sensitive to perturbations.
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1. Introduction
Wireless sensor networks (WSNs) are an emerging tech-nology that allows the monitoring of physical variables,such as temperature, sound, light, vibration, pressure ormovement [1]. A WSN consists of a large number of wire-less autonomous devices, called “sensor nodes”, “sensors”or “nodes.” These entities work in a cooperative way sens-ing the environment, communicating among them, and tak-
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ing decisions. Such networks are a promising technologyin a wide range of applications, for instance, biotechnol-ogy, industry, public health, and transportation [2]. Theyare of particular interest for monitoring hostile or inac-cessible environments [3].The physical variables are monitored and stored in thesensor, and propagated to a sink node. The sink is amanagement node responsible for processing the data anddelivering it to an external user [4]. The communicationuses the nodes between the sensor source and sink inan ad-hoc fashion. The two most common communica-tion strategies are based on data flooding and on complexnetworks. In the flooding based, the data communicationstarts from a node to its direct neighbors, then each neigh-bor re-propagates to the next neighbors, and so on. Eachnode propagates each information once and this processesrepeats until the data arrives to the sink node. Fig. 1(a)illustrates this communication strategy.In complex network based, the communication depends onthe model used to characterize it (random, small-world orscale-free, for example). So, specific topological proper-ties of complex networks are used to determine this kind ofcommunication. Fig. 1(b) shows a complex network basedon scale-free model. An important issue in this model isthe presence of nodes with high degree known as “hubs”.The communication is towards the nodes closer to the sinkor to a hub. The hubs can propagate the information todistant nodes and, consequently, the information flow isconcentrated on them.The WSN communication strategies can be characterizedby a set of measures. These measures describe differ-ent features on the network, such as connectivity, central-ity, cycles or distances [5]. Example of measures are theaverage shortest path length, clustering coefficient, net-work diameter and betweenness. In this work, we use theshortest path length, because it is directly related to thenetwork energy consumption and sudden changes in thismeasure may result in an increase or decrease in energyconsumption.Energy availability is a critical feature in WSN [1]. More-over, classical routing solutions in WSNs employ theshortest paths [6]. If the shortest paths change, the routingsolutions may become inefficient.The communication structure in WSNs is dynamic, i.e.,it changes over time. It is, therefore, important to ana-lyze how this reflects on the measures. The most com-mon changes are: addition and inactivity of nodes, inthe flooding based communication; and insertion, removaland rewiring of links, in the complex network based com-munication [7]. These changes have a great impact overreal WSNs design. The infrastructure mechanisms usu-ally are designed considering topological characteristics.

Sink

Sensor

Hub

(a) Flooding based
Sink

Sensor

Hub

(b) Complex network based with scale-free model
Figure 1. Examples of WSNs communications.

For instance, in a routing algorithm based on shortestpath length if a node is removed the routing behaviour isaffected.In this way, the main question of this work is:
“What is the impact of changes or perturba-
tions on these strategies, as measured by the
shortest path length?”

This work presents the analysis of communication strate-gies in WSNs by means of analyzing the variation of mea-sures. We analyze flooding, random, small-world, andscale-free networks, and the shortest path length. Thevariation of measures was analyzed with respect to theinsertion and removal of nodes in flooding; and with re-spect to insertion, removal and rewiring of links in thestrategy based in complex networks. Stochastic quanti-fiers, namely the normalized Kullback-Leibler divergenceand Hellinger distance [8], were used to quantify the vari-ation of the measure. The results reveal to which extentthe measure is influenced by the perturbations considered:the shortest path length exhibits a clear dependence onthe type and intensity of the perturbation.
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The paper is organized as follow. Section 2 presents therelated work. Section 3 analyses communication strate-gies in WSNs. Section 4 presents the results of measuresbehavior and the quantifiers performance. Finally, con-clusions and future directions are presented in Section 5.
2. Related work
This section presents a brief review about WSN communi-cation strategies that use complex networks concepts, andstochastic quantifiers applied to networks.
2.1. WSNs communication strategies
Helmy [9] described WSNs as spatial graphs that tend tobe much more clustered and with higher path lengths thanrandom graphs. He showed that it is possible to reducethe path length of wireless networks with the addition ofa few short cut links.Guidoni et al. [10] proposed on-line models to design het-erogeneous sensor networks with small world features.The proposed model takes into account the data commu-nication flow in this kind of networks to create shortcutstowards the sink in such a way that the communicationbetween the sink and the sensor nodes is optimized. Thenetwork presents better small world features when theshortcuts are created, and an interesting trade off betweenenergy and communication latency is observed.Ruela et al. [11] improved the data communication by usinghubs, an approach based on scale-free networks. The hubsintroduce useful characteristics of complex networks, e.g.small average shortest path length between all sensorsand the sink, and high clustering coefficient. This strategysaves resources, avoiding excessive communication and,consequently, reducing the time to data delivery.
2.2. Information theory quantifiers
Wang et al. [12] used entropy to provide an average mea-sure of networks heterogeneity since it measures the di-versity of the link distribution.Boas et al. [7] analyzed the effect of perturbations in com-plex networks. They chose measures based on the fact thatthe network characterization is made from samples ratherthan from the entire network. They applied three pertur-bations: link addition, link removal, and link rewiring.Carpi et al. [13] proposed a new quantifier based on Infor-mation Theory for the analysis of dynamic network evolu-tion. It is used to compute changes in topological random-ness for degree distribution of the network. The quantifier,a statistical complexity measure, is obtained by the prod-

uct of the normalized Shannon entropy and the normalizedJensen-Shannon distance.In this paper, we use two stochastic quantifiers, a diver-gence and a distance, to quantify the changes in WSNs.We show that it is possible to identify the strength of theperturbations that leads to a breakdown of the networkproperties, i.e, a kind of phase transition. Moreover, weevaluate the flooding communication strategy consideringnode perturbations. These aspects are not addressed inthe related works mentioned and constitute the main con-tributions.
3. Analysis of communication
strategies in WSNs
The WSN physical connectivity can be described as anundirected graph G = (V, E ), where V = {v1, v2, . . . , vN} isthe set of sensor nodes, and E = {(vi, vj ) : 1 ≤ i, j ≤ N} isthe set of links between nodes. Each link is determined bythe communication geometry. In our case it is a circum-ference, i.e., the neighborhood of node vi is formed by allnodes vj at most R units away from vi. The data employthis physical connectivity to propagate, but obeying therules of a protocol. The protocol may impose restrictionson the use of the available links E , resulting in a com-munication subgraph G = (G, E), such that E ⊂ E and,therefore, G ⊂ G.The number of connections of a node is its degree κ. Animportant graph characteristic is its degree distribution,i.e., the collection of all its degrees.The flooding based communication employs all the avail-able links, so G = G. The flooding starts propagatingthe data from vi to all its neighbors, then each neighborre-propagates to its neighbors, and so on. Each nodepropagates each unit of information once. This processesrepeats until the data arrives to the sink node.The communication based on complex networks employsa subset of links E ⊂ E such that data flow towards thenodes which are closest to the sink. The source nodes al-ways send the information to that neighbor which reducesthe distance to the sink. Each node propagates the infor-mation following the same criterion. This process repeatsuntil the data arrives to the sink node.In some cases the path to the sink is not the optimal,because it is not always immediate to find the optimalrouting solution in distributed scenarios. These scenariosoffer only local information, a limitation which often pre-vents finding global optima. Specific measures of complexnetworks are used to characterize this kind of communi-cation, for instance, the shortest path length [14, 15]. Ashortest path is any path that connects two nodes and has
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minimal length. It is an important measure in communica-tion strategies.There are several complex networks models. In this work,we use the random, small-world, and scale-free models:
Random model The probability to connect each pair ofnodes is the same. There are two ways to build arandom graph [16]: N nodes and exactly M links,and N nodes and the probability 0 < pc < 1 toconnect each pair of nodes. In the first descrip-tion, M links are uniformly distributed among the

N(N−1)/2 possibilities. In the second description,which is the one we adopted here, we start with atotally disconnected graph and then connect eachpair of nodes with probability pc . In this case, theprobability of observing 0 ≤ k ≤ N−1 connectionsin each node follows a Binomial distribution with
N − 1 trials and probability of success pc , leadingto (N − 1)pc as mean degree.

Small-world model A communication strategy is small-world when the communication network presents ahigh clustering coefficient and a small shortest pathlength [17]. There are several ways to build suchstrategy; in this work, we use the Watts-Strogatzmodel. This model starts with a circular regulartopology with N nodes, each one connected to the
k nearest neighbors in each direction (right or leftin circular topology). Then, each link is randomly“rewired” with probability pr [5], i.e., if the currentlink is (vi, vj ) and there is no link (vi, vk ), rewiringconsists in deleting (vi, vj ) and creating (vi, vk ).

Scale-free model A communication strategy is scale-freewhen the communication network displays a powerlaw degree distribution p(κ) ∼ κ−λ, κ > 0, with2 < λ < 3. The main feature of this topology isthe presence of some nodes with high degree, oftencalled “hubs”. To generate this topology we use theBarabási-Albert scale-free model that starts with asmall number of nodes with m0 links, and in thenext step a new node with m links is added to thenetwork (with m ≤ m0). The probability connectionis linearly proportional to the node degree [18].
The main question stated in this work is: “What is the
impact of changes or perturbations on these strategies, as
measured by the shortest path length?” To answer thisquestion, we need to quantify the variation of the measurewhen perturbations occur. The most common changes, orperturbations, are: the addition and inactivity of nodes,in the flooding based communication; and insertion, re-moval and rewiring of links, in the complex network basedcommunication.

The stochastic nature of the aforementioned quantifierssuggests the use of techniques deriving from InformationTheory in order to assess their change. The normalizedKullback-Leibler divergence and Hellinger distance aretwo quantifiers suitable for describing the difference be-tween distributions [8].Consider the discrete random variables X and Y definedon the same sample space Ω = {ξ1, ξ2, . . . , ξn}. Thedistributions are characterized by their probability func-tions p, q : Ω → [0, 1], where p(ξi) = Pr(X = ξi) and
q(ξi) = Pr(Y = ξi). A metric D between these two distri-butions is a quantifier obeying:

1. D (p, p) = 0, reflexivity;
2. D (p, q) > 0, non-negativity;
3. D (p, q) = D (q, p), commutativity;
4. D (p, q) 6 D (p, r) + D (r, q), triangle inequality forany other probability function r defined on the sameprobability space.

A distance is not required to satisfy property 4, and a di-vergence is only required to satisfy properties 1 and 2 [19].Assuming q(ξ) > 0 for every event ξ ∈ Ω, the Kullback-Leibler divergence is defined as
DKL(p, q) =∑

ξ∈Ω p(ξ) log p(ξ)q(ξ) . (1)
The Hellinger distance does not impose positivity on theprobabilities; it is defined as

DH (p, q) = 1√2
√∑

ξ∈Ω
(√

p(ξ)−√q(ξ))2

= 1−∑
ξ∈Ω

√
p(ξ)q(ξ). (2)

In order to make the Kullback-Leibler divergence (an un-bounded positive quantity) and the Hellinger distance(which is confined to the [0, 1] interval) comparable, inthe remainder of this work we will use the normalizedKullback-Leibler distance defined as DKL(p, q) = 1 −exp{−DKL(p, q)}.
4. Simulation results
This section presents the simulation study about the com-plex network measures behavior of WSNs using two quan-tifiers presented previously.
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4.1. Methodology
Simulation assumptions and parameters were:
Network parameters In order to simulate a sparse WSN,we used N = 1000 nodes deployed in an L2 =100 × 100 area. The communication radius ofeach node was R = 5 units in strategies basedon flooding communication. With these values, wegot a network density approximation of 1.5 ob-tained through d = π R N/L2, where d repre-sents the number of neighbours of each nodes [20].The probability of connection in the random modelwas pc = 0.06, which implies an average degreeequal to 6. The nearest neighbors and probabilityrewiring in the small-world model were k = 3 and

pr = 0.3, respectively. The number of links addedin each step in the scale-free model was m = 1.The above parameters were chosen according toBoas et.al. [7].
Perturbations In the strategies based on flooding com-munication we performed: (i) nodes addition, nodeswere randomly added to the network; and (ii) nodes

removal, nodes were randomly removed from thenetwork, that represents the node inactivity. Theperturbations were performed on {1%, 2%, . . . , 10%}of the total number of nodes. In the complexnetworks based communication, we performed treetypes of links perturbations [7]: (i) link removal,links were randomly removed from the network;(ii) link addition, two unconnected nodes were ran-domly selected, and a new link was established;and (iii) link rewiring. In this last case, the pertur-bations were performed in {1%, 2%, . . . , 10%} of thetotal number of links.
Normalization for each network, the normalized his-togram H, also known as histogram of proportions,was obtained with 200 bins of equal width. The DKLdiverges for q(ξ) = 0 and p(ξ) 6= 0, as defined inequation (1). In order to avoid the division by zero,a small positive constant δ = 0.001 was added toeach bin, and then the histogram is normalized toadd 1 [7, 24]. The original histogram is used to com-pute the Hellinger distance once it does not imposethe positivity restriction on the probabilities.
General parameters for each communication strategy, wegenerated 10 different networks and for each net-work 100 different perturbations were made. In thisway, we are able to present the mean results withsymmetrical asymptotic confidence intervals at the95% significance level.

Computational resources we performed the evaluationusing the R platform [21], on an Intel(R) Core(TM)i5 CPU 760 2.80 GHz with 7 GB RAM, runningUbuntu 12.04 (64 bits). The igraph library wasused to generate and modify the graphs [22].

Figures 2 and 3 present the variation of the shortest pathlength, for the different communication strategies and theperturbations considered. Each plot presents two quan-tifiers: the normalized Kullback-Leibler divergence DKL(denoted as “4”), and the Hellinger distance DH (denotedas “◦”), as functions of the level (intensity) of the pertur-bation.
4.2. Flooding communication

Figure 2 shows the shortest path variation in floodingcommunication; from left to right, node addition and noderemoval. Both addition and removal alter the shortest pathlength, the bigger the level of perturbation the strongerthe change. The Hellinger distance is more sensitive tochanges in the shortest path length than the normalizedKullback-Leibler divergence. The variability of both mea-sures has some dependence on the level of perturbation; itincreases with the level of perturbation but then stabilizes.The removal of nodes has stronger impact on the short-est path length than node addition (the former variationis steeper than the latter); this effect is more noticeablewith higher levels of perturbation. This may be explainedby the fact that when new nodes are added within thecommunication range of a node, the shortest path is lit-tle affected. The shortest path length changes when nodesare removed because many links are lost and some of thembelonged to the shortest paths.The quantifiers are, thus, sensitive to both node addi-tion and removal in this scenario, but with different re-sponses. The Hellinger distance is the one which variesmost, reaching, in mean, 0.032 for the addition and 0.054for the most intense removal of nodes (10%).The results presented are important to WSN designers.Based on this study, a more efficient topology control canbe applied. For instance, when 10% of nodes are addedthe shortest path length changes. This change indicatesthat adding more than 10% of nodes in the original net-work could be harmful. When 5% of nodes die (i.e. areremoved) the shortest path length changes. This informa-tion can be used by the designer to calibrate the dutycycling operation, where each node periodically switchesbetween sleeping mode and awake mode [23].
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Figure 2. Hellinger distance DH and Kullback-Leibler divergence DKL for the shortest path length to the geometric network model (GRG).

4.3. Complex network communication

Figure 3 presents the results in the random, small-worldand scale-free communication models (top to bottom rows)and the three types of perturbations: link addition, linkremoval and link rewiring (left to right columns). Theshortest path length is sensitive to the link addition andremoval applied in the three communication models, andboth quantifiers (DKL and DH ) behave alike: the strongerthe perturbation, the more the quantifier changes in directproportion.Regarding these two perturbations, again, the Hellingerdistance exhibits more intense variations with respect tothe perturbation than the normalized Kullback-Leibler di-vergence; notice that the confidence intervals do not over-lap. Table 1 shows the mean value of the most intenseperturbation (10%); this corresponds to the rightmost pointof the plots of Figure 3. The Hellinger distance is consis-tently and significantly higher than the Kullback-Leiblerdivergence by a factor of, approximately, two, in all thesituations where link addition and removal are applied.The behavior of link addition and removal is the same inthe tree models. Both affect the shortest path length, sincethese perturbations increase or decrease the distance be-tween nodes. In particular, networks where all nodes havethe same degree (regular graphs) may become small-worldwith just a few reconnections [17], i.e., randomly adding orremoving links may result in connecting nodes which arefar away, reducing the shortest path length. Link rewiring

has a different behavior. Although the quantifiers exhibitdifferences, see Table 1, they are negligible in the ran-dom model. Link rewiring alters small-world models, butits effect seems constant, i.e., independent of the intensityof the perturbation. Regarding the scale-free model, thereis a strong variation of both measures when small pertur-bations are applied, but the change tends to stabilize, i.e.,saturates, soon after. The former is the only case wherethe normalized Kullback-Leibler divergence is bigger thanthe Hellinger distance.
The main feature of these networks is the presence of hubs,which makes them sensitive to this kind of perturbation:the shortest path length alters radically whenever a linkinvolving hubs is added or removed. Additionally, the re-moval of some links makes the network disconnected.
All models analysed represent a routing topology gener-ated by some management strategies. Generally, thesestrategies combine the shortest path length with otherQoS parameter (energy, delay or priority). The resultsreveal that when 5% of the links are added, or removed,the shortest path length changes. This information couldbe used to calibrate the management strategies to avoidthe interference of QoS parameter during the routing gen-eration, once this task considers just the links addition orremoval.
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Figure 3. Hellinger distance and normalized Kullback-Leibler divergence for the shortest path length to the random network model, small-world
network model and scale-free network model.

Table 1. Mean most intense perturbation (10%) in the Hellinger distance and normalized Kullback-Leibler divergence.

Hellinger distance Normalized Kullback-Leibler divergenceLink addition Link removal Link rewiring Link addition Link removal Link rewiringSmall-world model 0.122 0.119 0.073 0.095 0.071 0.033Scale-free model 0.105 0.082 0.261 0.076 0.043 0.378Random Model 0.092 0.105 0.006 0.052 0.058 10−4
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5. Conclusion
The analysis of the variability of measures in WSN com-munication strategies, provides important information. Itgives an insight of the behavior of the network when itis perturbed and it helps us in the design of appropriatesolutions for every application.In this paper, we used the normalized Kullback-Leiblerdivergence and the Hellinger distance to compare threecommunication models: flooding, random, small-world andscale-free (the last three are members of complex networkbased strategies). We performed two types of perturba-tions in the flooding-based strategy: addition and removalof nodes. In the complex network strategy, we used threetypes of perturbation: addition, removal and rewiring oflinks. We analyzed how the shortest path length changeswith respect to different levels of each perturbation.The shortest path length is sensitive to these changes,and in most situations it alters accordingly to the inten-sity of the perturbation. The analysis allows identifyingthe relationship between the strength of the perturbationsand the change of the shortest path length. The use ofquantifiers that involve logarithms or ratios may not bea good choice for this kind of characterization, becausethe occurrence of zeros leads to numerical problems and,possibly, to incorrect interpretation of network changes.In addition, more efficient topology control or routingstrategies in WSNs can be proposed. For instance theduty cycling or routing operations can be based on short-est path length sensibility. In the specific scenariostreated, these mechanism could be calibrated when 5%– 10% of the nodes or links are added or removed. Theimpact that the observed results have on the design andoperation of WSNs was commented.
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