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L7 DIMENSIONS AND PROJECTIONS OF RANDOM
MEASURES

DANIEL GALICER, SANTIAGO SAGLIETTI, PABLO SHMERKIN,
AND ALEXIA YAVICOLI

ABSTRACT. We prove preservation of L9 dimensions (for 1 < ¢ < 2) under
all orthogonal projections for a class of random measures on the plane, which
includes (deterministic) homogeneous self-similar measures and a well-known
family of measures supported on 1-variable fractals as special cases. We prove
a similar result for certain convolutions, extending a result of Nazarov, Peres
and Shmerkin. Recently many related results have been obtained for Hausdorff
dimension, but much less is known for L? dimensions.

1. INTRODUCTION

In recent years there has been great interest in understanding the size of linear
(and non-linear) images of sets and measures of dynamical and arithmetic origin.
Here “size” may refer to some fractal dimension, or to Lebesgue measure/absolute
continuity.

Even if one is concerned with sets, the proofs usually involve measures supported
on them; in this article, we deal primarily with measures (by a measure we always
mean a Borel locally finite measure on some Euclidean space). If i is a measure on
a space X and f: X — Y is a map, we denote the push-forward of p via f by fu,
that is, fu(B) = u(f~'B) whenever f~!(B) is measurable. A guiding heuristic
principle is that if p is a measure on R%, II : R — R is a “nice” Lipschitz map
and dim is some notion of dimension for measures, then “typically” IIu is “as large
as possible” in the sense that dimIly = dimp if dimp < k, and dim p = k if
dim g > k (in the latter case, one expects IIy to also be absolutely continuous).

A precise version of this heuristic is given by Marstrand’s projection theorem
(and its variants) which, for the case of measures, says that, for any measure p
on R?, there is an equality dim Iy = min(dim u, k) for almost all linear maps
II: R? — R*, whenever dim is either Hausdorff or L7 dimension (1 < g < 2); these
notions of dimension will be defined later. See e.g. [I8, Chapter 9] and [16, Theorem
1.1]. However, for measures with a dynamical or arithmetic structure, such as self-
similar measures or measures invariant under some algebraic dynamical system, one
would like to say more, ideally finding the precise set of exceptional linear maps II.

2000 Mathematics Subject Classification. Primary 28A80, Secondary 28A78, 37H99.

Key words and phrases. L? dimensions, projections, convolutions, random measures, self-
similar measures.

D.G. was supported by projects CONICET PIP 0624, PICT 2011-1456 and UBA-
CyT 20020130300057BA. S.S. was supported by projects PICT 2012-2744 and UBACyT
200120120100151GC. P.S. was supported by projects PICT 2011-4036 and PICT 2013-1393
(ANPCyT). A.Y. was supported by projects UBACyT 2014-2017 20020130100403BA and PIP
11220110101018 (CONICET).


http://arxiv.org/abs/1504.04893v1

2 DANIEL GALICER, SANTIAGO SAGLIETTI, PABLO SHMERKIN, AND ALEXIA YAVICOLI

Early results of this type for sets were obtained in [3| 21l [I1]. Recall that the
(lower) Hausdorff dimension of a measure p is

dimy g = inf{dimy A4 : u(A) > 0},

where dimy A is the Hausdorff dimension of A. A general method to bound
the Hausdorff dimension of projected measures was developed in [I5], with vari-
ants and applications given in [7, I, O M0]. Among other things, the equality
dimy Iy = min(dimy p, k) is established for many classes of measures (satisfying
certain necessary assumptions), including self-similar measures, more general ran-
dom cascades on self-similar sets, products of xm-invariant measures on [0, 1], and
Bernoulli and Gibbs measures for the natural symbolic coding of the (xm, xn)-toral
automorphisms, and all linear maps II (apart from obvious exceptions). A recent
breakthrough on the dimensions of self-similar measures [I4] also has applications
on the dimension of projections, see [24]; this work again deals with Hausdorff
dimensions of measures.

Although Hausdorff dimension is no doubt highly relevant, there are many other
concepts of dimension of a measure which are also important both mathematically
and in applications. Chief among them is the one-dimensional parameter family of
dimensions known as L9 dimensions: let

(1) Ci(n) ==Y (D),

1€®,
where D, is the family of dyadic cubes {27" - ([0,1)? + j) : j € Z?} in R%. For
q > 0,q # 1, the lower L7 dimension D (u) is the (lower) suitably normalized
scaling exponent of Cl(n) as n — oo:

. logCi(n)

D) = iminf =77 =5
For simplicity we always take logarithms to base 2, unless otherwise noted. The
upper L? dimension Eq is defined analogously. When the limit in question exists,
it is denoted Dg(p); in this case we say that the L? dimension exists. This family of
dimensions measures the degree of singularity of a measure according to its global
fluctuations, and are a central ingredient of the multifractal formalism. Of special
relevance is the value ¢ = 2; D5 is also known as the correlation dimension of p.
This is partly because (lower) correlation dimension can also be defined in terms
of energies:

Qzuzsmo{s20://Iw—y|‘sdu(w)du(y) <00}-

The map ¢ — D, is non-increasing, and D p < dimpy p < Eq/ for¢d <1<gq
(see e.g. [§]). In general, ¢ — D, may be strictly decreasing (this is a reflection of
the multifractality of u), but it may also be constant. For example, if p is Ahlfors-
regular with exponent d (that is, if C~1r? < pu(B(z,r)) < Cr? for all = € supp(u))
then Dyp = dimy p = d for all g. For many measures of dynamical origin, such as
self-similar measures, the limit in the definition of D, is known to exist, see [22].

The only previous result on L? dimensions of projected measures was obtained
in [I9]. There it is proved that if p,v are self-similar measures satisfying certain
natural assumptions, then for any ¢ € (1, 2],

D,(IL(x x v)) = min(Dy ( x ), 1)



L? DIMENSIONS AND PROJECTIONS OF RANDOM MEASURES 3

for all orthogonal projections IT onto lines, other than the principal ones (which are
clearly exceptional for products).

In this article we prove preservation of L? dimensions for ¢ € (1,2] under all
projections, for a class of planar measures which include certain self-similar and
stochastically self-similar measures, and for certain products of two measures. Pre-
cise definitions are given in the next section. Among other applications, we improve
upon the main result of [19] in several different directions, and obtain a different
(and somewhat more elementary) proof of a projection result from [15] and sharpen
it in some special cases.

We follow the general approach of [19], with suitable variants. A central element
in the main result of [I9] is the existence of certain subadditive cocycle over an
irrational rotation. In the present setting, there is also a subadditive cocycle at
the core of the proofs, but the base transformation is now a circle extension of
a shift space. Most of the additional work is then concerned with studying this
somewhat more complex dynamical object. Nevertheless, we also introduce some
generalizations and clarifications that are valid also in the deterministic setting of
[19)].

2. MAIN RESULTS

2.1. The model. Our general setup is as follows. A rule is an iterated function
system (f1,..., fr), where each map f; is a strictly contractive similarity on R?
(the ambient dimension d will always be either 1 or 2, later on we will impose an
additional homogeneity assumption on the rules). We will work with a finite set of N
rules (fl(l), - f,g:)), i€ {l,...,N}. Since the maps f]@ are uniformly contractive,
if R > 0 is sufficiently large, then £ (B[0,R]) C B[0,R] for all i € {1,...,N},

J
j€{l,...,k;}, where B[0, R] stands for the closed ball of radius R centered at the

origin.
Given a sequence w = (wn)neny € Y := {1,..., N} we define the space of words
of length n (possibly with n = co) with respect to w by the formula

X = TT{L -k, )
j=1

Note that all XS{‘)) are subsets of a common tree X,, := H?Zl{l, <+ Kmax }, Where
Kmax = maxlN:l k;.
For each n € N and u € X{*) we consider the ball

B = ) (B0, R)),

where ) = £V o... 0 f{“») We define a compact set

n .

¢ = | B

neN ,ex()
Note that, for every m, we have the inclusion Bf;ld) c BY, for each u € X
and [ € {1,...,ky,,,} (where ul denotes the concatenation of v and [). In other

words, these disks are nested. Moreover, their diameters tend to zero uniformly.
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Alternatively, C“) = A, (X((fg)), where A, is the coding map given by

-mawhw13m7

where wu|n is the restriction of the infinite word wu to its first n coordinates. Given

U € X%"), we also define the cylinder [u],, as the set of infinite words in X that

start with u, and note that Ay ([u].,) C B,

We remark that we do not assume that {B," : u € X%w)} are disjoint or any
other separation condition. Moreover, we do not exclude the possibility that there
is a single rule (N = 1), in which case C(“) is a deterministic self-similar set.

Even though C“) is defined for every w, our results will be probabilistic in nature,
and we will be drawing w according to an invariant ergodic probability measure u
for the left-shift T on Y.

Similar models have been considered in the literature, sometimes under the
names “homogeneous random fractal” or 1-variable fractal, see e.g. [13] 25] 2].

We will not be interested in the sets C() themselves, but rather in measures

supported on them. For each i, let p; = (pgi), . ,p,(:i)) be a probability vector. On

@

each ng) we can then define the product measure

ﬁ(W) = H Puw; -
n=1

The projection of 7(*) via the coding map is a Borel probability measure ) on
C«@). In the deterministic case N = 1, this is simply a self-similar measure on
C“). The random case arises naturally, even if a priori one is interested only in
deterministic self-similar measures. For example, conditional measures on slices of
(deterministic) self-similar and self-affine measures often have this form, and one
can decompose an arbitrary self-similar measure as f n(«) dp(w) for an appropriate
choice of weights p; and measure u; see Section [6.4] below.

Although the family of product measures just described provides our main class
of examples, the proofs extend to more general families {ﬁ(“) : w € Y} of Borel
probability measures on X, satisfying the following conditions:

(a) Each 7*) is supported on X

(b) The map w 7 is continuous (considering the weak topology on the
space of Borel probability measures on X, where X, is endowed with the
product topology). In other words, for any continuous function g on X,
we have

w'—w

tin [ g w) = [ gw)an )
(c) There exists K > 1 such that for every w € Y the measure 7(“) satisfies

(2) 7 ([wo]w) < K7 ([ulo) 7T ([v] o),

for any u € X%w), v E XE,?””).

When 7 is a product measure as above, this condition holds with equality and
K = 1. This suggests that, in general, the measures () satisfying (2) (or rather
their projections 7“) under A,,) can be thought of as satisfying some kind of “sub-
self-similarity”. In the deterministic case (in which there is a unique measure 7)),
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Gibbs measures for Holder potentials also satisfy (2). We also note that, since
cylinders generate the Borel o-algebra of each space X((;ﬁ’), it follows from (@) that

(3) 7 ({uy : y € A}) < K7 ([u]o) 7™ (A),
for any u € X and Borel set A ¢ XTI,

2.2. L? dimensions of projections. Now we specialize to d = 2 and assume that
the rules have the form {fl(z), e, f,gz)}, where the function fJ@ R2 5 R?is a
similarity defined by

@y .— i

where A; € (0,1), tj € R? and R, is the rotation matrix of angle o; € [0,2m). In
other words, each rule is a homogeneous IFS (only the translations differ).

We consider the unit circle S' endowed with the corresponding normalized Haar
measure £. Furthermore, define the continuous map a : Y — S! by the formula
a(w) := e~%1 and the skew-product map S on Y x S! as

(5) S(w,v) = (T(o.)), a(w)v).

Recall that w is said to be p-generic if > | 6gi, converges to u (here, and
throghout the paper, convergence of probability measures is understood to be weak
convergence). The orthogonal projection onto the line generated by v € S* (iden-
tified with R) is denoted I, i.e. I, (z,y) = {(z,y), v).

We can now state our first main theorem.

Theorem 2.1. Suppose N rules of the form (@) are given. Let p be a T-invariant
and ergodic measure on {1,..., N}, Let {ﬁ(“)}we{l _____ Ny be a family of measures
satisfying (a)-(c) above, and write 1) = A T for the projection of Tj onto C*).
Assume furthermore that the product measure X L is ergodic for the skew-product
S defined in ().

Then for each q € (1,2] there is a number D(q), such that for p-almost all w it
holds that D,(n“)) = D(q), and

(6) D,(I1,n)) = min(D(q),1) for all v € S*.

log Cl‘_’lun(w) (n)

ety to D, (,n“)) is uniform in v € S*.

If D,(n“)) = D(q) for all p-generic points w, or if D(q) > 1, then the above
conclusions hold for all u-generic w.

Furthermore, the convergence of —

Examples and applications of this result will be discussed in Section The
assumption that each rule is homogeneous is critical for our method, and it would
be interesting to know whether it can be dropped (we recall that for Hausdorff
dimension there are similar results which do not require homogeneity, see [I5, [7]).

2.3. Convolutions of Cantor measures. Recall that the convolution p * v of
two measures u, v on R is the push-down of the product p x v under the addition
map (z,y) — = + y. In this section we will be concerned with convolutions of two
measures on R, one of which is a deterministic measure supported on a self-similar
set, while the other is a random measure satisfying properties analogous to those
of the previous section.
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Fix N rules of the form {f{”, ..., f,g:)}, where f]@ (z) = azx +t} for some ratios
a; € (0,1) and translations t% € R, and let {7() : w € Y} be a family of measures
satisfying assumptions (a)-(c) above (with 7*) in place of 7“)). We will assume
without loss of generality that f]@ ([0,1]) C [0, 1]; we can always achieve this via an
affine change of coordinates, which will not affect the statement of the theorem. As
before, we denote @) = A7), where A,, is the coding map. The measures v()
are then supported on the Cantor sets C() C [0,1] constructed from the sequence
of rules w.

We consider yet another rule {g1, ..., gr }, where g;(z) = bx + t; for some con-
traction b € (0,1) and translations ¢; € R. Again, we assume that g;([0,1]) C [0,1]
forall j € {1,...,k’}. This is a special case of the preceding framework with N =1
rule, but we repeat some definitions for the sake of fixing notation. We denote the
code space by X!, = {1,...,k'}" (again allowing n = o0), and the coding map by
A": XL — [0,1], that is,

{A" (W)} = () gus 0+ © gu, ([0, 1]).
n=1

The cylinder of infinite words in X/ starting with « will be denoted simply by [u].
Further, let ¥ be a Borel probability measure satisfying the analog of (c) above
in the random case, that is, we assume that

(7) I([uv]) < K" O[u] I[v],

for some constant K’ > 0, and set ¥ = A’9.
We fix r € N such that

(8) 1< min _—.

and we also consider [ € N satisfying

o —1

(9) i:r{%%?fN ; <b".

Write 8 := ln(b_l) and o, .4, = ln(av bav ) for each choice of indices 1 <
iq e Qip

i1,...,i» < N. (Note these are natural logarithms.)

Notice that 0 < ;.4 < g forall 1 <iy,...,4, < N and also that S can be
made arbitrarily large by choosing ! appropriately. Consider the space S’é obtained
by taking the interval [—3, 8) and identifying its ends, i.e. —8 = (8, and endow
it with the normalized Lebesgue measure L£g. Furthermore, define the continuous
map « : Y — R by the formula a(w) := ay,.. o, and the skew-product map S on
Y x S’é as

S(w,s) = (T"(w), s +(g) a(w)),
where, as before, T denotes the left shift operator on Y, and +4) stands for the
natural sum in S’é. Also, for each n € N let us define the n-th rotation R"™ :
Y x S — S} by the formula

R"(w,s) :=7g1 (8" (w, 8)) = 5 +(8) Qs T(8) *** H(B) Wornorysr o

where Ts1 denotes the projection from Y x Sé onto Sé.
We can now state our main result on convolutions.
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Theorem 2.2. Let i be an ergodic, invariant measure for ({1,..., N}, T) such
that the product measure pux Lg is ergodic for the dynamical system ({1,..., N} x
S5,9).

Then for each q € (1,2] there is a number D(q), such that for p-almost all w it
holds that Dy(v“) x ¥) = D(q), and

(10) D, (™) « Ay9) = min(D(q),1) for all t € [e™?, €,
logC? (n)
where Ay(x) = tx scales by t. Furthermore, the convergence of — ¢ Zl((q)j’l‘)“’ to

D, (V@) x A 9) is uniform in t € [e=P,eP).
If D,(v'“)) = D(q) for all u-generic points w, or if D(q) > 1, then the above
conclusions hold for all p-generic w.

Note that (z,y) — x + Ay is, up to affine homeomorphism, the orthogonal
projection with angle arctan(t); hence this result can also be interpreted in terms
of projctions of the prouct measure v(“) x 9. Again, the homogeneity assumption
on the rules is crucial. Also, we do not know if the statement holds if ¥ is also
chosen randomly according to a sequence of rules. Although this appears natural,
it does not seem possible to build a cocycle like the one at the core of the proof in
this setting.

3. SOME AUXILIARY RESULTS FROM ERGODIC THEORY

In this section we collect some ergodic-theoretic facts. The results are rather
standard, but we include proofs for completeness, as we have not been able to find
exact references. Since the proofs are the same, we state them in greater generality
than needed in our later applications.

3.1. Compact group extensions and generic points. We begin with some
general definitions. Let (Y, T, p) be a measure-preserving dynamical system for
a compact metric space Y together with its Borel o-algebra, G a compact group
endowed with the Haar measure mg and « : Y — G a continuous map. Define the
skew-product map S on X =Y x G by the formula

Sy, 9) = (T'(y), e(y) - 9)-
A measure ¥ on X is said to project over p if myd = p, where my stands for the
projection on Y. Furthermore, ¥ is said to be uniquely ergodic over p if it is the
unique ergodic measure which projects over u. Notice that the measure pu X mg
clearly projects over y and is also S-invariant by the Fubini-Tonelli theorem, since
w is T-invariant and mg is the Haar measure on G.

Proposition 3.1. A measure ¥ on X is uniquely ergodic over an ergodic measure
wif and only if it is the unique S-invariant measure which projects over p.

Proof. For the < implication, we note that ¥ must be ergodic: if ¥ = [ o dp(o) is
the ergodic decomposition of ¥ (see e.g. [6, Theorem 6.1]) then p = [ 7y o dp(o).
Since p is ergodic, myo = u for p-almost all o, whence o = ¢ for p-almost all o,
showing that ¥ is ergodic as claimed. The <« implication is now clear.

Thus, suppose that 1 is uniquely ergodic and let ( be an S-invariant measure
that projects over p. We must show that ( = 9. Let

(= /odp(d)



8 DANIEL GALICER, SANTIAGO SAGLIETTI, PABLO SHMERKIN, AND ALEXIA YAVICOLI

be the ergodic decomposition of . Hence, to see that ( = ¢ it suffices to show that
p = 6y. Notice that

(11) pw=my(= /ﬂ'yo’ dp(o) = /DJ’ dmy p(c’)

where D = {¢' € P(Y) : ¢’ is T-invariant}.

Since p is ergodic, it is an extreme point of the set D whence, by Bauer’s char-
acterization of extreme points [4, Chapter IX, Theorem 3], we have that myp = d,,.
But then, since p is supported on the set of ergodic measures and 9 is uniquely
ergodic, we obtain that

1=myp({u}) = p({o : 7yo = p})
= p({o : o is ergodic and 7y o = p}) = p({¥})
which implies that p = §y and concludes the proof. O

Recall that given a measure-preserving system (Z, R, o), with Z compact and R
continuous, we say that z € Z is generic for o (or o-generic) if for any continuous
function f : Z — R we have

. 1 n—1 . B
Jm 3R ) = |t

It follows from the ergodic theorem that if o is ergodic then o-almost every z € Z
is generic for o.

The special case of the next lemma in which the base system (Y, T') is uniquely
ergodic is a classical result of Furstenberg, see e.g. [6, Theorem 4.21]. The general
case goes along the same lines and is surely known, but we give the proof for
completeness.

Lemma 3.2. If Y = u X mgq is ergodic then it is uniquely ergodic over p.

Proof. Clearly we have my 1 = p, so that it remains to check that ¥ is the unique
ergodic measure with this property. Now, since ¥ is ergodic we have that ¥-almost
every (@, ) € X is generic for ¥. Furthermore, we have that

(12) (w, g) is generic for ¥ = (w, g’) is generic for ¥ for every ¢’ € G.
Indeed, observe that for any i € Ny we have that
S'(w.g) = My-1.9(S'(w. 9))
where for any h € G the map M;, : X — X is defined by the formula
Mp(@,9) = (@,g - h).

Then for any continuous function f we have that
1 n—1 ; ) 1 n—1 .
=~ (S @) == f(Myog (S (w,9)) — | Fo Mgy d(ux ma)
i=0 i=0

since (w, g) is generic for ¢ and f o M}, is continuous for any h € G. Now, since m¢
is invariant under multiplication, by the Fubini theorem we conclude that

1"*1 i /
2 S ) — [ dxme)

which shows that (w, g’) is generic for 9.
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Now, let p be an ergodic measure on X which projects over p. For any such p
the set
(13) A, ={w €Y : (w,g) is generic for p for some g € G}

has full y-measure on Y. In particular, the set Ay N A, is nonempty, where Ay is
defined by analogy with (I3). Notice that by (I2]) we have that for any w € AyNA,
there exists g € G such that (w, g) is generic for both ¢ and p. But by definition of

generic point this implies that
[rao=[ rap
X X

for any continuous function, which shows that ¢ = p. O

We finish this section with the following uniform convergence result, which again
is classical in the uniquely ergodic case.

Lemma 3.3. If u X mg is ergodic, then for every continuous function f: X — R
and every p-generic point w, the ergodic averages

n

eSO

i=1
converge to [ fd(u x me), uniformly in g € G.

Proof. Suppose the statement does not hold for some p-generic w and continuous
f. Then we can find € > 0, a sequence n; — oo and points g; € G such that

> €.

Z]:ﬂb”'(w,gj)) - /fd(u X me)

=1

(14 =

After passing to a further subsequence, we may assume that v; := ni > .6 Si(w,g;)
5 ‘
converges to a measure ¥. Note that, for any h € C(X),

/hduj —/hd(SUj)

which tends to 0 as j — co. Thus the limit ¢ is S-invariant. Moreover, my 1 is the
limit of n—lj 2121 d7i(w), which equals p thanks to our assumption that w is generic.

1 n 2/|h s
= L hle )~ b8 g7 < 2,

j j

It now follows from Proposition Bl and Lemma 3.2 that ¥ = pu X m¢, and hence
n%- S, f(SH(w, gj)) converges to [ fd¥ = [ fd(ux me). This contradicts (4,
as desired. O

3.2. Subadditive cocycles and generic points. It is well known that if (X, .5) is
uniquely ergodic, then ergodic averages of continuous functions converge uniformly.
This fails for cocycles over uniquely ergodic systems, but one side of the inequality
holds: this was observed by Furman [12], Theorem 1]. An inspection of the proof of
the subadditive ergodic theorem given by Katznleson and Weiss [I7] yields a more
general result. First, we introduce a definition.

Definition 3.4. A function ¢ : X — R, where (X, u) is a measured metric space,
is said to be upper C-approximable if, for every e > 0, there exists a continuous
function ¢ : X — R such that ¢ < ¢. pointwise, and [(¢p — ¢) du < €.
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Theorem 3.5. Let (X, S, u) be an ergodic measure-preserving system with X com-
pact and S continuous. Let F = (¢n)nen be an upper C-approzimable subadditive
cocycle on X, that is,

(15) Grtm () < Gn(x) + G 0 S™(x) for all x € X.
Then for any p-generic x € X, it holds that

limsup(bn—(x) < ®(F) := inf { / Pn d#}
n—+o0o n neN

Proof. We start by noting that upper C-approximable functions are bounded above
and integrable by definition. Fix N € N, € > 0 and let
L:= i < .
e S

By assumption, there exists a continuous function ¢y : X — R such that ¢ <
(bN,s and fX(¢N75 — qf)N)d/L <e.
Suppose that n = (m + 1)N + 1, for some m € N. Then we can write n as
i+ mN + (N +1—1) for every 1 <i < N. By subadditivity,
Gn(2) = Pt nyn+1(2) < 03 (@) + Prn s (v1-1) (S (2))
< ¢i(@) + Gmn (S'(2)) + Pn1-i(STV (2))
(16) < 2L+ ¢n (S'(2)).
Note also that
Pmn (5'(2)) < oN(S'(2)) + SN (SN (@) + - + G (ST TIN ().
Therefore, if we sum over all ¢ (1 < i < N) in Equation (I8) and use the last

inequality, we obtain
mN )
(17) N () = Nmryn41(z) < 2LN + > ¢ (5 ().
j=1
Now, if n=(m+ 1)N +1+r —1 for some 2 < r < N then notice that

On (1) < Qmynyn41(x) + Gr1 (SMHINHL(2)) < A(m+1)N+1 () + L.
By (@) we obtain
mN )
Non(z) <3LN+ Y ¢n(5(2))
j=1
for all sufficiently large n € N, where we have written n as (m + 1)N + r for some
méeNand 1 <r <N. Dividing the above inequality by Nn yields

(18) ¢nr(bw) 3L m( Z¢N (57 (z ) 3nL m(mNZ(bNE (S9( )))

Observe that =+ — % as n — 0o, so that by taking limsup,,_,., in both sides and

using the fact that x is generic, we may conclude that
. P (z) /
19 1 d
(19) Ty = N on dute

Since the bound in ([[9) holds for arbitrary N € N and ¢ > 0, we obtain the
result. g
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In the special case of a compact group skew-product (Y x G, S, u X m¢g), we can
apply Lemma to get the following improvement.

Corollary 3.6. Let (Y, T,p) a m.p.s. withY compact and T continuous, let G be a
compact group with Haar measure mq, and let o :' Y — G be continuous function.
Denote the associated skew-product m.p.s. by (X,S,u X mqg). Furthermore, let
F = (¢n)22, be a an upper C-approzimable subadditive cocycle over X .
If u x mgq is ergodic, then for every u-generic point w € X,
lim sup n(w,9) < inf {l/ ¢n d(p X mg)} uniformly in g € G.
neN (N Jx

n—+o00 n

Proof. This follows from Lemma by letting » — oo in the pointwise bound

@s. 0

4. PROOF OF THEOREM [2.1]

4.1. Notation and preliminaries. Recall that Y = {1,..., N}". For eachn € N
let us define the n-th rotation R™ : Y x ' — S! by the formula

R™(w,v) == 7mg1 (S"(w,v)) = a(w) - a(T" 1w,
where 71 denotes the projection from Y x S* onto S!.

It is easy to see that for u € ng) we can decompose fﬁw) as

(20) fﬂEW)(Ia y) = Awy t /\wan(wa (17 O)) : (‘Tvy) + dv(f)

for a certain constant di) € R2 (here and it what follows we identify R? with

C > S1). Moreover, if F\) denotes the inverse of £, then from (20) we obtain

Rn 1,0
Féw)(,’t,y) = M : ((l',y) - dv(f)> :
Aoy - A,
For each w € Y denote the projected measure II,7“) by nf,w), ie. nf,w)(B) =
7@ (I1;}(B)) for every Borel set B C R.

Also, for each n € N we define LS{‘)) as the unique nonnegative integer such that
L _L@
(21) 27T <Ay A, <28 ET
and consider the family of intervals @5{”) given by
w L@ @), .
D =0, = {27 5,27 (j+1):j ez}

Notice that for each w € Y the families @,(zw) are nested: for every n € N, each
element of @5:1)1 is a subinterval of exactly one element of ') With this, for
q > 1 we define the functions 7, : ¥ x S' = R

(22) Tanlo) = 30 (D))" =€, (L),

7€)

recall ().

To conclude these preliminaries, we state the version of Marstrand’s Projection
Theorem we alluded to in the introduction, due to Hunt and Kaloshin [16, Theorem
1.1].

Theorem 4.1. Let i be a Borel probability measure on R2. If q € (1,2], then
i 1
D, (Il,n) = min(D,n,1) for almost allv € S".
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4.2. A submultiplicative cocycle. Our aim is to show that given ¢ > 1 there
exists a continuous subadditive cocycle Fy = (¢¢.n)nen such that

(23) lim inf $20(2:0) _ D)), limsup anlrv) _ D (n'),
n— 400 _L’EIW) n——+o0 _le‘*’)

for every (w,v) € Y x S'. We do this in two steps. We first show that the
family (log7g,n)nen for 74, defined in ([22)) constitutes, up to additive constants,
a subadditive cocycle. Then, we prove that there exists a “smooth” analogue 7,
of 74, which is continuous. From these facts it will follow that the cocycle F, =
log T4, enjoys the desired properties.

In this section we establish the core of this program, by showing that there exists
K1 > 1 such that for any n,m € N and (w,v) € Y x S* one has

(24) Tontm (W, v) < K1 T (w, 0) 7 (S™ (W, v)),

where we have suppressed ¢ from the notation for simplicity. This implies that the
family (log K17, )nen is a subadditive cocycle.
We begin by introducing a definition.

Definition 4.2. Given M € N, we say that two families B, P’ of sets are M-
equivalent on W (or simply M -equivalent) if

() WNUaep A=WNUpey B

ii) Fach element o intersects at most M elements of B’ and viceversa.
(i)

The following simple consequence of Holder’s inequality is proved in [24, Lemma
5.3].

Lemma 4.3. If B and P’ are M-equivalent on W, and p is a probability measure
with p(W) =1, then

M1 p(B)T< Y p(A)T < MY p(B)“

Bey’ Aep Bep’

Now, let us fix n,m € N, (w,v) € Y x S and proceed to show ([24). Recall that
A, : X 5 €@ g the coding map, and let I, : X(“) — R denote the composition
II, 0 A,. Given J € CD%‘”) let us define

(25) X3 () = {u e X« [u], NI, () # 0},

and consider the interval .J which has the same center z 7 as J but whose length is
|J| =9]J|, ie.

~ 9 9
J = $J_§|J|,xj+§|J|>.
It is not difficult to see that, by choosing .J in this way, one has II, [u], C J for

every u € X(Jw)(v). Also, note that if u € X and Yy € XSE"“’, then A, (uy) =
7S,W)(Aan(y)), and therefore

(26) AZHEA) N [ule = {uy sy € Agn(A)}
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If I € ®“) s such that I C J, then

n+m
n ) = 30 7@ ([ul, NI, (1)

uEX(nw)

= > A, (I (1)
uex) (v)

= Y 9l (AT EI D))
uex () (v)

= > 79{uy:y e Ap PPN}
UEX(W)(U)

(27) <K Y 7 ) @ T AL (FWIL (D))
ueX§” (v)

Now, observe that, by definition of XF]W) (v),
(28) > 7)< 0l (D)
uGXF]w) (v)

Therefore, using ([27)), (28) and Holder we obtain that

/N
=
E
—~
~
S~—
N——
=}
IN
3|

@) ([u]) nT" ) (F(“)H_l(l))

u v

.
a’

<k Y a9l | x

uex§ (v)

<Y T () (T (P ) )

uGXf]w) (v)

<KIEO@) Y 7 (1 (O )

uGXSw)(v)
Summing over all I € ©n+m such that I C J, we get
q ~\ 41
(29) > () <K (D) M),
reo®)
IcJg
where

by (23])

by (246])

by @).

= > Y A (i (F 1))

IED(“’) uex () (v)

ICnJm
(30) = 3 Al Y (i (FE 1))
uGXf]“)(v) Iezﬁfjr)m

IcJ

13



14 DANIEL GALICER, SANTIAGO SAGLIETTI, PABLO SHMERKIN, AND ALEXIA YAVICOLI

Now, using (20)) it is not hard to see that for any such interval I and u € XF]W) (v)
one has

() A1) = (11,0 f&‘”’)fl (=1t (ﬁ - Hv(dgw>)))

where v' := R"(w,v). Write £ = \ “ Awnim» and note that the family

Wng1 "
1 —
N w) (w)
{Awl . )\wn (I H’U(du )) I € ©n+m}

is composed of consecutive intervals of equal length between %6 and ¢. Since the

same is true for the family @5,? nw), these families are 6-equivalent. It follows from
Lemma 3] and @BI)) that

(32) Z (n<T"<w>>(F5w>H;1(1)))q < 69717, (T (w), v') = 69717, (S™ (w, v)).
Ie@i“ﬁm
IcJg

Combining 28)), (29), 30) and B2)) yields
(33) S (10m)" < 6K) (1)) 7 (5 (@, 0)).

reol)

IcJ
Finally, by summing (B3] over all J € @5{‘)), we conclude

frm(w)= S Y ((w) )

Jeoi) 1eol?)
IcJ

< (OK) 17 (S"(w,0)) > (1(D)"
JeD (¥
< (54K) 7 (w, 0) T (S™ (w, v))

where to obtain the last inequality we used Lemma [£.3] applied to the families D
and {J:J € CD%‘”)}, which are 9-equivalent. This gives ([24]) for K; := (54K)9.

4.3. A continuous analog of 7,,. We now construct for each n € N a continuous
function 7, which is comparable up to multiplicative constants to 7,,. To this end,
we consider ¢ € Cg°(R) supported on [~2,2) such that 0 <¢ < 1and ¥|_; 1) = 1.

For each n € N and w € Y define w,(f) : R2 — R by the formula
w ()
Ui (2,y) = w28 (@ — ).

For any fixed y € R the function 1) (z) := () (z,y) is supported on the interval
y Y N7 Y

[y — 21-L3” y+ 21_L5Lw)) and is equal to 1 on the interval [y — 2-L3 Y+ 2_L5:J)).

Define 7,, : Y x S' = R by the formula

mwa= [ w,s@(x,y)dnéw)(x))q1dm§w><y>.

Notice that 7,, can be rewritten as

P = [ (#w0)" a9 w,
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where
Wi (u,v) == /%‘”)(ﬁv(U)aﬁv(U')) ' (u').
We claim that 7, is continuous. Indeed, this is a consequence of the following fact.

Lemma 4.4. Let X be a compact metric space and let {p) 1w € X} be a family
of Borel probability measures on some other compact metric space Z, such that
w = p) s continuous. Then, for any continuous function h : X x Z — R, the
function w = [ h(w,u) dp™) (u) is continuous.

Proof. By uniform continuity, given € > 0 we have |h(w,u) — h(w’, u)| < € provided
d(w,w’) is small enough. It follows that

lim sup /h(w,u) dp(“’)(u)—/h(w’,u) dp“) (u)| <
w'—w
e+ lim /h(w,u) dp™) (u) —/h(w,u) dp“) (u)| =e.
w'—w

O

Note that L, (w) is continuous, since it depends only on the first n coordinates of
w, and hence @[J,({”) () is jointly continuous. We can then apply Lemma 4l with X =
Y % Xoo X S, Z = X, p®) =75 and h((w,u,v),u') = éw)(ﬁv(u),ﬁv(u’))
to obtain that \I/%”)(u, v) is continuous in (w,w,v). A second application of Lemma
A4 yields the continuity of 7,.

It remains to see that 7, is equivalent to 7,, i.e. there exists M > 1 such that

(34) M= tr, <7, < MT,.

To show the rightmost inequality we notice that for any (w,v) € Y x S* we have
that

(w)

mawo) =3 [ o ([ @i <x>>q1 ) y)

JEL J2*L(nw)

)
(j+1)27Fn -1
» ) @\ 9 »
< 2/2 L (ne) (= 257y 215 )) T ) (y)
jen Jazh

w)
(j+1)27En » . -
= Z/j @) (né“)([(j —2)27 5 (j+3)27 ))) dn® (y)

R Q*Ln
JEZL
w . L@ . _r 19
<SG - 2275 (G + 327 )]
JEL

which, upon noticing that the families D' and {l(G— 2)2_L5f), (j +3)2—L5f)) j €
7} are 5-equivalent, implies that 7, < 577 17,,. On the other hand, to establish the
leftmost inequality we observe that for any w € Y and j € Z we have the inclusion

27 G+ D2 cfy 27y 42
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o L) o) o
whenever y € [j27 52 (j +1)27L+7). Thus, for (w,v) € Y x S this yields

m(w,0) = 3 (0 (27 G+ 127 B))

JEZL

(i+1)2-En e m B
= Z/ v (-2 2By L) (y)
JEZ

j2= Ly
Gzt a—1
<[ ([ennm) aw =men

which shows that
Tn <Tp < 5q717—n
and so both quantities are indeed equivalent. Furthermore, if we replace 7,, by

5971 K17, where the constant K is as in (24)), then (34) still holds (for a different
constant M), and

log Tntm(w,v) <log Ty, (w,v) + log T (S™ (w, v)).

Notice that log7, is well defined by (B4), since 7, is strictly positive by its mere
definition. Furthermore, each log 7, is continuous, since 7,, is. Thus, we conclude
that the sequence (log7,)nen is a continuous subadditive cocycle on Y x S1.

4.4. The proof of Equation (23)). Write ¢,, = logT,, for simplicity. We can now
show that

(35) D4(n{*)) = lim inf &1})()
n—+00 _(q _ 1)an

for all (w,v) € Y x S, and likewise for D’ (1 (w )) It follows from the definition of
7, and (B4]) that

On(w,v) —logCle, (L)
is uniformly bounded (independent of n). Since L)
to check that

— 00 as n — 00, it is enough

log Cq(w) (ngw)) log Cq(w) (k)
liminf — 2 = lim inf — & ——
n—roo _L%"-’) k—oo —k

The “>” inequality is clear, since the limit in the left is taken along a subsequence.
To see the other inequality, fix £ and choose n such that LY <k < le +)1 Note
that LS:—?I < L) 4 ¢*, where ¢* = 1+ max.¥ ; [log \;|. On the other hand, the
sequence k — Ci(k) is always decreasing for ¢ > 1, since for a dyadic interval
J =1 Ul one has v(J)? > v(11)? + v(I2)?. Hence

logC?,, (k) log Cq(w) (L(w)) logC? ., (L%w))
Mo > v

-k —ijﬁl R A

provided n is large enough.
The claim for D, follows by taking a limit along an appropriate subsequence of
k, and the case of D, is analogous.
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4.5. A subadditive cocycle for the measures 7(“). The foregoing analysis of
the measures nf,w) has a corresponding, but simpler, correlate for the measures n(“).
Since the proofs are very similar, we only state the results, leaving the details to

the interested reader. Let 9,, denote the family of dyadic squares
{27 (1 +1)277) x [5227", (j2 + 1)27") = ju, J2 € Z}.
Write DS{‘)) = DLM, and define

G = Y (0@)"
Qe
Then one can check, as before, that there exists a sequence of continuous functions
&, such that
w) < M (w)

M6, (w) <&,
n ¢) and all w € Y, and furthermore

(
for some constant M > 0 (depending on q)
From here one can deduce, as we have done for the projections n&”), that

(36) D,(n“)) = liminf log 8, ) Dy (n)) = lim sup 28 €n(w)

n— 00 _L%"-’) Nn—00 _Lgl‘*’)

4.6. Conclusion of the proof. We start by applying (36) to show that D, (n“))

exists and is constant p-almost everywhere. However, before we can do so it is
L)
n

clear that we must first understand the behavior of the quotient as n tends to

infinity. This is the purpose of the following lemma.

Lemma 4.5. If w € Y s p-generic, then
L(W)

lim
n—-+oo n

= / log A, dﬂ(w)'
Y

Proof. Since by definition of L%w) we have 2-Ln” < I A < 21-L5 for every
n € N, it suffices to show that

n—1
o log (A¢i
lim Lizo 108 (Acrien) :/ log Au,, dpi(w).
n—-+oo n v
But this follows at once from the fact that w is p-generic, since the application
w +— log A\, is continuous on Y. (]

Now it follows from the subadditive ergodic theorem that for p-almost all w it
holds that

lim log &, (w) _ infpen [£ [y log €, (w) du(w)]
n—oo _ () Jy log(Aw, )dp(w)
We deduce from (B8) that D,(n(“)) exists and equals D(g) for p-almost all w.
Furthermore, if w is p-generic, then it follows from Theorem [B.5] that

lim inf 710g $n(@)

e (@)

=: D(q).

> D(q),

whence Qq(n(“’)) > D(q).
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2

Now we move onto the projections 7, . Let us begin by observing that for all

(w,v) €Y x S we have
Di(n?)) < D"(nf”)) < min{D"(n“)), 1}.

Indeed, this follows from the well-known facts that ﬁq does not increase under
Lipschitz maps, and can never exceed the dimension of the ambient space.

Now, since p x Lg is ergodic by assumption, Corollary [3.6lcombined with Lemma
imply that any p-generic w satisfies, for each v € S*,

(37) min{D*(n“)),1} > DI(n{*)) = lim inf Inlw,v) = — lim inf Fnlw,v)

> 2
n—too  _ ) P n—too mo T op*

where
1
® := inf [—/ dnd(p X E@)] , ut ::/ log A, dp(w).
neN | n Jy v
Hence, given any w € Y, if we wish to prove (@), then it suffices to show that
— P
(38) min{D" (1)), 1} = <
Since (¢n, )nen is a bounded subadditive cocycle, the subadditive ergodic theorem
yields upon an application of the Fubini theorem that p-almost every w € Y satisfies
On(w,v) o

lim =
n——+oo _L’EIW) /1,*

for L-almost every v € S'. In light of (23], % equals the (p x £)-almost sure
value of Dq(ngw)), and from Theorem 1] and Fubini, we deduce that this equals
min(D(q),1) (this is the point of the proof where we use that ¢ < 2). Hence, if we
let

£={weY:D,m") = D(g)},
then ([B8) holds for all w € &, and if D(q) > 1, also for w in the set G of u-generic
points.

We conclude that for every w in the full u-measure set GNE, all the inequalities
in 1) are equalities, and hence (@) is satisfied. If G C &, or if D(q) > 1, then (@)
holds for any p-generic w.

The claim concerning uniform convergence over v € S* follows from the above
analysis, and the uniformity in Corollary (which implies that the rightmost
inequality in (1) holds uniformly in v, for any fixed w € G). This finishes the proof
of Theorem 211

5. PROOF OF THEOREM

5.1. Preliminaries. The proof of Theorem 2.2l follows the same general outline as
the proof of Theorem 2.1l We will therefore indicate where the main differences lie,
and sketch or omit the parts of the proof that closely follow the arguments from
Theorem 2.1

Given w € Y, write 7*) = () x 9. For s € [—8, 8) we consider the orthogonal
projection Il onto the linear space generated by the vector (1,e®), i.e. Ils(z,y) =
x + e’y, and write II, = II, o A,, where, abusing notation slightly, we denote also

by A, : X x X/ — [0,1]? the product coding map
Ay (u,u') = (Au(u), A'(u)).
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For each w € Y, denote the projected measure IL,7*) by ). Then n{*’ is nothing
else than the convolution v(*) x A9 we are interested in.
For (u,v) € X x X!, we define the product function hu“3 :[0,1)2 = [0,1)% by
the formula

W) (@, y) = (F@),9.0))

In the course of the proof it will be important to work with families of pairs (u,v)
such that the eccentricity of the rectangle k¢ ([0, 1])? is bounded, and behaves like
a rotation under the action of the skew-product S. In order to do this, we need to
introduce a number of families of pairs of words. Similar families appear in [19],
although here we will need an extra family due to the somewhat more complicated
setting.

Hence, let us consider the families W) = ( ,(zw))neN, Y© = (YS{U))%N and

7@ = (Zslw))nzgl of word pairs defined as

(W) — x(w) /

W, =X % Xn+2l§$f)’
(w) — x(w) /

Vo = Xl XX e 41y
(W) — x(w) /

Ly = Xpy) X Xn+2l(g£f)—1)’

where &%) 1= # {ke{1,...,n} : RF"1(w,0) + a(T™*(w)) > B} counts the number
of times k < n for which the k-th rotation of the origin 0 € S}, given by the term
R¥(w,0) crosses the endpoint 3. If we identify each word (u,v) € X&) x X!, with

the rectangle QSfi} = 1@ I,,, obtained as the image of the function thfg, then
we have the following properties of W), Y() and Z(«):

i. Each rectangle of W), Y« and Z) is the product of basic intervals of
C“) and €' (where C’ is the image of X’ under the coding map), each of
these possibly belonging to different steps in the construction of C() and
C’, respectively.

ii. An easy calculation using (8) and (@) shows that the size of all rectangles
in ngw), YS{‘)) and ZS{‘)) is, respectively,

R"™(w,0)
Oy« -+ Oy X gy - v Ay, € ,

R" (w,0)—28
Oy« Gy X Qg+ - - Gy, € ,

Aoy - O, X A, - Ay, €8 @OH28,
In particular, the eccentricity of rectangles in each family, i.e. their height-
width ratio, always stays bounded in between e=3% and 5.

ili. Under the convention Wéw) := {[0,1]?}, for n € Ny the rectangles in Wsﬁ)l

are obtained from those in W%‘)) by advancing r steps further in the con-
struction of C), and advancing either one step further in the construc-
tion of C’ if the resulting rectangle has eccentricity in between e™# and
e?, or 21 + 1 steps further in the construction otherwise. By (8), the
first option increases the eccentricity of the resulting rectangle by a fac-
tor of eR" T (@.0~R™(@.0) with respect to the one of its predecessor in W,
whereas the second option has the effect of bringing the eccentricity of the

resulting rectangle back to a value between e~# and .
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iv. The rectangles in Y'“) are obtained from those in W) by advancing 21
steps further in the construction of C’ while keeping the same basic intervals
in the construction of C(“). This yields rectangles with greater width than
height.

v. The rectangles in Z{*) are obtained from those in W) by going 2! steps
backwards in the construction of C’ (notice that this is possible since n > 310)
while keeping the same basic intervals in the construction of C(). This
yields rectangles with greater height than width.

vi. For each n € N, the rectangles in W,(;”) cover the product set C(“) x ¢’ (and
the symbolic rectangles are disjoint, although their geometric projections
may overlap). The same statement holds for Y and z“).

From the above considerations it is easy to see that for (u,v) € WS{Q) we can

decompose thl} as

(39) hg“g (2,y) = aw, ... aq,, (x, eRn(”’O)y) + (tff), ty)

for certain translations t&w),tv € [0,1]. Moreover, if H&wv) denotes the inverse of
), then from (33) we obtain

1 1

H)(z,y) = (z,e B @0y —

a’wl T awrn a’wl T awrn

Obviously, similar decompositions hold for thv) and Hfﬁ,) whenever (u,v) € Y%“’

or (u,v) € 7).
We note that the family (7(“)),cy satisfies the following conditions, closely re-
lated to (a)-(c) above.

t(@) eRM@ 0 ),
( v)

u

(a’) Each 7“) is supported on X x X
(b’) The mapping w — 7(“) is continuous.
(¢’) There exists K” > 0 such that

)

7 (fuvlo x [u'v']) < K" 7 ([l x [ D 7T ([]ene x [0]),

forallw € Y, all (u,u') € W UYE UZY), and all (v,0') € XiT <) x X7 .

As a matter of fact, we will prove the result for projections of families of measures
7() satisfying these conditions (i.e. it will not matter that 7 is a product measure
for each w).

(40

5.2. A submultiplicative cocycle. For each n € N we define L,(;“) as the unique
nonnegative integer such that

(41) 2L <y, ey, < 2078
and, as in the proof of Theorem 2.1l consider the nested families of intervals CD,(;”)
given by
w L) o), .
D) = {277,275 (j+ 1)) 1 j € Z}.
With this, for ¢ > 1 we define the functions 7, : ¥ x Sj = R

(42) Tnlws) = > (1),

1€
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Similarly to the proof of Theorem [2.1] we will show that 7, ,, is a submultiplicative
cocycle (up to a multiplicative constant), and then we will construct a “nicer”
cocylce T, which is comparable to 7, ,. Unlike the situation in Theorem [2.1] the
functions 7,4, will not be continuous, but will nevertheless be approximable by
continuous functions in a suitable way. Since ¢ will remain fixed, we drop it from
the notation.

Hence, the first step is to show that there exists K7 > 1 such that for any
n,m € N and (w,s) € Y x S}, one has

(43) Totm (W, 8) < K1 T (w, 8) T (S™(w, 3)).

To see this, let us fix n,m € N, (w,s) € Y x Sé, and proceed to show [@3). We
will consider three separate cases, depending on whether —3 < R™(w,0) + s < f,
R"(w,0) +s > S or R"(w,0) +s < —3. In the first case one has R"(w,s) =
R"(w,0) + s whereas in the second one has R"(w, s) = R"(w,0) + s — 2 and in
the third R"(w, s) = R™(w,0) 4+ s + 2/ holds instead. For the proof of the first
case we will only use the family W) and replace it with the family Y®) for the
proof of the second case and with Z“) for the proof of the third case. Except for
this difference, the proof of all three cases is completely analogous so we will only
comment on the first case only.

The proof is a minor variant of the proof of (24). Given J € D) let us define
w w 71
WG (5) 1= {(u,v) € W« ([ulu x [o]) NTL, () # 0}

and consider the interval J which has the same center as J but of length |f| =
65¢2%|.J| instead. The constant is chosen to ensure that I, ([u]., x [v]) C J for every
(u,v) € W(Jw)(s).

If 7 € s such that I C .J, then

n+m

(1) < K" Z 7 ([ x [o]) nT " (HEWTITH(T))
(u,0) WS (s)

This can be established in a very similar manner to (27)); we omit the details. If we
continue to argue as in the proof of Theorem 2.1 we further obtain

> (w) <@y ()" ¢

1eal)
IcJ
rn _ q
(44) x> e Y (e mE )
(u,0)eWS (5) reo(®)
IcJ

recall (29) and B0). Now, using ([B9) it is not hard to see that for any such interval
I and (u,v) € W(Jw) one has
(45)

1

-1
Hfﬁvnsil([) = (HS © hgu,)v)) (I) = Ht_l (ai : (I - HS(th)vt;))) )

1 Gy

where t := R"(w,s) (in fact, we get {T) for t = R"(w,0) + s which, in this
case, coincides with R"(w, s); this is the point where it is important to use the
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(w)

appropriate family of rectangles). Furthermore, the families ©,,°/,,, and
1
(I - T1,(d{*),d,)) : | € D
{awl . awrn ( ( u )) n+m

can be seen to be 6-equivalent, so that by Lemma 3] and (5] we obtain
(46)
ST (TN EETIND)) < 60 (T ), 1) = 67 7 (87 (w, ).
reo(®)
ICJ

Combining this with ([@4), and reasoning exactly as in the end of Section 2] we
finally deduce that the cocycle relation (@3] holds for some K7 > 0 depending on
q.
5.3. An upper C-approximable analogue of 7,. In order to apply Corollary
B8 we need a C-approximable cocycle (recall Definition B4]). Unlike the situa-
tion in Theorem [ZI] there is now an inherent discontinuity at the end point of
the interval [—3, 3); note that although the identification of the extreme points is
required for applying ergodic-theoretic tools, as far as the geometric definition of
Tn, is concerned, there is no such identification. This issue arises already in [I9, p.
107], where (in the course of proving what effectively is a special case of Theorem
22) it is incorrectly claimed that the functions ¢, (corresponding to our 7,) are
continuous. In fact, there is continuity up to the endpoint of the interval. Fortu-
nately, this turns out to be a minor issue: because the discontinuity set is small,
the new cocycle is still upper C-approximable.

We proceed to the details. Firstly, in close analogy to Section [£3, we define

» (@)
Wi (2,y) = (25 (@ —y)).
where ¢ € C§°(R) is supported on [-2,2), 0 <+ <1 and 4|_11) =1, and

Ta(w, ) ZZ/R(/waf)(w,y)dnﬁ“)(:v)>q_l dn) (y).

Then one can check, just as in Section [£.3] that there is a constant M > 1 such
that

(47) M7 71 (w,8) < Tp(w,s) < M7,(w,s) foralln €N, (w,s) €Y x S’é,

and T,, is continuous on Y x (=3, 3). Since we clearly have 0 < 7,, < 1, the fact
that 7, is C-approximable is now a consequence of the following lemma.

Lemma 5.1. Given a measure i on Y, every bounded f :Y X S}; — R which is
continuous on'Y x (—f3, B) is also upper C-approzimable on (Y x S’é, wx Lg).

Proof. For § € (0,8) let g : S; — [0,1] be a continuous function such that
g|[6—%5,—,@+%5] =0 and g|[—g4s,8—5) = 1, where we identify —3 = 3.
The function M; : Y x S§ — R defined by the formula

Ms(w, s) = f(w,s)g(s) + [| flloo(1 = g(s))

is continuous on Y X Sé and also satisfies f < Ms < 2||f||co. Furthermore, since
Ms and f agree on Y x [—f3 + 4, 3 — §], we have that

/Y o (Ms — fd(p x Lg) < 2| fllocLs([8 =0, =B +3]) = 20 fllo

B



L? DIMENSIONS AND PROJECTIONS OF RANDOM MEASURES 23

which shows that f is upper C-approximable. O

From this, it follows that if for each n € N we define ¢, : ¥ X Sé — R by the

formula
¢n = log(K17Tn)

where K is as in ([43)), then the sequence (¢, )nen is a subadditive cocycle on Y x S’é.
Notice that each ¢,, is well defined since 7,,, and hence also 7,,, are strictly positive.
Furthermore, by Lemma [5.1] we get that ¢, will also be upper C-approximable
provided that it remains bounded. This fact will be a consequence of [@T) and the
following lemma.

Lemma 5.2. For each n € N we have

0< inf  7(w,s) < sup  T(w,s) < 4oo.
(u),s)GYXSll3 (W,s)GYXS}3

Proof. Notice that, since ngw) is a probability measure for each (w, s), we have

q
awos) = > (D) = D0 n@I) =0 (®) = 1.
1e@y” 1€y
To establish the other inequality we notice that for any (w,s) € Y x Sé we have
Supp (1)) € I ([0,1] < [0,1]) € [0,1 +¢”]
so that for each n € N there exist at most ¢, g intervals I € ol satisfying

.....

chosen independently of w. Thus, for each (w, s) there exists at least one I € D
such that n{*) (1) > ﬁ, which implies that

1

3

inf Tn(w, 5).
q — n Y
Cn,B (w,s)E{l,...,N}NXSé

O

5.4. Conclusion of the proof. The remaining of the proof of Theorem 2.2 follows
exactly the same lines as the proof of Theorem 2l In particular, (23] holds in the
current setting. Details are left to the interested reader.

6. EXAMPLES AND APPLICATIONS

6.1. The deterministic case. When there is just N = 1 rule, we obtain the
following immediate consequence of Theorem 2]

Corollary 6.1. Let {f;j(z) = ARax + tj};?:l, where A € (0,1), Ry is rotation by
a € [0,2m) and t; € R? are translations. Let 7 be a measure on Xoo := {1,..., K}
such that

7([uv]) < K7lu]7[v]
for some K > 1 and all finite words u € X,,,,v € X,,, and let  be the projection of
7 under the coding map.

If a/7 is irrational, then for all q € (1,2] and all v € S* it holds that
Dy(Ilyn) = min(Dgn, 1),

0g Cly, (M)

1 . . .
and moreover the convergence of — Y CESY) to min(Dgyn, 1) is uniform overv € S*.
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Proof. The dynamical system (Y x S*, S) degenerates to rotation by a on the circle,
for which Lebesgue measure is certainly ergodic. This is then just a special case of
Theorem 211 O

Measures 7 satisfying the assumptions include product (Bernoulli) measures on
X, as well as Gibbs measures for Holder potentials and for almost-additive se-
quences of potentials. When 77 is Bernoulli, then 7 is a self-similar measure on the
corresponding self-similar set, so in particular we obtain existence and preservation
of LY dimensions of projections of self-similar measures for homogeneous planar it-
erated function systems (for which the linear part contains an irrational rotation),
regardless of overlaps. For Hausdorff dimension this is known to hold also for non-
homogeneous systems [I5] [7]; below we will recover this as another consequence of
Theorem 211

In a similar way, we have the following consequence of (the proof of) Theorem
2.2)

Corollary 6.2. For (i,7) € {1,...,k1} x {1,...,kao}, let
fij(@,y) = (ax +t;, bz + uj),
where 0 < a < b <1 and t;,u; €R.
Fori=1,2, let U; be a measure on {1,...,k;} such that
(48) vi([uv]) < Kvi([u]) 7s([v]),
for any words uw € {1,...,k;}™ v € {1,...,k;}"™. Let v; be the projection of U;
under the respective coding map.
Iflog a/logb is irrational, then for all t > 0,
Dg(v1 % Aywo) = min(Dy(v1) + Dg(12),1),
where Ayx = tx, and moreover
logC! (n)

vk Aiva

(g—1)n
uniformly over compact subsets of (0,400).

— min(D, (1) + Dy(12),1)

Proof. Since there is no code space, the ergodicity assumption in Theorem
reduces to Ly, being ergodic for the map s — s+g1n(b/a) on S},, where 3 = In(b=%)
and ¢ € N is arbitrarily large (recall [8) and ([@); we take r = 1 since a < b). Since
log b/ log a is irrational, these systems are isomorphic to irrational rotations for any
value of £, so the claim follows from (the proof of) Theorem O

This extends [19, Theorem 1.1], and most of the generalizations outlined in [19]
Section 5]. More precisely, we allow overlapping in the construction, our measures
on the Cantor sets are more general (including Gibbs measures), and we obtain
uniform convergence over compact sets of scalings ¢.

6.2. Random self-similar measures. Next, we go back to the setting of Theorem
21 with N different rules, but assume that the measures 7“) have the following
product structure. For each i € {1,..., N}, let p; = (pi1,---,Dik ) be a probability
vector, and set

(49) ﬁ(W) = H Pu; -
n=1
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It is immediate that properties (a)-(c) hold. (Recall Section ZT]). Let u be an
ergodic measure for (Y, T), where as usual Y = {1,..., N}\.

We want to obtain an explicit formula for the L? dimensions of the projections
n): for this, we need to assume some separation assumption. For simplicity we
assume the following very strong separation condition:

(50)  for each i € {1,..., N}, the disks fl(i)(B)7 ce fkl) (B) are disjoint,

where B = B[0, R] is a ball that such that f;i)B C B for all 4, j, recall Section 211
This could be relaxed to a random open set condition, but we do not pursue this.
The following lemma is standard, but we include the proof for completeness.

Lemma 6.3. Let the family T) be given by @), and suppose @A) holds. Then
for every q > 1, the LY dimension of n“) = A ) exists and is constant on the
set of pu-generic points w, and is given by the value

flog(pg 1+~-~+pf~d ko) dp(@)
q (w) . 1, 1,Roq
(51) D) = — = 1) [log(Az,) du(@)

Proof. For each n € N let us define
On(w):= Y (M (BW))".
uEXEzw)
Note that we have

. log 6, (w)
Di(n@)) =1 .
(77 ) nL)Holo (q - 1) ]‘Og()\wl U )\wn)

Indeed, this follows from the definition of L% in Equation (2I)), and the fact that
the families D) and {B{) : |u| = n} are C-equivalent on supp(n®)) for some
C > 0, by reasoning as in the proof of Equation (35)).

Observe that in the n-th step of the construction of C“) we have ki, - -k,
disks, each of measure py, i, - Puw, i, (for a given choice of i; € {1,--- kg, }).

Then
Onw)= > o > pha P

11€{1, kwy } in€{l, kw, }

n
LI+ 0 ).
J
j=1

Let H(w) :=log (pl, ; +---+ L, . ) (which is obviously continuous, since it de-

> yRwy ]

pends only on w;). Then notice that logf,(w) = >7_, H(T971(w)). Let G denote
the set of p-generic points. If w € G, then

62 Llogbu(w) — [ H@ @) = [loglh, ,+- 418, ) dul@)

Similarly, it was shown in the proof of Lemma that for any w € G,

(53) 108w Aw) [ 10805 )@,

n
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Therefore, by equations (52) and (G3]), we conclude
log 6, (w) , 5 log O (w)

—1)D4 (W) — li _— =
(¢ —1)D ™) e 108w, -+ A ) n oo Llog(Aw; - Awy)

 Jlog (pg, 4 PG, k) d(@)

Jlog(As,) du(@)
This ends the proof. O

By applying this to the case in which u is a Bernoulli measure, we obtain the
following consequence of Theorem 211

Corollary 6.4. Let the family 7) be given by [@39), and suppose (BU) holds. Let
r = (ri,...,rn) be a probability vector and let p be the r-Bernoulli measure. Fi-
nally, assume o/ is irrational for some i with r; > 0.

Then for each q € (1,2] and each p-generic w

D, (11,n“)) = min(D(q),1) for allv € S*,
where N
>im1Tilog(pfy + -+ pi )
(4= 1) XL, rilog(h)

lo
Furthermore, the convergence of —

St

D(q) =

q
g Cnvn(&,) (n)

e to min(D(q),1) is uniform in v €

Proof. Ergodicity of p x L for the skew-product given in () is classical when p is
a Bernoulli measure (provided some «; /7 is irrational), see e.g. [20, Corollary 4.5].
The claim is then immediate from Theorem [Z1] and Lemma O

An analogous result is available in the setting of Theorem[2.2] (with one of the sets
deterministic). Since it is possible to construct explicit generic points for Bernoulli
measures, the above corollary applies also to some deterministic constructions.

6.3. Uniform box-counting estimates. An upper bound on C{(n) for ¢ > 1
yields (via Hélder’s inequality) a lower bound on the number of cubes in ©,, hit by

supp(p):

(54) 1= 3" u(I) <#{I €D, Insupp(p) # @}/ Cln)/.

I1e®,
Together with our main results, this yields uniform lower box-counting bounds for
the projections of the supports of the measures in question. We give one concrete
example.

Corollary 6.5. Let A C R? be a self-similar set, that is, A = Ule fi(A) for
some contracting similarities f;. If the orthogonal part of some f; is an irrational
rotation, then for every e > 0 there is § > 0 such that for alln € N and v € S*, the
projection 11, A hits at least § 20~ intervals in D,,, where v = min(dimg (A), 1).

Proof. We may assume that f;(z) = AR, (z) + t; where a/7 is irrational and,
moreover, the strong separation condition holds. Indeed, any planar self-similar set
A for which one of the generating maps contains an irrational rotation, contains
self-similar sets of this special form and dimension arbitrarily close to that of A,
see e.g. |23, Lemma 4.2].
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If 77 is the (%, ceey %)—Bernoulh measureon {1, ..., k}Y, and n is its projection onto
A via the coding map, then it is well known that Dy(n) = dimpg (A) = logk/|log A|.
The claim now follows from Corollary [6.1] and (54)). O

6.4. Projections of non-homogeneous self-similar measures. We use an inte-
gral representation of self-similar measures to recover a result from [15] on the Haus-
dorff dimension of projections planar self-similar measures. Let f;(x) = A\jRq, (z)+
tj, j =1,...,k be contractive similarities (i.e. A; € (0,1)). Let p = (py,...,D;) be
a probability vector and let v the corresponding self-similar measure. That is, v is
the projection of the p-Bernoulli measure 7 under the coding map A given by

{A(u)} = m fuy -+ fun (B),

where B is a large enough ball that f;(B) C B for all j.

Fix a large integer ¢. For each u € {1,...,k}¢, let N;(u) count the number of
times the symbol j appears in u, and write N(u) = (N1(u),..., Ni(u)). Note that
N takes values in

¥ = {(zl,...,ek);zizo,Zéizf} c{0,1,...,03%,

so in particular #X < (£ + 1) (this is a rough estimate, but sufficient for us; the
key is that it has polynomial size in /).

Also, if N(u) = N(v), then the maps f,, and f, have the same linear part (and
possibly different translation parts), where as usual f,, = fy,, o--- o fy,. Hence, for
each o € ¥, {f, : N(u) = o} is a valid rule in the sense of Section 211

Our goal is to disintegrate T over the fibers of the map

(Un)nen = (N(U@—1)e41 - - - Uje)) jen

that splits u into blocks of length ¢ and applies N to each block. Although such
disintegration exists in a very general setting (see e.g. [6l Chapter 5]), in this simple
setting there is an explicit expression, which we now describe.

For each o € X, write

Te = Z ﬁul o 'ﬁu[ = Z Du-

ue{l,....k}¢:N(u)=0c ue{l,....k}¢:N(u)=c

Consider the conditional probability p, on the fiber {u € {1,...,k}* : N(u) = o},
extended to all of {1,..., k}’ by assigning zero mass to the complement of the fiber.
Formally, p.., =D, /7s if N(u) = o, and p,s,, = 0 otherwise.

Note that one can sample a sequence u = (uq,...,us) according to v in the
following way: choose o € ¥ according to the probability vector r; then choose u
according to the probability vector p,. Thanks to the product structure of v, this
extends to infinite sequences as follows.

For each w € BN, let 7“) be the product measure [1:2, pw, (this is a measure
on ({1, .. .,k}e)N, which we can identify with {1,...,k}" in the canonical way).
Explicitly,

ﬁ(w)([ula o 7unl]) = Puwy,(ur...ug) *° 'pwj,(u(n,l)g+1,...,ung)'

Finally, write u for the r-Bernoulli measure on X,
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Lemma 6.6.
70 = [0 due).

Proof. Tt is enough to check that both measures agree on any cylinder A = [i1 ... 4in¢] =
[v1...v,] where v; = (ij_1)¢41 - - -i5¢) (since any cylinder splits as a finite union of
such cylinders). But

SO ) = [ s P, )

pUJl vy *" Pwn,up dp(w)

n

H v])HpN (v5),v5
-1I».

O

We have defined things so that the coding maps A, agree with the original coding

map A for v, after the usual identification of ({1, R k}e)N with {1,...,k}". Hence,
it follows from the last lemma that also

(55) v = / 7 dy(w).

This is the disintegration we referred to above, and it is preserved under orthogonal
projections.

Unfortunately, L? dimensions do not play nicely with integral representations,
but Hausdorff dimension does. This allows us to recover, via a rather different
proof which avoids the machinery of measure-valued processes, the following result
which was first obtained in [I5] (we note, however, that the methods of [15] extend
to higher dimensions, while our approach breaks down in dimension d > 3).

Corollary 6.7. Suppose f;, D and v are as above, and assume further that the
separation condition ([BU) holds. Then

dimg (I,v) = min(dimg v,1)  for all v € S*.

Proof. 1t follows from the definition of Hausdorff dimension of a measure and the
representation (B3] that if dimH(Hvﬁ(“’)) > s for p almost all w, then dimy v > s.
We will show that the former holds for all v € S', with a value of s that can be
made arbitrarily close to min(dimg v, 1) by taking ¢ large enough.
First of all, the separation assumption implies that
. Zle P:1og(@;)  2uef1,.. ke Pulog(Dy)
dimpv = — = — ,
> i1 Pilog(Ng) Eue{17,,,,k}e Py log(Au)
where Ay, = Ay, -+ Ay, see e.g. [B] Theorem 5.2.5].
On the other hand, we obtain from Corollary [6.4] that for all u-generic w, all
ve S and all ¢ € (1,2],

o T log u pcr u
dimH(an(w)) > Dq(l—[vn(w)) — min (Z ex (Z e{1,....k}* ),1> ,

(4= 1) e o o8 (N0
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where A, = A, for any u such that N(u) = o. (For the left-most inequality, recall
that L? dimension, ¢ > 1, is always a lower bound for Hausdorff dimension.) Letting
q — 17, and recalling the definitions of 7, py v, we infer

YoexTo Eue{l,...,k}@ Po, l0gpo,
Y ves To log(As) ’

Eue{l,...,k}l Dy log(ﬁu/rN(u))

dimpg (an(“’)) > min

= min — ,
> uei,...kye Pulog(Au)
“ P log(r N
> min(dimpg v, 1) — 2one (L by — B(rvw)
Zue{l,...,k}ff Py log(Au)
0'1 [oa
= min(dimg v, 1) — —Z”izr_ og(r)
€3 i1 Pilog(A;)
1 b
> min(dimg v, 1) + kog_—#
€31 Pilog(A;)
klog(f+1)

> min(dimpg v, 1) + —/—————
(371, Pilog (M)
— min(dimg v, 1) as £ — oo,

where in the fifth line we used that the entropy of a probability vector of length M

is bounded by log M. This completes the proof. O
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