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Abstract

Maxcliques (maximal complete subgraphs) and unit disks (closed neigh-
borhoods of vertices) sometime play almost interchangeable roles in graph
theory. For instance, interchanging them makes two existing characteriza-
tions of chordal graphs into two new characterizations. More intriguingly,
these characterizations of chordal graphs can be naturally strengthened to
new characterizations of strongly chordal graphs
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1. Maxcliques and Unit Disks

A graph is chordal if every cycle of length at least 4 has a chord (an edge that
connects two nonconsecutive vertices of the cycle); see [2, 12]. But the following
unconventional characterization is more relevant here, using the notions of max-
clique (a maximal complete subgraph) and unit disk (a closed neighborhood of a
vertex).
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594 P. De Caria and T.A. McKee

A graph G is chordal if and only if every induced subgraph H of G
has a subgraph H ′ that is simultaneously a maxclique of H and a unit
disk of H.

This is equivalent to the traditional characterization of chordal graphs by every
induced subgraph H containing a simplicial vertex (a vertex v such that the
closed neighborhood N [v] = H ′ induces a complete subgraph of H—in fact, the
unit disk H ′ induces a maxclique of H; see [2, 12]). Unless stated otherwise, all
neighborhoods in this paper are with respect to the graph G, thus N(v) = NG(v)
and N [v] = NG[v].

Unit disks and maxcliques will refer interchangeably to induced subgraphs
and their vertex sets, whichever is convenient. It is important to notice that a unit
disk can be the closed neighborhood of more than one vertex, and so a graph can
have fewer unit disks than it has vertices. In the extreme case, complete graphs
consist of a single unit disk (and, of course, a single maxclique).

This paper will study the interchangeability of maxcliques and unit disks
for chordal graphs. This will produce several new characterizations of strongly
chordal graphs—chordal graphs in which every cycle of even length at least 6 has
a chord that forms two even cycles with the edges of the original cycle (see [2, 12]).
Moreover, each of these new characterizations will be a natural strengthening of
a characterization of chordal graphs. Examples 7 and 8 of [8] also exhibit this
interchangeability in characterizing strongly chordal graphs.

This interchangeability of maxcliques and unit disks is related to what hap-
pens in the theory of “dually chordal graphs”, as in [1, 3, 4, 10]. The duality re-
ferred to there is “hypergraph duality”, which involves interchanging maxcliques
with unit disks and also, simultaneously, interchanging intersections with unions,
subsets with supersets, and so on. The role of maxcliques and unit disks in hy-
pergraph duality is illustrated by the following relationship, which underlies [10].
In every graph, every unit disk N [v] is the union of maxcliques (namely, all the
maxcliques Q that have v ∈ V (Q)) and every maxclique Q is the intersection of
unit disks (namely, all the unit disks N [v] that have v ∈ V (Q)).

2. Cycles and Their Chords

Define the clique strength of a nonempty S ⊆ V (G), denoted as cstrG(S), to be
the number of maxcliques of G that contain S, and define a subgraph H of G
to be a cstrG-k subgraph if cstrG(V (H)) ≥ k. (These notions are called strength
and strength-k subgraph in [7, 11].) Since every edge and triangle is trivially a
cstr-1 subgraph, G is chordal if and only if every cycle of cstrG-1 edges either
has a cstrG-1 chord or is a cstrG-1 triangle. Proposition 1 shows how strongly
chordal graphs strengthen this.
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Proposition 1 [7]. A graph G is strongly chordal if and only if, for every k ≥ 1,
every cycle of cstrG-k edges either has a cstrG-k chord or is a cstrG-k triangle.

Similarly, define the disk strength of a nonempty S ⊆ V (G), denoted as dstrG(S),
to be the number of unit disks of G that contain S, and define a subgraph H of
G to be a dstrG-k subgraph if dstrG(V (H)) ≥ k. Since every edge and triangle
is trivially a dstr-1 subgraph, G is chordal if and only if every cycle of dstrG-1
edges either has a dstrG-1 chord or is a dstrG-1 triangle. Theorem 2 below will
be the dstrG-k analog to Proposition 1.

Figure 1 illustrates the difference between the clique strength and disk strength
of edges. Each triangle in this strongly chordal example has clique strength 1,
two triangles have disk strength 3 and four have disk strength 4. Each vertex has
clique strength 1, 2, or 3 and disk strength 3, 4, 5, or 6. Disk strengths can be
trickier to calculate when the graph has adjacent twins, which are vertices v 6= w

with N [v] = N [w]. In the extreme case of a complete graph, every two vertices
are adjacent twins and every subgraph has clique strength 1 and disk strength 1.
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Figure 1. Each edge has its clique strength shown on the left copy

and its disk strength shown on the right copy.

The proofs of Theorems 2, 5, and 6 will use two characterizations from Farber [5]
(or see [2, 12]). By the first of these, a chordal graph G is strongly chordal if and
only if no induced subgraph of G is an n-sun, i.e. a subgraph H that consists of a
length-n cycle w1, . . . , wn, w1 (so n ≥ 3) whose vertices induce a complete graph
Kn together with additional vertices u1, . . . , un that have open neighborhoods
N(ui) = {wi, wi+1}, when 1 ≤ i < n and N(un) = {wn, w1}. Figure 2 shows
examples in which the vertices wi are pictured as solid and the vertices ui as
hollow.

By the second result from Farber [5], a graph G is strongly chordal if and
only if every induced subgraph H of G contains a simple vertex , i.e. a vertex v

such that NH(v) = {w1, . . . , wδ} in H where the vertices wi are linearly ordered
so that the unit disks NH [wi] of N

2
H [v] satisfy NH [v] ⊆ NH [w1] ⊆ · · · ⊆ NH [wδ]

(where N2
H [v] denotes the subgraph induced by all the vertices of H that are a

distance 2 or less from v in H). Since NH [wi] ⊆ NH [wj ] with i 6= j implies that wi

and wj are adjacent, simple vertices are always simplicial vertices. Each NH [wi]
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Figure 2. The 3-sun and 4-sun graphs.

is a unit disk of H, but NH [wi] is only a maxclique of H if NH [wi] = NH [v] in H.
Figure 3 shows an extremely simple example of N2

H [v] for a simple vertex v with
δ = 3.
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Figure 3. The subgraph N2

H
[v] for a simple vertex v of a graph H.

Theorem 2. A graph G is strongly chordal if and only if, for every k ≥ 1, every
cycle of dstrG-k edges either has a dstrG-k chord or is a dstrG-k triangle.

Proof. Argue the “only if” direction by induction on |V (G)|. The |V (G)| = 1
basis case is trivial since K1 has no cycles. Suppose G is strongly chordal with
|V (G)| ≥ 2 and, for every k ≥ 1 and every proper induced subgraph H of G, every
cycle of dstrH -k edges either has a dstrH -k chord or is a dstrH -k triangle. Since
G is strongly chordal, G contains a simple vertex v with N(v) = {w1, . . . , wδ}
and N [v] ⊆ N [w1] ⊆ · · · ⊆ N [wδ]. Suppose k ≥ 1 and C is a cycle of dstrG-k
edges.

Suppose for the moment that v ∈ V (C). Say vwi and vwj are the edges
incident with v along C, and recall that wi is adjacent to wj in the maxclique
N [v]. Since dstrG(vwi) ≥ k, at least k of the vertices v, w1, . . . , wδ must have
pairwise-distinct closed neighborhoods in G. Therefore, wiwj is a dstrG-k edge
that is either a chord of C or is an edge of C where C is a dstrG-k triangle.

Next suppose instead that v 6∈ V (C). If no two consecutive vertices of C
are in N(v), then C is a cycle of dstrH -k edges where H is the proper induced
subgraph G−v of G, and so the induction hypothesis implies that C either has a
dstrH -k chord (that is also a dstrG-k chord) or is a dstrH -k triangle (that is also
a dstrG-k triangle). Now suppose wi and wj are two consecutive vertices of C
in N(v), say with i < j and with zwi the edge adjacent to wiwj along C. Since
N [wi] ⊆ N [wj ], vertex z is adjacent to wj and every common neighbor of z and
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wi is also a neighbor of wj . Since zwi is a dstrG-k edge, zwj is a dstrG-k edge
that is either chord of C or an edge of the dstrG-k triangle C.

Argue the “if” direction by supposing that G is not strongly chordal. There-
fore, G contains an induced subgraph H that is either a length-n cycle with n ≥ 4
or an n-sun with n ≥ 3. In the former case, H would be a cycle of dstrG-1 edges
that has no dstrG-1 chord and is not a dstrG-1 triangle. In the latter case, the
length-n cycle of the n-sun H whose vertices induce a complete subgraph would
be a cycle of dstrG-(n + 1) edges that has no dstrG-(n + 1) chord and is not a
dstrG-(n+ 1) triangle.

3. Euler-type Characteristics

For any graph G, let ci(G) denote the number of cardinality-i subsets of V (G)
that are contained in maxcliques ofG. Thus c1(G) is the number of vertices, c2(G)
is the number of edges, c3(G) is the number of triangles, and so on. Let χ(G)
denote the clique characteristic c1(G)− c2(G)+ c3(G)−· · · of G (this alternating
sum has also been called the Euler characteristic, or simply the characteristic,
for example in [13]).

For instance, if G is the 3-sun, then c1(G) = 6, c2(G) = 9, and c3(G) = 4,
with ci(G) = 0 whenever i ≥ 4; thus χ(G) = 6 − 9 + 4 = 1 = comp(G) (the
number of components of G).

Proposition 3 [6]. A graph is chordal if and only if every induced subgraph H

satisfies χ(H) = comp(H).

Similarly, let di(G) denote the number of cardinality-i subsets of V (G) that are
contained in unit disks of G. Thus, in particular, d1(G) is the number of vertices
in G and d2(G) is the number of pairs of vertices that are at distance at most two
apart in G. Let χ̂(G) denote the disk characteristic d1(G)− d2(G) + d3(G)− · · ·
of G. (The alternating sum χ̂(G) resembles—but is very different from—the
“neighborhood characteristic” defined in [9], which uses open neighborhoods).
Also notice that di(G) is not the hypergraph dual of ci(G)—that would be the
number of subgraphs of order i that contain unit disks of G.)

For instance, if G is the 3-sun, then d1(G) = 6, d2(G) = 15, d3(G) = 19,
d4(G) = 12, and d5(G) = 3, with di(G) = 0 whenever i ≥ 6. Thus χ̂(G) =
6− 15 + 19− 12 + 3 = 1 = comp(G).

Let N2(v) = N2[v] − {v}. A set S ⊂ V (G) is dominated by a vertex v if
S ⊆ N [v] (whether or not v ∈ S).

Theorem 4. A graph is chordal if and only if every induced subgraph H satisfies
χ̂(H) = comp(H).
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Proof. Argue the “only if” direction by induction on |V (G)|. The |V (G)| = 1
basis case follows from χ̂(K1) = 1. Suppose that G is chordal—and so every
induced subgraph of G is chordal—with |V (G)| ≥ 2 and χ̂(H) = comp(H) for
every proper induced subgraph H of G (toward showing χ̂(G) = comp(G)).

Let v be a simplicial vertex of G with degree δ ≥ 0, let H = G − v, and let
π = |N2(v)| ≥ δ. For each j ≥ 1, the subsets of N2[v] of cardinality j that are
not subsets of V (H) are the

(
π

j−1

)
subsets that contain v. Furthermore, each of

these
(

π
j−1

)
subsets is contained in a unit disk of G if and only if it is dominated

by a neighbor of v. For each i ≥ 0, let ∆i denote the number of subsets of
N2(v) of cardinality i that are not dominated by any neighbor of v (so always
∆0 = 0 = ∆1). Notice that if S ⊆ N2(v) is not dominated by any neighbor
of v and if S ⊆ S+ ⊆ N2(v), then S+ is not dominated by any neighbor of v.
This implies

∑
i≥1(−1)i+1∆i = 0, because if S ⊆ N2(v) is not dominated by any

neighbor of v and if s = |S| ≥ 2, then S contributes
∑π

i=s(−1)i+1
(
π−s
i−s

)
= 0 to∑

i≥1(−1)i+1∆i. Also, for each i ≥ 1,

di(G) = di(H) +

[(
π

i− 1

)
−∆i−1

]
,

because di(H) is the number of cardinality-i subsets of V (G) that are contained
in unit disks of G and do not contain v, while

(
π

i−1

)
− ∆i−1 is the number of

cardinality-i subsets of V (G) that are contained in unit disks of G and do contain
v. Thus χ̂(G) =

∑
i≥1(−1)i+1di(G) is equal to

∑
i≥1

(−1)i+1di(H) +
∑

i≥1
(−1)i+1

(
π

i− 1

)
−
∑

i≥1
(−1)i+1∆i.

Therefore, either χ̂(G) = χ̂(H) + 0 − 0 (when π > 0) or χ̂(G) = χ̂(H) + 1 − 0
(when π = 0 and v is an isolated vertex). Either way, the induction hypothesis
χ̂(H) = comp(H) implies that χ̂(G) = comp(G).

Argue the “if” direction by supposing that G is not chordal. Therefore, G
contains an induced length-n cycle H with n ≥ 4. If n = 4, then χ̂(H) =
4− 6+ 4− 0+ · · · = 2. If n > 4, then χ̂(H) = n− 2n+ n− 0+ · · · = 0. In either
case, χ̂(H) 6= comp(H).

Much as the simple cstrG-1 and dstrG-1 characterizations of chordal graphs can
be transformed into the cstrG-k and dstrG-k characterizations of strongly chordal
graphs in Proposition 1 and Theorem 2, the characterizations of chordal graphs
in Proposition 3 and Theorem 4 can be transformed into Theorems 5 and 6,
characterizing strongly chordal graphs in terms of suitably generalized clique
characteristic and disk characteristic parameters.

For any graph G and k ≥ 1, let c
(k)
i (G) denote the number of cardinality-i

subsets S ⊂ V (G) that have cstrG(S) ≥ k. Thus c
(k)
1 (G) is the number of cstrG-k
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vertices, c
(k)
2 (G) is the number of cstrG-k edges, c

(k)
3 (G) is the number of cstrG-k

triangles, and so on. Let χ(k)(G) = c
(k)
1 (G) − c

(k)
2 (G) + c

(k)
3 (G) − · · ·, and let

G(k) denote the subgraph of G formed by the cstrG-k vertices and cstrG-k edges
of G. Thus, in particular, χ(1)(G) = χ(G) and G(1) = G. If V (G(i)) = ∅, set
comp(G(i)) = 0.

For instance, if G is the 3-sun, then c
(2)
1 (G) = 3 and c

(2)
2 (G) = 3, with

c
(2)
i (G) = 0 whenever i ≥ 3. Thus χ(2)(G) = 3 − 3 = 0 (with the triangle in

G(2) ∼= K3 not counted in calculating χ(2)(G) because c
(2)
3 (G) = 0). Similarly,

χ(3)(G) = 3− 0 = 3 (with G(3) ∼= 3K1, the edgeless graph on three vertices) and
χ(k)(G) = 0 whenever k ≥ 4 (with V (G(k)) = ∅).

Theorem 5. A graph is strongly chordal if and only if, for every k ≥ 1, every
induced subgraph H satisfies χ(k)(H) = comp(H(k)).

Proof. Argue the “only if” direction by induction on |V (G)|. The |V (G)| = 1
basis case follows from χ(1)(K1) = 1 and χ(k)(K1) = 0 whenever k ≥ 2. Suppose
G is strongly chordal—and so every induced subgraph of G is strongly chordal—
with |V (G)| ≥ 2 and, for every k ≥ 1, suppose χ(k)(H) = comp(H(k)) for every
proper induced subgraph H of G (toward showing χ(k)(G) = comp(G(k))). Since
the conclusion for k = 1 follows from Proposition 3, assume k ≥ 2. Let v be a
simple vertex of G, let H = G − v, and order the vertices of N(v) = {w1, . . . ,

wδ} so that N [v] ⊆ N [w1] ⊆ · · · ⊆ N [wδ], which also ensures that cstrG(v) ≤
cstrG(w1) ≤ · · · ≤ cstrG(wδ).

If k > cstrG(wδ), then H(k) = G(k) with comp(H(k)) = comp(G(k)) and
χ(k)(G) = χ(k)(H). Hence the induction hypothesis implies χ(k)(G) = χ(k)(H)
= comp(H(k)) = comp(G(k)). Because of this, assume for the remainder of the
proof that 2 ≤ k ≤ cstrG(wδ).

Suppose for the moment that N [v] = N [w1]. This makes N(v) a maxclique
of H and cstrG(S) = cstrH(S) for every S ⊆ V (H). Therefore H(k) = G(k) and
χ(k)(G) = χ(k)(H). The induction hypothesis now implies χ(k)(G) = χ(k)(H)
= comp(H(k)) = comp(G(k)). Because of this, assume for the remainder of the
proof that N [v] 6= N [w1].

TheN [v] 6= N [w1] assumption implies thatG has exactly one more maxclique
(namely, N [v]) than H. Moreover, the sets S ⊆ V (H) that have different clique
strengths in G and H are precisely the sets S ⊂ N(v), and these have cstrG(S) =
cstrH(S)+ 1. Hence, G(k) can be constructed from H(k) by inserting the vertices
wi and edges wiwj that have clique strength k in G.

If there is no i for which cstrG(wi) = k, then c
(k)
j (G) = c

(k)
j (H) for every value

of j (since each side of the equality counts the number of subgraphs of order j that
are in at least k maxcliques). Therefore χ(k)(G) = χ(k)(H) and comp(G(k)) =
comp(H(k)), and the induction hypothesis implies χ(k)(G)=χ(k)(H)=comp(H(k))
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= comp(G(k)). Because of this, assume for the remainder of the proof that
cstrG(wi) = k holds on a nonempty subinterval of [1, δ], and let p = |{wi ∈
N(v) : cstrG(wi) = k}| ≥ 1.

Case 1. k < cstrG(wδ). The construction of G(k) from H(k) by inserting
the vertices wi and edges wiwj that have clique strength k in G implies that
comp(G(k)) = comp(H(k)) (since each such wi and wj is adjacent to wδ in G). Let
q = |{wi ∈ N(v) : k < cstrG(wi) ≤ cstrG(wδ)}| ≥ 1. For each j ∈ {1, . . . , p+ q},
there are exactly

(
p+q
j

)
−

(
q
j

)
sets S ⊆ N(v) that have |S| = j and cstrG(S) = k.

Therefore, χ(k)(G) = χ(k)(H)+
[(

p+q
1

)
−
(
p+q
2

)
+ · · · − (−1)p+q

(
p+q
p+q

)]
−
[(

q
1

)
−
(
q
2

)

+ · · · − (−1)q
(
q
q

)]
= χ(k)(H) + 1 − 1, and so χ(k)(G) = χ(k)(H). The induction

hypothesis now implies that χ(k)(G) = χ(k)(H) = comp(H(k)) = comp(G(k)).

Case 2. k = cstrG(wδ). The construction of G(k) from H(k) by inserting
the vertices wi and edges wiwj that have clique strength k in G implies that
comp(G(k)) = comp(H(k)) + 1 (with {wi : cstrG(wi) = k} inducing the one
additional component of G(k)). For each j ∈ {1, . . . , p}, there are exactly

(
p
j

)

sets S ⊆ N(v) that have |S| = j and cstrG(S) = k. Therefore, χ(k)(G) =
χ(k)(H) +

(
p
1

)
−

(
p
2

)
+ · · · − (−1)p

(
p
p

)
= χ(k)(H) + 1. The induction hypothesis

now implies that χ(k)(G) = χ(k)(H) + 1 = comp(H(k)) + 1 = comp(G(k)).

Therefore, χ(k)(G) = comp(G(k)) for all strongly chordal graphs G and all k,
completing the proof of the “only if” direction.

Argue the “if” direction by supposing that G is not strongly chordal. There-
fore, G contains an induced subgraph H that is either a length-n cycle with n ≥ 4
or an n-sun with n ≥ 3. In the former case, χ(1)(H) = n−n+0 6= comp(H(1)) = 1
(H has no triangle, since n ≥ 4). In the latter case, H(2) is a length-n cycle and
χ(2)(H) = n − n + 0 6= comp(H(2)) = 1 (H has no cstrH -2 triangle, even when
n = 3).

Finally, Theorem 5 can be made into an additional characterization of strongly

chordal graphs by interchanging maxcliques with unit disks. Let d
(k)
i (G) denote

the number of cardinality-i subsets S ⊂ V (G) that have dstrk(S) ≥ k. Let

χ̂(k)(G) = d
(k)
1 (G)− d

(k)
2 (G) + d

(k)
3 (G)− · · ·, and let Ĝ(k) denote the subgraph of

G formed by the dstrG-k vertices and dstrG-k edges of G. Thus, in particular,
χ̂(1)(G) = χ̂(G) and Ĝ(1) = G. If V (Ĝ(i)) = ∅, set comp(Ĝ(i)) = 0.

For instance, if G is the 3-sun, then d
(2)
1 (G) = 6, d

(2)
2 (G) = 12, d

(2)
3 (G) = 10,

and d
(2)
4 (G) = 3, with d

(2)
i (G) = 0 whenever i ≥ 5. Thus χ̂(2)(G) = 6 − 12 +

10− 3 = 1 (with Ĝ(2) ∼= G). Similarly, χ̂(3)(G) = 6− 9 + 4 = 1 (with Ĝ(3) ∼= G),
χ̂(4)(G) = 3 − 3 = 0 (with Ĝ(4) ∼= K3), χ̂

(5)(G) = 3 − 0 = 3 (with Ĝ(5) ∼= 3K1),
and χ̂(k)(G) = 0 whenever k ≥ 6 (with V (Ĝ(k)) = ∅ and so comp(Ĝ(k)) = 0).



Maxclique and Unit Disk Characterizations ... 601

Theorem 6. A graph is strongly chordal if and only if, for every k ≥ 1, every
induced subgraph H satisfies χ̂(k)(H) = comp(Ĥ(k)).

Proof. First suppose that H is an induced subgraph of a strongly chordal graph
G. Since Theorem 4 is the k = 1 case, assume k ≥ 2.

Partition V (H) into sets A1, . . . , Am such that two vertices of H have the
same closed neighborhood if and only if they are in the same set Ai. Let H ′ be
the graph obtained from H by adding, for each i ∈ {1, . . . ,m}, a vertex ui that
has NH′(ui) = Ai. Thus each ui is a simple vertex of H ′, and so H ′ is strongly
chordal. Let H∗ be the square of H ′ (so V (H∗) = V (H ′) with vertices adjacent in
H∗ if and only if they are at distance at most 2 in H ′). Thus H∗ is also strongly
chordal (since H ′ is strongly chordal; see [2, 12]).

We next prove the claim that the maxcliques of H∗ are the closed neighbor-
hoods inH ′ of the vertices in V (H). Let v ∈ V (H). Take j such that v ∈ NH′(uj).
Hence uj is a simplicial vertex of H∗ and NH∗ [uj ] = NH′ [v]. Therefore, NH′ [v]
is a maxclique of H∗.

Conversely, let Q be a maxclique of H∗. Since every two vertices of Q are
at distance at most 2 in H ′, the closed neighborhoods in H ′ of the vertices in Q

are pairwise intersecting. Thus H ′ contains a vertex w such that Q ⊆ NH′ [w]
(since H ′ being strongly chordal implies H is dually chordal, and so the family
of unit disks of H ′ is Helly; see [2]). Since NH′ [w] is a complete subgraph of H∗,
the maximality of Q implies that Q = NH′ [w]. If w ∈ V (H), then the claim
holds. If instead w = ui for some i, then there is a vertex v in NH′(w), and so
Q = NH′ [w] ⊆ NH′ [v] implies Q = NH′ [v].

Therefore, the maxcliques of H∗ are the closed neighborhoods in H ′ of the
vertices in V (H), as claimed. The construction of H∗ and the assumption k ≥

2 imply that d
(k)
i (H) = c

(k)
i (H∗) for all i ≥ 1, which then implies both that

χ̂(k)(H) = χ(k)(H∗) and that Ĥ(k) = H∗(k). Therefore, by Theorem 5, χ̂(k)(H) =
χ(k)(H∗) = comp(H∗(k)) = comp(Ĥ(k)).

To prove the “if” direction, suppose thatG is not strongly chordal. Therefore,
G contains an induced subgraph H that is either a length-n cycle with n ≥ 4
or an n-sun with n ≥ 3. If H is an n-cycle, then either n = 4 and χ̂(1)(H) =
4−6+4 = 2 6= 1 = comp(Ĥ(1)) = comp(C4) or n ≥ 5 and χ̂(1)(H) = n−2n+n =
0 6= 1 = comp(Ĥ(1)) = comp(Cn). For the other possibility, if H is an n-sun,
then χ̂(n+1)(H) = n− n = 0 6= 1 = comp(Ĥ(n+1)) = comp(Cn).
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