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Word count: 6007 

Abstract 

Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a 

membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to 

establish an advantageous intracellular niche for survival. This review highlights the 

mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by 

hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of 

Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic 

route are selectively recruited to the chlamydial inclusion membrane. By interfering with 

Rab-controlled transport steps, this intracellular pathogen not only prevents its own 

degradation in the phagocytic pathway, but also creates a favorable intracellular 

environment for growth and replication. Chlamydia, a highly adapted and successful 

intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from 

biosynthetic compartments that carry host molecules essential for bacterial development. 

Although current knowledge is limited, the latest findings have shed light on the role of 

Rab proteins in the course of chlamydial infections and could open novel opportunities for 

anti-chlamydial therapy.  
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Chlamydia trachomatis and Chlamydia pneumoniae are clinically important 

intracellular pathogens, causative agents of highly prevalent diseases in humans. C. 

trachomatis is the most common sexually-transmitted bacterium in western countries. It 

also constitutes the leading cause of infectious blindness worldwide. In the urogenital tract, 

a subset of serovars (D to K) causes urethritis, cervicitis and proctitis. Recurring infections 

can result in pelvic inflammatory disease and permanent sequelae such as tubal obstruction, 

ectopic pregnancy and female infertility. In the ocular epithelium, chronic infections 

elicited by serovars A to C result in trachoma. The serovars L1 to L3 pass the epithelium 

and invade lymphatic tissues, causing lymphogranuloma venereum. C. trachomatis has 

lately been associated with inflammatory pathologies such as ulcerous colitis, Crohn´s 

disease and arthritis (Choroszy-Król et al., 2012). On the other hand, C. pneumoniae causes 

acute respiratory infections such as bronchitis, pharyngitis, sinusitis and pneumonia. There 

is increasing research interest in this pathogen for its role in the development of 

atherosclerosis and asthma (Roulis et al., 2013). Additionally, C. psittaci infects birds but 

can be transmitted to humans causing psittacosis, a severe and difficult to treat pulmonary 

infection. Therefore, it is considered a potential candidate for use in biological warfare

(Harkinezhad et al., 2009).

Developmental lifecycle in Chlamydia

 Chlamydia is a Gram negative obligate intracellular bacterium that undergoes a 

unique biphasic developmental cycle, comprising two functionally and morphologically 

distinct bacterial forms. The first form is the metabolically inert small elementary body 

(EB), which is environmentally-resistant and constitutes the infectious organism. The 

second form is the large pleiomorphic reticulate body (RB), unstable outside the host and A
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non-infectious, that displays metabolic and multiplicative activities (Choroszy-Król et al.,

2012). Under stressful conditions, such as those imposed by γ-interferon, antibiotics or 

deprivation of nutrients, Chlamydia enters a reversible persistent state characterized by an 

incomplete developmental cycle and the formation of aberrant bodies (ABs). These giant 

bacterial forms may remain within infected cells for long periods of time. Upon removal of 

the persistence inducer, the ABs re-enter the normal chlamydial developmental cycle 

(Mpiga and Ravaoarinoro, 2006).

Chlamydia completes its entire lifecycle within eukaryotic cells; hence, it has 

evolved various strategies to enter the host cell and create an environment conducive to 

replication. First, highly infectious EBs attach to the epithelial cell and promote their own 

uptake into a modified phagosome called an inclusion (Bastidas et al., 2013). Chlamydia

then inject TARP - a bacterial actin recruiting protein - through a type III secretion system, 

promoting the remodeling of the actin network at the invasion site (Clifton et al., 2004). 

Once within the host cells, the EBs rapidly differentiate into RBs that asynchronously 

replicate by binary fission within the protected confines of the inclusion. After 48 to 72 

hours -depending on the species and strains- the majority of the RBs re-differentiate into 

EBs. Finally, they are released into the extracellular environment either by lysis of the 

infected cell or by extrusion, an exocytic process without host cell death (Hybiske and 

Stephens, 2007). Thereafter, a multitude of infectious EBs disseminate, eliciting new 

rounds of infection (Figure 1). 

Inclusion biogenesis 
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 Normally, phagosomes fuse sequentially with early endosomes, late endosomes and 

lysosomes, a process that leads to the degradation of the internalized microorganisms 

(Vieira et al., 2002). In contrast, chlamydial inclusions are non-fusogenic with components 

of the endocytic pathway as evinced in the lack of acquisition of endocytic tracers (e.g. 

dextran) or typical molecules of endo/lysosomal structures (e.g. early endosomal antigen 1,

mannose 6-phosphate receptors and cathepsin D) (Fields and Hackstadt, 2002).

Furthermore, neither the recruitment of the proton-ATPase pump nor intra-inclusion 

acidification  occur (Heinzen et al., 1996; Al-Younes et al., 1999). Recent data show that 

Chlamydia require transferrin and functional lysosomes in close apposition to the inclusion 

for optimal bacterial growth (Ouellette and Carabeo, 2010; Ouellette et al., 2011).

Nevertheless, a consensus exists that once the inclusion is formed it quickly deviates from 

the endo/phagocytic route, and instead intersects with structures of the 

biosynthetic/exocytic pathways. At the earliest stages, Chlamydia apparently use preformed 

effectors; later on bacterial protein synthesis is required for subverting intracellular 

transport of the host cell (Scidmore et al., 2003).   

 Shortly following the entry, Chlamydia actively control the movement of the 

nascent inclusion by recruiting the host motor protein dynein, which drives transport along 

the microtubule network towards the microtubule-organizing center. The migration to the 

perinuclear region is src family kinase dependent, and independent of p50 dynamitin 

(Grieshaber et al., 2003; Mital et al., 2010).

Interplay of chlamydial inclusions and host Rabs  
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 Rab proteins are master controllers of intracellular trafficking, membrane fusion and 

organelle identity in eukaryotic cells. They comprise the largest branch of the Ras 

superfamily of small GTPases, monomeric enzymes that bind and hydrolyze GTP. Thus, 

the GTP moiety serves as a biochemical switch, shifting the protein from a membrane-

associated active state when GTP-bound to an inactive cytosolic GDP-bound state. Rab 

switching is modulated by GTPase activating proteins (GAPs) and guanine nucleotide 

exchange factors (GEFs) that respectively, promote the GTP hydrolysis, or the replacement 

of GDP by GTP. For membrane anchoring, Rab proteins require the addition of C-20 

isoprenyl moieties to one or two C-terminal cysteine residues by the action of a Rab 

geranygeranyltransferase in association with a chaperone-like Rab escort protein (REP). 

After performing their function, Rab-GDP proteins are extracted from membranes by GDI 

(GDP dissociation inhibitor). Cycling between the cytosol and membranes is an essential 

feature of Rab action. At present, more than 60 different Rabs have been described; each 

one localizes to a distinct intracellular structure and controls a specific transport step. Rab 

targeting to a determined membrane is dictated by a complex mechanism involving GEFs, 

GAPs, effectors, and the hypervariable C-terminal domain of the Rab protein. By recruiting 

a multitude of Rab-specific effectors, including tethering complexes and motor proteins, 

Rabs direct vesicular transport (Zerial and McBride, 2001; Ali and Seabra, 2005; Stenmark, 

2009). Progression along the endo/phagocytic pathway is tightly regulated by around 

eighteen Rab proteins. The most significant are Rab5, which controls homo/heterotypic 

fusion between early endosomes and early phagosomes; and Rab7, which accumulates on 

mature phagosomes, controlling fusion with late endosomes and the formation of 

phagolysosomes (Vieira et al., 2002; Vieira et al., 2003).A
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 Chlamydia are not passive microorganisms travelling along the phagocytic pathway 

towards the phagolysosomes as their final destination. On the contrary, the bacteria disrupt 

vesicular trafficking by promoting recruitment to the inclusion membrane of certain host 

Rabs and by avoiding the acquisition of others. A subset of Rabs that belong to the 

recycling or biosynthetic pathways selectively associates with chlamydial inclusions 

(Rzomp et al., 2003). Despite the long interval since this was discovered, the actual roles of 

these Rabs on the course of infection and the mechanisms involved in their recruitment are 

far from fully understood. Fortunately, in the last few years, functional studies have 

increased exponentially and now constitute an active field of chlamydial research.  

 Initial work describing the localization of small GTPases at the inclusion membrane 

was performed in Chlamydia-infected cells over-expressing Rabs fused to the green 

fluorescent protein. Those studies showed that Rab proteins controlling transport along the 

phagocytic pathway, such as Rab5, Rab7 and Rab9, do not associate with inclusions of any 

chlamydial species. In contrast, Rab4 and Rab11, GTPases that regulate fast- and slow- 

recycling transport respectively, localize at the inclusion membrane. Interestingly, Rab1, 

which is involved in endoplasmic reticulum (ER)-to-Golgi and in intra-Golgi trafficking, 

decorates inclusions. In fact, Rab1, Rab4, and Rab11 are recruited to inclusions of all 

chlamydial species. Intriguingly, Rab6, which regulates Golgi-to-ER retrograde trafficking 

and endosome-to-trans-Golgi network (TGN) transport, only associates with C. 

trachomatis-inclusions; whereas Rab10, which is involved in ER dynamics and post-Golgi 

transport, exclusively surrounds C. pneumoniae-inclusions (Rzomp et al., 2003; Brumell 

and Scidmore, 2007). A genome-wide RNA interference screen, performed in Drosophila

SL2 cells infected with species of Chlamydia that are non-pathogenic for humans, revealed A
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the involvement of several GTPases in bacterial growth (Elwell and Engel, 2005; Derré et 

al., 2007; Elwell et al., 2008).

 The first images of an endogenous Rab decorating a chlamydial inclusion were of 

Rab14, an endosomal GTPase involved in Golgi-to-endosomes and TGN-to-plasma 

membrane transport (Capmany and Damiani, 2010). Subsequently, endogenous Rab11 was 

also seen surrounding chlamydial inclusions as a rim-like staining pattern (Leiva et al.,

2013). On the other hand, Rab39a (localized at multivesicular bodies and lysosomes) and 

Rab39b (a Golgi-associated Rab) are recruited to chlamydial inclusions through a bacteria-

driven process (Gambarte et al, unpublished results). These findings were shown in cells 

infected with C. trachomatis serovar L2. The biological meaning and the consequences for 

the host of the recruitment of Rab proteins in a species-specific manner remain elusive. It 

might be implicated in tissue tropism or in the particularities of the disease caused by each 

species or strains of Chlamydia. Further investigation is necessary to answer this open 

query.  

 A common feature is that only Rabs bound to GTP are recruited to chlamydial 

inclusions. Most of them (Rab4, Rab6, Rab11 and Rab14) do not require intact microtubule 

or actin networks to associate with chlamydial inclusions. Strikingly, Golgi disorganization 

caused by brefeldin A (BFA) does not alter the recruitment of Golgi-related Rabs. 

Conversely, treatment with chloramphenicol impairs the binding of all Rabs, demonstrating 

a requirement for bacterial protein synthesis in this process. The subset of Rabs that 

decorates the inclusions varies along the developmental cycle, in accordance to the 

differential gene expression of Chlamydia, Rab11 being one of the first to be recruited 

(Rzomp et al., 2003; Cocchiaro and Valdivia, 2009).A
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Rab-interacting proteins associate with chlamydial inclusions 

 Rab proteins in their active state interact with specific effectors, usually assembled 

in multi-molecular complexes, leading ultimately to membrane targeting and fusion. 

Despite the importance of these effectors in vesicular transport, little is known about Rab-

interacting proteins that directly or indirectly associate with chlamydial inclusions. At 

present, the scarce available data proceed from epithelial cells infected with C. trachomatis

serovar L2. Rab6-interacting protein Bicaudal D1 (BICD1) was the first to be identified at 

the inclusion membrane. The binding of BICD1 is Rab6-independent, suggesting a direct 

interaction with a bacterial protein (Moorhead et al., 2007). Additionally, the 

oculocerebrorenal syndrome of Lowe protein 1 (OCRL1), a Golgi-localized 

phosphatidylinositol 5-phosphatase that binds to multiple Rabs, is also recruited to the 

inclusions (Moorhead et al., 2010). The finding of two Rab6-interacting proteins, BICD1 

and OCRL1, at the chlamydial inclusion membrane suggests that multi-molecular 

complexes could be involved in intercepting certain Rab-controlled trafficking pathways in 

infected host cells. Recently, the Family of Interacting Protein-2 (FIP2), a dual effector of 

Rab11 and Rab14, was described as surrounding the inclusions. The recruitment of FIP2 is 

specific since other members of the family (such as the Rab Coupling Protein or FIP3) do 

not associate with chlamydial inclusions (Leiva et al., 2013).

Host Rabs interact with bacterial inclusion (Inc) proteins

 One of the major tasks of Chlamydia is the modification of the inclusion membrane 

to promote the recruitment of the most convenient Rabs for the generation of a suitable 

niche for its survival and replication. Hence, the identification of the bacterial proteins 

involved in these processes constitutes one of the main challenges of current research.  A
cc

ep
te

d
 

inclusions (Moorhead inclusions (Moorhead 

and OCRL1, at the chlamydial inclusion membrane suggests that multi-molecular and OCRL1, at the chlamydial inclusion membrane suggests that multi-molecular 

complexes could be involved in intercepting certain Rab-controlled trafficking pathways in complexes could be involved in intercepting certain Rab-controlled trafficking pathways in 

infected host cells. Recently, the Family of Interacting Protein-2 (FIP2), a dual effector of infected host cells. Recently, the Family of Interacting Protein-2 (FIP2), a dual effector of 

Rab11 and Rab14, was described as surrounding the inclusions. The recruitment of FIP2 is Rab11 and Rab14, was described as surrounding the inclusions. The recruitment of FIP2 is 

specific since other members of the family (such as the Rab Coupling Protein or FIP3) do specific since other members of the family (such as the Rab Coupling Protein or FIP3) do 

not associate with chlamydial inclusions not associate with chlamydial inclusions 

Host Rabs interact with bacterial inclusion (Inc) proteinsHost Rabs interact with bacterial inclusion (Inc) proteins

 One of the major tasks of  One of the major tasks of 

to promote the recruitment of the most convenient Rabs for the generation of a suitable to promote the recruitment of the most convenient Rabs for the generation of a suitable 

niche for its survival and replicationniche for its survival and replication

involved in these processes constitutes one of the main challenges of current research.  involved in these processes constitutes one of the main challenges of current research.  

A
rt

ic
le

Rab-interacting proteins Rab-interacting proteins 

 Rab proteins in their active state interact with specific effectors, usually assembled  Rab proteins in their active state interact with specific effectors, usually assembled 

in multi-molecular complexes, leading ultimately to membrane targeting and fusion. in multi-molecular complexes, leading ultimately to membrane targeting and fusion. 

Despite the importance of these effectors in vesicular transport, little is known about Rab-Despite the importance of these effectors in vesicular transport, little is known about Rab-

interacting proteins that directly or indirectly associate with chlamydial inclusions. At interacting proteins that directly or indirectly associate with chlamydial inclusions. At 

present, the scarce available data proceed from epithelial cells infected with present, the scarce available data proceed from epithelial cells infected with 

serovar L2. Rab6-interacting protein Bicaudal D1 (BICD1) was the first to be identified at serovar L2. Rab6-interacting protein Bicaudal D1 (BICD1) was the first to be identified at 

the inclusion membrane. The binding of BICD1 is Rab6-independent, suggesting a direct the inclusion membrane. The binding of BICD1 is Rab6-independent, suggesting a direct 

interaction with a bacterial protein (Moorhead interaction with a bacterial protein (Moorhead 

oculocerebrorenal syndrome of Lowe protein 1 (OCRL1), a Golgi-localized oculocerebrorenal syndrome of Lowe protein 1 (OCRL1), a Golgi-localized 



10 

This article is protected by copyright. All rights reserved. 

 Incs constitute a group of bacterial proteins enriched in segments predicted to form 

coiled coils. Owing to their strategic position at the inclusion membrane, facing the 

cytoplasm, they likely mediate the interactions with the host cell. Surprisingly, putative 

Incs are poorly conserved among chlamydial species, considering that they exert key 

functions. At present, limited numbers of interactions between Incs and eukaryotic proteins 

have been demonstrated (Li et al., 2008; Dehoux et al., 2011). CT229 is the only Inc 

protein of C. trachomatis proven to be a Rab binding partner. It has been demonstrated that 

CT229 directly interacts with Rab4-GTP, using the two-hybrid system, pull-down 

experiments and confocal microscopy (Rzomp et al., 2006). In the case of C. pneumoniae

Cpn0585 is the only Inc described as a Rab-interacting protein, and is able to bind Rab1, 

Rab10, and Rab11 (Cortes et al., 2007). Unfortunately, neither structural nor functional 

homologs of CT229 and Cpn0585 have been identified among different chlamydial species.  

 The recruitment of eukaryotic Rabs and their Rab-binding proteins facilitate the 

transport of chlamydial inclusions and their selective interactions with intracellular 

structures of infected host cells. Table 1 summarizes our current knowledge of the 

eukaryotic Rabs and the bacterial Incs that participate in the interaction between Chlamydia 

and host cells.  

Inclusion growth and acquisition of nutrients  

Capture of nutrients through vesicular pathways 

 During migration towards the perinucleus, individual Chlamydia-containing 

vacuoles (except the ones with C. pneumoniae) fuse to form a single inclusion that grows 

rapidly, harboring an increasing number of replicating RBs (Delevoye et al., 2008). The A
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restricted metabolic and biosynthetic activities of these bacteria are compensated for a wide 

variety of strategies that parasitize host cells, among them the hacking of Rab-controlled 

trafficking pathways to acquire nutrients and structural molecules essential for bacterial 

survival and growth (Saka and Valdivia, 2010).  

 Rab4 and Rab11 control transferrin recycling pathways intercepted by the inclusion. 

In spite of a strong dependence on host iron, the silencing of Rab4 failed to reveal any role 

in bacterial growth. However, the simultaneous depletion of Rab4 and Rab11 causes the 

retention of transferrin near to the inclusion and impairs chlamydial growth (Al-Younes et 

al., 2001; Ouellette and Carabeo, 2010).  

 Inclusion development is accompanied by a considerable requirement for lipids 

coming from different host cell organelles, the major sources being multivesicular bodies 

(MVBs) and the Golgi apparatus (Hackstadt et al., 1996). Pioneering studies established 

that inclusions preferentially intercept basolaterally-directed Golgi-derived vesicles for the 

acquisition of sphingomyelin and cholesterol (Hackstadt et al., 1996; Wolf and Hackstadt, 

2001; Carabeo et al., 2003). In fact, C. trachomatis hijacks Golgi-associated Rabs (Rab6, 

Rab11 and Rab14) to capture exocytic vesicles enriched in endogenously synthesized host 

lipids (Rejman Lipinski et al., 2009; Capmany et al., 2011). Recent data show that this 

bacterium usurps Golgi vesicular trafficking via Arf1 (ADP-ribosylation factor 1) and 

GBF1 (Golgi-specific Brefeldin A resistance Factor 1) (Elwell et al., 2011). Interestingly, 

C. trachomatis causes fragmentation of the Golgi and the formation of mini-stacks that 

surround the inclusion. Rab6 and Rab11 are probably involved in this process which 

enhances the delivery of sphingolipids to the growing inclusion (Heuer et al., 2009; Rejman 

Lipinski et al., 2009). Furthermore, Rab14 promotes the transport of newly biosynthesized A
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sphingomyelin towards the C. trachomatis-inclusion and the incorporation of these lipids 

by the bacteria (Capmany and Damiani, 2010; Capmany et al., 2011). Depleting Rab6, 

Rab11 or Rab14 decreases the transport of endogenously synthesized sphingolipids from 

the Golgi to the inclusion, though lipid acquisition is far from blocked. In double silenced 

cells, the impairment of lipid transport is higher, demonstrating that C. trachomatis usurps 

redundant pathways to ensure the capture of essential molecules from host cells (Rejman 

Lipinski et al., 2009; Capmany and Damiani, 2010). In addition, the depletion of FIP2, a 

dual Rab11- and Rab14-effector, reduces the delivery of sphingolipids from the Golgi to C. 

trachomatis-inclusions and consequently generates inclusions of smaller size (Leiva et al.,

2013). Sphingolipid deprivation not only has a detrimental impact on inclusion growth, but 

also simultaneously provokes the appearance of atypical bacteria. In fact, ABs are mainly 

observed in cells treated with inhibitors of sphingomyelin synthesis and in cells depleted of 

Rab6, Rab11 and Rab14 (Rejman Lipinski et al., 2009; Robertson et al., 2009; Capmany 

and Damiani, 2010). 

 MVBs are another important source of cholesterol and sphingolipids for the 

developing inclusions. These complex organelles occupy a crucial position at the 

intersection of endo/lysosomal and exocytic pathways (Woodman and Futter, 2008). The 

internal membranes of MVBs are rich in lyso-bis-phosphatidic acid (LBPA). The 

pharmacological interruption of transport from MVBs decreases both the arrival of lipids to 

chlamydial inclusions and bacterial growth (Beatty, 2006; Beatty, 2008; Robertson et al.,

2009). The participation of Rabs in the regulation of lipid transport from MVBs remains 

elusive. Interestingly, Rab11 is involved in the biogenesis of MVBs and in the release of 
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exosomes (Savina et al., 2005), thus constituting a good candidate for controlling MVB-

inclusion interactions.  

 The supply of neutral lipids is provided by lipid droplets (LD), ER-derived 

organelles, that are translocated into the inclusion through a mechanism that involves the 

chlamydial proteins Lda1 and Lda3 (Kumar et al., 2006; Cocchiaro et al., 2008). Proteomic 

screens reveal the presence of eighteen different Rabs in LDs; however, their role in lipid 

transport and processing is barely understood. Rab1, Rab6, Rab10, Rab11, Rab14 and 

Rab39, are present in both LDs and chlamydial inclusions of certain species. This finding 

suggests a possible participation of some of these Rabs in the fusion between LDs and 

inclusions (Murphy et al., 2009). 

 In addition, other organelles from host cells are important for chlamydial growth, 

including the mitochondria that localize in the vicinity of the inclusions and act as essential 

energy providers (Matsumoto et al., 1991; Derré et al., 2007). Recently, it has been shown 

that Rab11 facilitates the redistribution of mitochondria near energy-requiring actin-rich 

structures. Consequently, this Rab might be implicated in the localization of mitochondria 

to the surrounding of inclusions (Frederick and Shaw, 2007). On the other hand, lysosomes 

are required to supply amino acids derived from host protein hydrolysis (Ouellette et al.,

2011). However, Rab7, the most iconic lysosome-associated Rab, is excluded from C. 

trachomatis- and C. pneumoniae-inclusions in epithelial cells (Rzomp et al., 2003). Further 

research is necessary to unravel the underlying mechanisms involved in the interplay 

between certain subcellular organelles and the vacuole harboring Chlamydia. 
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 The inclusion membrane is a barrier that isolates the bacteria from the nutrient-rich 

environment of host cell cytoplasm. It is unlikely that metabolites such as sugars, amino 

acids, fatty acids, and nucleotides are delivered to inclusions by fusion with vesicles 

coming from the endo/lysosomal pathway (Heinzen and Hackstadt, 1997; Grieshaber et al.,

2002). Present knowledge strongly suggests the active participation of bacterial 

transporters, porins and translocases for the acquisition of nutrients from host cells 

(Vandahl et al., 2005; Trentmann et al., 2007; Braun et al., 2008; Saka and Valdivia, 2010).  

 Recent data from cells infected with C. trachomatis serovar L2 indicate that several 

eukaryotic enzymes involved in biosynthetic pathways are recruited to the inclusion 

membrane and supply essential lipids for chlamydial development, including the machinery 

for high density lipoproteins (HDL) biogenesis (Cox et al., 2012). Certain phospholipids 

(e.g. phosphatidylinositol and phosphatidylcholine) are provided through the activation of 

phospholipase A2 and ERK at the chlamydial inclusion membrane (Su et al., 2004). An on-

site sphingomyelin biosynthetic factory is established at the inclusion membrane through 

the recruitment of host sphingomyelin synthase 2 (Elwell et al., 2011). Furthermore, the 

host lipid carrier CERamide Transfer protein (CERT) - involved in non-vesicular transfer 

of ceramide at ER-Golgi membrane contact sites - also associates with inclusion 

membranes, most likely through binding to the bacterial protein IncD (Derré et al., 2011).

Moreover, it has been shown that C. trachomatis makes contact with the ER to acquire 

lipids from host cells through direct interaction  (Dumoux et al., 2012).  

Summarizing, Chlamydia hijacks vesicular and non-vesicular mechanisms to 

facilitate the acquisition of essential molecules from the host cell to secure inclusion growth 

and bacterial development (Figure 2).  A
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Bacterial replication and infectivity 

 Evidence obtained from cells infected with C. trachomatis reveals that interference 

with the function of eukaryotic Rabs hinders not only inclusion development but also the 

generation of chlamydial progeny. Rab6, Rab11 and Rab14 are important regulators of C. 

trachomatis replication and depletion of these Rabs reduces the yield of infectious particles 

(Rejman Lipinski et al., 2009; Capmany and Damiani, 2010). In line with these findings, 

silencing the Rab-binding effector OCRL1 and the dual Rab-interacting protein FIP2 also 

decreases bacterial progeny (Moorhead et al., 2010; Leiva et al., 2013). Interestingly, the 

simultaneous depletion of more than one of these eukaryotic proteins results in a much 

more dramatic decrease in chlamydial infectivity. This finding strongly suggest that these 

Rab and Rab-binding proteins exert partially overlapping functions that are crucial for C. 

trachomatis survival and multiplication (Rejman Lipinski et al., 2009; Capmany and 

Damiani, 2010). Presently, it is desirable to extend this research to other species of 

Chlamydia, mainly to C. pneumoniae, to understand the precise role of Rabs and Rab-

binding proteins at the molecular level in the replication and infectivity of these pathogens.   

Conclusions and future directions 

 We have described a complex scenario with the participation of multiple bacterial 

and host players. Chlamydia intercepts numerous and redundant Rab-controlled transport 

pathways and non-vesicular mechanisms to ensure the delivery of essential nutrients and 

structural components from host cells to the developing inclusion. Conveniently, 

Chlamydia manipulates Rab proteins to prevent their degradation in the phagocytic A
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pathway and to create a favorable niche for replication. Although current knowledge is 

limited, recent studies have revealed valuable findings about the participation of Rabs in the 

course of chlamydial infections. This smart intracellular pathogen exploits specific 

trafficking pathways of infected host cells by means of hijacking Rabs that belong to 

recycling or biosynthetic compartments. This fruitful strategy allows the bacterium to gain 

access to nutrients and compounds indispensable for bacterial growth. At the same time, the 

camouflage of the inclusion with these Rabs hides it from the main intracellular innate 

immune defense mechanism: bacterial killing by fusion with lysosomes. This successful 

strategy might be referred as “two goals with one shot”. The impossibility of knocking out 

or mutating chlamydial genes conspires against the identification of the Incs proteins 

responsible for the recruitment of host Rabs. Fortunately, novel approaches to manipulate 

the chlamydial genome are just beginning to appear. These new tools will shed light on the 

bacterial effectors involved in the generation of the friendly niche where Chlamydia hides 

within host cells. 

 Intriguing challenges for future research are the identification of bacterial recruiting 

factors for Rab proteins; a deeper understanding of the role played by eukaryotic Rabs 

along the bacterial developmental cycle; an overall analysis of the consequences for the 

infected cells of the interference in intracellular transport due to these bacteria; and finally, 

to expand the scope of the in vitro results to animal models and humans.  

 A detailed knowledge of the mechanisms involved in Chlamydia-host cell 

interaction will give us a better understanding of infections caused by these pathogens. 

More importantly, this insight might guide the development of vaccines and new 

therapeutic strategies for the effective control of acute and chronic chlamydial infections. A
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More importantly, this insight might guide the development of vaccines and new More importantly, this insight might guide the development of vaccines and new 

therapeutic strategies for the effective control of acute and chronic chlamydial infections. 
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Figure Legends 

Figure 1. Chlamydial developmental cycle. The cycle begins with the attachment of the 

infectious elementary body (EB) and its entry into the epithelial cell. Subsequently, the EB 

differentiates into the reticulate body (RB) within the confines of a modified phagosome 

called the inclusion. The nascent inclusion avoids fusion with endo/phagocytic 

compartments and migrates towards the perinucleus. Bacterial proteins (Incs) exposed at 

the inclusion membrane mediate the interaction with different host organelles and facilitate 

nutrient acquisition. RBs replicate by binary fission and finally re-differentiate into EBs 

that are released to the extracellular medium by host cell lysis or by extrusion of the 

inclusion. Under stressful conditions, Chlamydia transit to a quiescent state characterized 

by the presence of non-infectious persistent abnormal bacteria, the aberrant bodies (ABs). 

Figure 2. Interactions between Chlamydia and the host cell. Multiple host cell 

organelles, including fragmented Golgi mini-stacks, MVBs (multivesicular bodies), the ER 

(endoplasmic reticulum), LD (lipid droplets), RE (recycling endosomes), L (lysosomes), 

and mitochondria serve as a source of sphingomyelin (SM), cholesterol, 

lysobisphosphatidic acid (LBPA), neutral lipids, amino acids, nucleotides, transferrin (Tf) 

and iron, among other nutrients. Rab-controlled vesicular transport and non-vesicular 

mechanisms are co-opted by Chlamydia, likely via bacterial Inc proteins, to acquire 

essential nutrients from the host cells. Conveniently, Chlamydia does not fuse with early 

endosomes (EE) and late endosomes (LE), thus escaping the degradative phago-lysosomal 

pathway. A
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Table 1. Rab GTPases recruited to C. trachomatis- and C. pneumoniae- inclusions.

Brief summary of the subcellular localization and the transport step regulate by certain 

Rabs in eukaryotic cells. In addition, Rab recruitment to chlamydial inclusions, Rab-

interacting Incs and Rab function in chlamydial-infected cells. ER: endoplasmic reticulum; 

EE: early endosomes; SE: sorting endosomes; PM: plasma membrane; TGN: trans-Golgi 

network; SM: sphingomyelin; RE: recycling endosomes; Ct: Chlamydia trachomatis; Cpn:

Chlamydia pneumoniae; nd: not determined. 
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Rab  Subcellular  Main eukaryotic Recruitment to Inc  Transport to 

  localization  transport step inclusions    inclusions                          

1  ER, Golgi  ER-to-Golgi  Ct (+)   nd  nd
      intra-Golgi  Cpn (+)  Cpn0585 nd

4  EE, SE   PM-to-EE  Ct (+)   CT229  nd
SE-to-PM  Cpn (+)  nd  nd

6  Golgi   Golgi-to-ER  Ct (+)   nd  SM transport
                                                        intra-Golgi  Cpn (-)    -  -                

EE-to-TGN  

10  Golgi   ER-to-Golgi  Ct (-)    -  - 
       TGN-to-PM  Cpn (+)  Cpn0585 nd

11  RE, TGN  RE-to-PM  Ct (+)   nd  SM transport           
                                                        TGN-to-EE  Cpn (+)  Cpn0585 nd

 TGN-to-PM
                                                                           

14  EE, TGN  TGN-to-EE  Ct (+)   nd  SM transport   
                                                TGN-to-PM  Cpn nd  nd  nd

RE-to-PM

TABLE 1. Rab GTPases recruited to C. trachomatis- and C. pneumoniae- inclusions. Brief summary of the 
subcellular localization and the transport step regulate by certain Rabs in eukaryotic cells. In addition, Rab 
recruitment to chlamydial inclusions, Rab-interacting Incs and Rab function in chlamydial-infected cells. ER: 
endoplasmic reticulum; EE: early endosomes; SE: sorting endosomes; PM: plasma membrane; TGN: trans-
Golgi network; SM: sphingomyelin; RE: recycling endosomes; Ct: Chlamydia trachomatis; Cpn: Chlamydia 

pneumoniae; nd: not determined.  

                                                                                                              

                                                                                                                                          

14  EE, TGN  TGN-  EE, TGN  TGN-
                                                                                              

TABLE 1. Rab GTPases recruited to TABLE 1. Rab GTPases recruited to 

subcellular localization and the transport step regulate by certain Rabs in eukaryotic cells. In addition, Rab subcellular localization and the transport step regulate by certain Rabs in eukaryotic cells. In addition, Rab 
recruitment to chlamydial inclusions, Rab-interacting Incs and Rab function in chlamydial-infected cells. ER: recruitment to chlamydial inclusions, Rab-interacting Incs and Rab function in chlamydial-infected cells. ER: 
endoplasmic reticulum; EE: early endosomes; SE: sorting endosomes; PM: plasma membrane; TGN: trans-endoplasmic reticulum; EE: early endosomes; SE: sorting endosomes; PM: plasma membrane; TGN: trans-
Golgi network; SM: sphingomyelin; RE: recycling endosomes; Golgi network; SM: sphingomyelin; RE: recycling endosomes; 
pneumoniaepneumoniae; nd: not determined; nd: not determined

A
rt

ic
le

1  ER, Golgi    ER, Golgi  

44  EE, SE     EE, SE   

66  Golgi   Golgi-  Golgi   Golgi-
                                                                                      

10  Golgi     Golgi   
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