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Abdract. This work shows the interrelation between non-isothermal melt spinning flows and
the isothermal extensional flow described through rheometry. This analysis uses the iterative
numerical algorithm presented by Ottone and Deiber* for non-isothermal melt spinning flows
in the low take up velocity range. The results obtained for two take up velocities (1500 and
2500 m/min) are then shown in the extensional rheometric map composed by the lines of the
steady state rheometric extensional viscosity as function of the extensional rate at different
parametric temperatures. Then the search of scaling functions that allows one the formulation
of master curves relating both flows is analyzed and discussed.



1 INTRODUCTION

Nor-isothermd mdt soinning flows a low take up veocities can be modded by
conddering a filament of polymer mdt continuoudy drawvn and Smultaneoudy cooled with
ar in order to obtain a solidified yarn. In this sense dl the filaments found in the spinneret are
assumed to achieve the same properties during the spinning process These filaments compose
the synthetic fiber in the bobbin (Figure 1 shows a scheme for this operation involving one
filament only). Mdt spinning is a basc non-isotherma process in the production of synthetic
fibers (see, for example, Denr? and Schowadter?) and hence a modd describing the veloxity,
dress and temperature fidds in a filament can be useful to control the qudity of the find
product.

Recently, Ottone and Deber' provided a computationd dgoritm based on finite
differences to obtain the axid vedocity profile and the thermd and dress fidds in the 2D
doman of the filament. In this work, the peturbation andyss of the full spinning modd
reported by Henson et d.° was considered. This modd was formulated for the low speed
range (flow induced cryddlization was not conddered) through a regular perturbetion
andyss tha induded the denderness gpproximation associaied to long fibers of very smdl
diameters. Therefore, gpat from describing the rdevant fidds in the filament, it was dso
predicted phenomena present in melt fiber-gpinning process like the skin-core structure.
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Figure 1: Scheme of the melt spinning processinvolving one filament .

From the dove andyss it is clear tha the radid and axid dtress and temperature fields in
mdt fiber soinning may be edimated within a consgtent theoretical framework of a perturbed
2D modd that uses the denderness gpproximetion for the low speed range For this purpose,
a robus numeicd dgorithm computing the resulting momentum and energy bdances
coupled to conditutive equations is ds0 avalable In addition, this implies that the hybrid 1-D
fluid mechanics2D thermd models, as they are designated by Doufas and McHug, can be
avoided. In the hybrid modes, approximations associaied to the average of norinear terms
involving temperature and stresses are required.



The purposes of the present work is to show that within the structure of the perturbed 2-D
modd discused above, one can look for the interrdation between the non-isothermd
soinning flow and the isothermd extensond flow described rigoroudy through rheometry.
For this tak the iterative numericd agorithm proposed by Ottone and Deber! is used. The
results obtained for two teke up veodties (1500 and 2500 nvmin) ae then shown in the
extensond rheometric mgp composed by lines of the Steedy dSate rheometric extensond
viscodty versus the extensond rate a different parametric temperatures. Then the search of
sding functions that dlows one the formulation of megter curves rdaing both flows is
andyzed and discussed.

The discrete non-isotherma mdt spinning modd is expressed in finite differences, which
involve the impliat tridiagond dgorithm for the temperaure fidd and the expliat-impliat
backward differences for the stresses. Fine meshes can be generated to the required precison
(for instance, 100 radia nodes and axia step sizes of 10° m).

The rdation between isothemd extensond flow and other flow kinematics, like shear
flows, has been of interest snce the early stages of rheometry with the purpose of evauating
the extendgond viscodty (rheometric function) through other Imple kinemdics atained
exdly in expaimenta programs. At present, it is known that within the isotherma point of
view this target is difficult to achieve’. It is adso dear that experimenta data of the steady
date extensond viscodty of polymer mets a different temperatures are rather difficult to
obtain. Therefore, in this context of andyss, our results provide a new indght to this basic
problem when nonisothermd mdt spinning flows are conddered. The andyds can be done
only by usng a conditutive modd as a reference framework because the amount of
expaimental daa required for this purpose is not avalable Thus we use here the PhanThien
and Tanner viscodadic conditutive equation, which is gppropriste to describe extensond
flows. The dudy is caried out for polyethylene therephtdate (PET) which is a typicd
polymer used in the commercid production of fibers.

2 BASIC EQUATIONS
In this section we present briefly the norHisothema mdt spinning modd formulaied for
the deady date regime, (a full description is dresdy published'). Since the polymer is
congdered incompressible, the mass badance implies,
[{>y)=0 ®
wherey isthe veocity vector. The baance of momentum in the filament is expressed,
rviv=-Np+Nst +rg @

where r is the polymer dengty, p is the pressure fidd, g is the gravity vector and t is the
extra dress tensor condgdered symmetric throughout this work. The energy bdance in the
filament is,

re, AT =-N>g+D:t ®



where ¢, =a+bT is the polymer themd capacity and T is the temperaure field
(temperature T is expressed in °C throughout this work). In Eq. (3), q=-k; NT is the heat
flux vector, ks is the thermal conductivity and D:t is the mechanicd power. This term

involves the rete of deformation tensor D =(Rlv+ K" )/ 2 which is a function of the fluid
kinematics v(r,z) =v,e, +v, e, , where v, ad v, are the axid ard radid components of the

[
veloaity vector, respectively, in the cylindrical coordinate system.
To complete the formulation of the spinning modd, the viscodadtic dress t_p is required,

which is a part of the tota extra stress tensor t_:t_IO o where t, =2 D isassociated to
retardation effects. In this sense, one expresses,

t +19¢ 26D @
=p dt=p —

for the Phan Thien and Tanner model (PTTM)2 In Eq, (4),

dp =Dy L g T DT

dt=p Dt=p p =p = =p Dt ©

is the GordonSchowdter®® non-afine time-convective derivative, where the effect of the
theemd hidory is added through the teem DInT / Dt . Also L:ﬂx_/- cD is the effective

velocity gradiient tensor. We define hg =h (1-a)/a and h, =1 G, hence the instantaneous

elastic response of the model can be obtained for a =1."
Snce the rheologicd modd gets the linear viscodadtic response a the asymptotic limit of
smal shear raes the relaxation time can be expressed | =| (T)/ K(T,trt) where

| o =1 oo exp|- 11.9755 + 6802 /(T +273)| as reported by Gregory and Watson.”? Here, the
PTTM condders a rdaxation time that is a function of the dress tensor through the function
K :exdxtrt_/ GJ. In this context of analysis the rdaxation modulus is dso dlowed to change

with temperature according to G= G,, (T/T, ) where T, isthe reference temperature.

Rheometric characterizations of this rheologicd modd were caried out by following the
same procedure described by Ottone and Deiber®® to evauate the rheologicl parameters of
the PET mdt with experimenta data reported by Gregory and Wason™ involving the shear
rate flow of a sample tha had the same intrinsic viscosity as the PET used by George'® The
thermo-physical properties required above are aso reported in our work.*3

The goppropriate st of boundary conditions to solve Egs (1) to (5) ae taken directly from
Denn? and the numerical method used is that proposed by Ottone and Deiber.

3 RHEOMETRIC AND PROCESS ELONGACIONAL VISCOSTIES



To andyze the relaion between non-isothemd met spinning flows™*® and the isotherma
extensond flow (the target of this work), we have to define the rheometric and process
extensond viscodties. While the firg viscodty is a rheometric function under isothermd
conditions, the sscond one is obtained from the nonrisothermd mdt spinning process where a
radid averaged and axid varying temperature profile is obtaned. Therefore, throughout the
res of this work, the use of a super-index p to indicate any varigble evauated with the met

spinning modd is appropriate. It is dso dear that the process varisbles h.P, éP and

T Pcannot be placed in the rheometric extensond map (the extensond viscosty h, versus

the extendond rate e for different parametric temperatures T ) without further
condderations. For this task to be possble the “equivdent rheometric varigble’, designated
here with a super index (*), should be defined. These properties dlow one to plot the results
of the mdt spinning process (trgectories) in the extensond rheometric map defined with the
true rheometric variableshy,, € and T.Y

In this section we use a cylindricad coordinate sysem (z,r g ) placing the z-axis dong the
filament from the maximum swelling to the teke up roll (Figure 1). Also, it is should be
observed that the numericd method used' involves a coordingte transformation defining new
variables (Z z ,q ) with Z = z. Therefore, the extensiondl viscosity is expressed’,

z rr
-t

he(T €)= 2 ©

where & :‘ET—ZZ is congtant when steady rheometric conditions are achieved. In a smilar way,

one can aso define the process extensiond viscogty,

y74
) tZ-t
where the process extensond rae is obtained from e :gﬂz .InEg (7), T isthe
[4]

equivdent rheometric temperature, which results from the extensond rheometric map with
the vadues of h,P y €P. It is underdood that that temperature T" is different fom the process

temperature TP that corresponds to vaues h,? and eP. Thus the equivdent rhemetric

vaiadbles take the vdue from the extensonad rheometric map and corrdaes with the other
two remaining process variables & the same axid postion.



It is ds0 dear tha we can obtain three different equivdent rheometric varigbles for the
mdt  spinning prooasT*, he* y € . Consequently, the eguivalent rheometric extensiond
viscosty is

oo freer) 2t ®

and is obtained with TP and éP. Findly, the equivdent rheometric extensond rate comes
from the extensond rheometric map with the vaues T P and h,,P asfollows

*

e*(Tp,hp)=ﬂVZz$ ©
a
where the process extensiond viscosty s,
_ tZ_ g P
hep(Tp,ep)= T (10)

One should observe that Egs (7) and (10) refers to the same vaue o extensond viscodty but
they have associated different temperatures.
Once the interplay between process and extensond rheometric variadbles has been defined,

the search of master curves are caried out by usng the therma shift factor ar, which is
expressd,

l o(T) l o(T) é 6802.1 U
= = = expa 11.9755 . 11
& =1 ™) 1 eX'OS ¥ (T +273)4 (D

for the PET. Thus, Eq. (11) can be used to find ether the rheometric shift factor ar ad
process shift factor a; P when dataof Tand T P are available, respectively.

4 RESULTSAND DISCUSSION
Fgures 2 and 3 show numericd predictions with the PTTM of the axid vdocty v, ad

the radid averaged temperature (T) for two different take up velocties (1500 and 2500
m/min) to illudrate the data avalable in the search of the master curves proposed in this work.



In previous works™® we aso showed that good agreement between numerica results and
experimentd datais obtained for take up veocities of 3000, 2000 and 1000 nymin.

Fgure 4 shows trgectories of the mdt spinning process in the extensona rheometric map
for the two take up vdodties of Figures 2 and 3, when the equivadent rheometric extensond
rate is usad (Eg. (9)). An interesting result can be obtained when the curves of Figure 4 are
presented through a mester curve by usng Eg. (11) to reduce the extensond rae & the
reference temperature. Thus, Figure 5 shows that the rheometric and process master curves
become superposed and that the mdt spinning process should be within the range where the
rheometric  extendona viscodty is increesng  with  extensond rate. The reference
temperature for these calculationsis 295 °C.

Neverthdess, this is not necesarily the only master curve that can be achieved because we
have dso defined other equivdent rheometric varigbles. For indance, Fgure 6 shows
trgectories of the mdt spinning process in the extensond rheometric map for the two teke up
velocities of Figures 2 and 3, when the equivdent rheometric extensond viscosty is used
(Eg. (8)) and hence, Figure 7 shows that the rheometric and process master curves become
superposed again, but in this case the mdt spinning process is within the range where the
rheometric extensona viscosity is decreasing. From the two types of master curves discussed
above one should obsave that the equivaent rheometric extensond viscosty is rather
difficult to interpret and further sudies are required in this sense.

To complete the anlaysis involving the equeions of the previous section, Figure 8 shows
trgectories of the mdt spinning process in the extensond rheometric map for the two take up
veocities of Figures 2 and 3, when the equivdent rheometric temperature is used (Eq. (7))
and hence, Figure 9 shows that the rheometric and process master curves become superposed
agan, but in this case the mdt spinning process is within the same range as for the case in
which the equivdent rheometric extensond rate is used. This certanly indicates that both
reduction process to ameagter curve are Smilar.

Fndly, Figure 10 shows that the rheometric and process master curves do not coincide
when the concept of equivdent rheometric temperature is not taken into account (Eq. (7)).
Although these magter curves are obtained using Eq. (11) to reduce the extensond rate a the
reference temperaiure, one observes that the effect of different therma histories become
evident. Thus, the rheomelric extensond viscodty is higher then those of the process at
different take up velocities for the reported reference temperature. However, for low vaues of
extensond rate the three curves tend asymptaticaly to the Trouton vaue.
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Figure 2. Numerical predictionswiththe PTTM of the axial spinning velocity V,, at two different take up

velocities for the PET mdlt.
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Figure 3: Numericd predictions with the PTTM of the average temperature <T> at two different take up
velocities for the PET mlt.
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Figure 4: Tragectories of the melt spinning process (lineswith symbols) in the extensional rheometric map (full
lines) for two take up velocities when the equivaent rheometric extensiona rateis defined.
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Figure 5: Rheometric master curve (full line). Symbols belong to the reduced trgjectories of the melt spinning
processin the extensiona rheometric map (full lines) for two take up velocities when the equivaent rheometric
extensond rateis defined.
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Figure 6: Trajectories of the spinning process (lineswith symbols) in the extensional rheometric map (full lines)
for two take up velocities when the equivaent rheometric extensiona viscosity is defined.
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Figure 7: Rheometric master curve (full line). Symbols belong to the reduced tragjectories of the melt spinning

process in the extensiona rheometric map for two take up velocities when the equival ent rheometric extensona
viscosity isdefined
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Figure 8: Trgectories of the spinning process (lines with symbols) in the extensiona rheometric map (full lines)
for two take up ve ocities when the equivalent rheometric temperature is defined.
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Figure 9: Rheometric master curve (full line). Symbols belong to the reduced trgjectories of the melt spinning
process in the extensiond rheometric map for two take up velocities when the equiva ent rheometric temperature
isdefi ned



| —©—V, = 2500 m/min 1 -295 °C
10" F —4— v, =1500 m/min ' E
o 10° 15
g ™
- - e
QO
- £
T 1
10'f
10°F
! 1 FERETITT I I L L
10" 10° 10" 10° 10° 10° 10°
p -1
ea , €a’ (s)

Figure 10: Rheometric master curve (full ling). Symbols belong to the reduced trgjectories of the melt spinning
process in the extensiona rheometric map (full lines) for two take up velocities when the equivaent rheometric
temperature is defined.

5 CONCLUSONS

Numericd results concerning veocity, tempeature and dresses of non-isothemd  mdt
ginning flows can be placed as process trgectories in the rheometric extensond map
composed by the extensond viscosty he as function of the extensond rate € for different
parametric temperatures T. The interplay between these flows is possble when the equivdent
rheometric variables are defined in terms of the corresponding pair of process vaiables at
eech axid pogtion. The three cases conddered yidd coincident rheometric and process
measter curves when the extensond rate is reduced with the gppropriate therma shift factor.
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