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Summary
Previous findings established that ER-bound PTP1B targets peripheral cell–matrix adhesions and positively regulates cell adhesion to
fibronectin. Here we show that PTP1B enhances focal complex lifetime at the lamellipodium base, delaying their turnover and facilitating

a-actinin incorporation. We demonstrate the presence of catalytic PTP1BD181A–a-actinin complexes at focal complexes. Kymograph
analysis revealed that PTP1B contributes to lamellar protrusion persistence and directional cell migration. Pull-down and FRET analysis
also showed that PTP1B is required for efficient integrin-dependent downregulation of RhoA and upregulation of Rac1 during spreading. A

substrate trap strategy revealed that FAK/Src recruitment and Src activity are essential for the generation of PTP1B substrates in adhesions.
PTP1B targets the negative regulatory site of Src (phosphotyrosine 529), paxillin and p130Cas at peripheral cell–matrix adhesions. We
postulate that PTP1B modulates more than one pathway required for focal complex maturation and membrane protrusion, including a-

actinin-mediated cytoskeletal anchorage, integrin-dependent activation of the FAK/Src signaling pathway, and RhoA and Rac1 GTPase
activity. By doing so, PTP1B contributes to coordinated adhesion turnover, lamellar stability and directional cell migration.
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Introduction
Cell migration requires a regulated adhesion assembly–

disassembly cycle. Advance of the protruding cell edge occurs
concomitantly with the appearance of nascent adhesions within
the lamellipodium (Choi et al., 2008). As the leading edge moves

forward, nascent adhesions grow and turn into focal complexes,
which at the lamellipodium base may turnover or grow further
and mature into elongated focal, and fibrillar adhesions (Vicente-
Manzanares et al., 2009; Scales and Parsons, 2011).

PTP1B is a non-receptor protein tyrosine phosphatase bound to
the cytosolic face of the endoplasmic reticulum (ER) through a
hydrophobic C-terminal tail (Frangioni et al., 1992). PTP1B is

present in complexes of b1- and b3-integrin (Arregui et al., 1998;
Arias-Salgado et al., 2005), and interacts with the adaptor protein
p130Cas, which in part localizes at focal adhesions (Harte et al.,

1996; Liu et al., 1996). As the catalytic domain of PTP1B faces
the cytosol, it has the potential for substrate dephosphorylation
throughout the extensive branching network occupied by the ER.

Indeed, PTP1B has been shown to dephosphorylate plasma
membrane receptors (Ahmad et al., 1995; Elchebly et al., 1999;
Buckley et al., 2002; Haj et al., 2002), protein adaptors (Garton
et al., 1996), and cytosolic tyrosine kinases such as Src (Arregui

et al., 1998; Bjorge et al., 2000). Identification of most PTP1B
substrates was made possible by the generation of effective
substrate trapping mutants, such as PTP1BDA, in which the

invariant catalytic aspartic acid 181 is replaced by alanine (Flint
et al., 1997). This mutation increases substantially the steady-
state population of PTP1BDA–substrate complexes, allowing

their direct visualization by optical techniques. Interactions
between ER-bound PTP1BDA and endocytosed EGFR and
PDGFR have been detected as puncta by Förster resonance

energy transfer (FRET) (Haj et al., 2002), and by cryo-

immunoelectron microscopy (Eden et al., 2010). PTP1BDA
interactions with targets localized at integrin and cadherin
adhesion complexes, as well as with EphA3/ephrin-mediated

cell–cell contacts, seem to occur at the cell surface (Arregui et al.,
1998; Balsamo et al., 1998; Hernández et al., 2006; Hernández
et al., 2010; Nievergall et al., 2010; Haj et al., 2012).

We previously reported that ER-bound GFP–PTP1BDA

accumulates in puncta over peripheral cell–matrix adhesions
(Hernández et al., 2006). However, the identity of substrates to
which this mutant trap binds in adhesions, and the functional

consequences of PTP1B activity, remained elusive. By time-lapse
analysis we have now directly demonstrated that focal complexes
in cell protrusions extend their lifetimes when contacted by active

ER-bound PTP1B. We demonstrate the presence of catalytic
PTP1BDA/a-actinin in focal complexes and show that a-actinin
is essentially absent from focal complexes of PTP1B null cells,

suggesting an inefficient coupling to actin cytoskeleton.
Kymograph analysis revealed that PTP1B promotes the
persistence of leading edge protrusions and the directionality of
cell migration. We also show that PTP1B modulate integrin-

dependent regulation of RhoA and Rac1 GTPases, and present
compelling evidence suggesting that in addition to a-actinin, Src,
paxillin and p130Cas are PTP1B substrates targeted at adhesions.

Results
ER-bound PTP1B regulates adhesion lifetimes during
lamellar protrusion

Mechanisms underlying turnover or maturation of focal
complexes at the lamellipodium base are poorly understood
(Geiger et al., 2009; Vicente-Manzanares et al., 2009; Scales and
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Parsons, 2011). Based on previous antecedents showing that

PTP1B is positioned over peripheral paxillin adhesions by tubular

extensions of the ER (Hernández et al., 2006), and that peripheral

adhesions targeted by ER tubules subsequently grew in size

(Zhang et al., 2010), we hypothesized that PTP1B on the surface

of the ER could regulate adhesion lifetime during cell protrusion.

We tested this hypothesis in immortalized fibroblasts derived

from PTP1B-deficient mouse (KO cells) (Haj et al., 2002)

transfected with mRFP-paxillin to label adhesions, and either

GFP-PTP1B wild type (WT) or GFP-PTP1B (CS), a catalytically

inactive mutant with the essential cysteine 215 substituted by

serine (Guan and Dixon, 1991; Flint et al., 1997). WT and CS

expression did not significantly affect the spatial organization

and dynamics of the ER [(Arregui et al., 1998) and results not

shown]. Time-lapse analysis revealed that ER tubules containing

WT and CS targeted paxillin adhesions assembled at or near the

leading edge (Fig. 1A; supplementary material Fig. S1; Movies

1, 2). Target events occurred mainly during the growing phase of

adhesions (97%, n534 adhesions, 8 cells), as judged by the

increase of mRFP–paxillin fluorescence intensity over time. In

addition, adhesions targeted by WT lasted longer than those

targeted by CS (compare Fig. 1A and Fig. 1B). Quantification of

adhesion lifetime, measured as the time span from the first

appearance of a resolvable mRFP–paxillin cluster until complete

disassembly, revealed that in KO cells expressing CS, targeted

and non targeted adhesions have similar lifetimes, ranging from

1–12 minutes, with a median of 4 minutes (Fig. 1C, CST and

CSNT). These results were similar to those of non targeted

paxillin clusters in KO cells expressing WT (Fig. 1C, WTNT).

However, adhesions targeted with WT increased dramatically

their lifetimes, ranging from 11 to 36 minutes, with a median of

20 minutes (Fig. 1C, WTT). We also analyzed the lifetime of

peripheral mRFP–paxillin adhesions in KO cells and KO cells

stably reconstituted with PTP1BWT (WT cells) (Haj et al., 2002).

We found a wide range of adhesion lifetimes, with a median of

24 minutes for WT cells and 18 minutes for KO cells.

Interestingly, the number of adhesions with lifetime

#7 minutes was 2.5-fold higher in KO cells compared to WT

cells (Fig. 1D). However, the number of adhesions with longer

lifetimes was similar or higher in WT cells implicating that

PTP1B contributes to stabilize focal complexes assembled during

lamellar protrusion.

PTP1B regulates paxillin turnover and promotes
incorporation of a-actinin in focal complexes

To further investigate the function of PTP1B in adhesions we

determined the paxillin assembly/disassembly rate constants in

WT and KO cells transfected with mRFP-paxillin, using methods

Fig. 1. ER-bound PTP1B regulates adhesion lifetimes during lamellar

protrusions. KO cells expressing mRFP–paxillin and either (A) GFP–

PTP1BWT (WT) or (B) GFP–PTP1BCS (CS) were analyzed by time-lapse

microscopy. A protruding lamella, marked by a dashed yellow box in the

first frame, was magnified (46) to illustrate targeting events. A targeting

event is defined as an event in which the tip of a single ER tubule is found

juxtaposed to one mRFP–paxillin cluster. Numbers in each frame indicate

minutes elapsed since the beginning of the experiment. Arrows point to a

single targeting event in the first and subsequent frames in which they were

observed. (A) Adhesions targeted with WT (color arrows) persisted and

grew in size. (B) Four different targeting events of CS occurred at 10, 12,

14 and 17 minutes (white arrows). The first three targeted foci disappeared

at 11, 13, and 17 minutes, respectively (yellow arrows). (C) Quantification

of adhesion lifetimes targeted (WTT, CST) and non-targeted (WTNT,

CSNT). Each box in the plot encloses 50% of the data and the line marks the

median value. Lines extending from the top and bottom of each box mark

the minimum and maximum values within the data set. *Significant

difference when compared to the other conditions (P,0.0001, one-way

ANOVA followed by a Tukey’s HSD post-hoc test). (D) Frequency

distribution plot (numbers on the abscissa mark the center of the bin size;

5 minutes) of lifetime adhesions in WT and KO cells. Data were analyzed

by a Wilcoxon–Mann–Whitney non-parametric test. Note that short-lived

adhesions (#7 minutes) in KO cells duplicated those in WT cells. Scale

bar: 25 mm.
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previously described (Franco et al., 2004; Webb et al., 2004). In

both cell lines paxillin assembly and disassembly rate constants

correlated inversely with adhesion lifetimes (Fig. 2A). Assembly

rate constants did not differ significantly between WT and KO

cells (WT, 0.5060.04 versus KO, 0.6660.05). However,

disassembly rates were significantly higher in KO cells

compared to WT cells (WT, 0.4460.03 versus KO, 0.7060.06;

Fig. 2A). To test if this result could be due to more abundant

short-lived adhesions in KO cells, we sorted a similar number of

short-lived adhesions (#10 minutes, n528 adhesions/5 cells) for

each cell line. Although these pools displayed similar lifetimes

(WT mean: 7.1 minutes versus KO mean: 6.5 minutes), paxillin

disassembly rates were significantly higher in KO cells compared

to WT cells (WT, 0.7760.07 versus KO, 1.1760.10), while

assembly rate constants did not differ (WT, 0.8560.08 versus

KO, 1.0460.10). These results suggest that the prevalence of

short-lived paxillin adhesions in KO cells is most likely a

consequence of their higher disassembly rates. Adhesions with

longer lifetimes (.15 minutes), did not show significant

differences in paxillin disassembly rates between WT and KO

cells (WT, 0.27 versus KO, 0.24, P50.4), suggesting that a major

impact of PTP1B activity is on the newly born population.

As the leading edge advances, some adhesions grow and

elongate centripetally, often accompanied by the incorporation of

a-actinin (Laukaitis et al., 2001). Alpha actinin mediates integrin-

actin cytoskeleton linkages in a process that is negatively

regulated by tyrosine phosphorylation of a-actinin (Izaguirre

et al., 2001; von Wichert et al., 2003). Since PTP1B

dephosphorylates a-actinin (Zhang et al., 2006), we predicted a

failure in a-actinin incorporation to focal complexes in KO cells.

WT- and KO cells were co-transfected with a-actinin-GFP and

mRFP-paxillin and analyzed by time-lapse microscopy. During

protrusion, a-actinin–GFP strongly labeled the lamellipodium,

which contained small clusters of mRFP–paxillin (Fig. 2B,C). As

the lamellipodium moved forward, paxillin clusters remained

stationary and grew in size. About 98.763.7% of paxillin clusters

in WT cells incorporated a-actinin in a polar fashion and grew

centripetally compared to only 22.267% in KO cells

(Fig. 2B,D,F; supplementary material Movies 3, 4). When

lamellae retracted, paxillin foci in WT and KO cells

incorporated a-actinin in similar manner, suggesting that

PTP1B contributes to anchor new adhesions to the actin

cytoskeleton during protrusions. To directly visualize catalytic

PTP1B–a-actinin complexes in adhesions of intact WT cells we

performed bimolecular fluorescence complementation (BiFC)

analysis (Hu et al., 2002). Catalytic PTP1B–substrate complexes

can be visualized only when their steady state concentration is

significantly increased by using substrate trapping mutants of

PTP1B, such as the PTP1B D181A (DA) (Haj et al., 2002; Boute

et al., 2003; Monteleone et al., 2012). Indeed, co-expression of

YN-PTP1BWT/a-actinin-YC (YN, amino acids 1–154; YC,

amino acids 155–238 of EYFP) did not reveal a detectable

BiFC signal (supplementary material Fig. S2). In contrast, co-

expression of YN-PTP1BDA/a-actinin-YC exhibited bright BiFC

Fig. 2. PTP1B regulates paxillin turnover and incorporation of

a-actinin in cell protrusions. (A) mRFP–paxillin assembly and

disassembly rate constants are inversely correlated with adhesion lifetimes

in both WT and KO cells. Global disassembly rates in KO cells were

higher than in WT cells (P50.01), a difference that is magnified in a subset

of short-lived adhesions (#10 minutes, marked by dashed lines; WT, 28

adhesions; KO, 43 adhesions; P50.006). Data were analyzed by the

Wilcoxon–Mann–Whitney non-parametric test. N.S.: P.0.05. (B) In WT

cells, most mRFP–paxillin adhesions (in green) at the lamellipodium base

(arrowheads) incorporated a-actinin–GFP (in red). (C) In KO cells,

mRFP–paxillin quickly turned over without incorporation of a-actinin–

GFP. (D,E) Plot profiles of mRFP–paxillin- and a-actinin–GFP-integrated

fluorescence intensities over time, in representative WT and KO cells. The

first fluorescence peak is within the lamellipodium (La). Note that in the

WT cell both plot profiles overlap spatially and temporally (D), but those

in the KO cell only overlap within the lamellipodium (E).

(F) Percentages of mRFP–paxillin foci that incorporated a-actinin during

the time-lapse assay. Bars represent means 6 s.e.m. of 8–9 cells and 36–47

adhesions per condition (Student’s t-test, P,0.0001). Scale bar: 12 mm.

(G,H) WT cell co-transfected with YN-PTP1BDA/a-actinin-YC BiFC

pairs and immunolabeled for vinculin (in red). H is an enlarged view of the

boxed region in G. (I) A surface reflection interference contrast image. A

representative polarized cell depicting a protruding lamella (right lower

corner) is shown. Note that BiFC is strong and punctate in peripheral

adhesions, although the overlapping area varies (white open arrowheads).

Scale bars: 25 mm (G), magnifications in H and I are at 200% of the

original image.
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signal in peripheral clusters containing the YN-PTP1BDA

construct (supplementary material Fig. S2). This distribution is

prevented by pre-incubation with pervanadate, which inactivates

the active site of the enzyme. The estimated expression levels of

YN-PTP1BDA (and a-actinin-YC, not shown) associated to this

BiFC signal was ,1.5–2-fold of the endogenous proteins. Each

BiFC pair transfected individually showed the expected

subcellular distribution and did not display detectable

fluorescence in the BiFC channel (supplementary material Fig.

S2) (Monteleone et al., 2012). We analyzed the presence of the

BiFC signal in adhesions by immunofluorescence detection of

vinculin and by surface reflection interference contrast (SRIC)

imaging. The BiFC signal significantly overlapped with vinculin

and (low reflection) dark peripheral adhesions in protruding

regions of the cell (Fig. 2G–I).

PTP1B promotes lamellar protrusion persistence and

directional cell migration

To determine if unstable focal complexes in KO-cell protrusions

affected lamellar dynamics, we performed kymograph analysis of

the leading edge in WT and KO cells transfected with a-actinin–

GFP. Visual inspection of kymographs showed persistent

protrusions in WT cells and fast protrusion/retraction cycles in

KO cells (Fig. 3A,B; supplementary material Movies 5, 6).

Quantifications revealed an approximately fivefold higher

frequency of protrusion/retraction switching in KO cells

compared with WT cells (WT cells, 1.3660.24/hour versus KO

cells, 7.2060.70/hour; Fig. 3C). In addition, KO cells exhibited

an approximately threefold reduction in protrusion

persistence times compared to WT cells (WT cells,

mean 16.8261.46 minutes versus KO cells, mean 5.226

0.49 minutes), while retraction persistence times was

marginally affected (WT cells, 4.6360.44 minutes versus KO

cells, 3.8660.20 minutes; Fig. 3D). Protrusion speed increased

approximately threefold in KO cells (WT cells, 40.862.60 mm/

hour versus KO cells, 12568.00 mm/hour), and retraction speed

approximately twofold (WT cells, 48.7064.10 mm/hour, KO

cells, 115.2066.90 mm/hour), compared to WT cells (Fig. 3E).

These results suggest that PTP1B contributes to the steady

protrusion of the leading edge.

We also analyzed the directionality, speed and migratory

patterns of WT and KO cells under two-dimensional isotropic

conditions. Under these conditions, single cells follow an almost

straight path over short time intervals, yet exhibiting Brownian-

like motion over long time intervals, which can be

mathematically characterized as a persistent random walk (Gail

and Boone, 1970; Dunn, 1983; Othmer et al., 1988). We collected

time-lapse phase contrast videos of cells moving on fibronectin

during a 10 hour period and reconstructed their trajectories. A

representative set of cell trajectories revealed that WT cells

exhibit longer and more directional paths than KO cells

(Fig. 4A). WT cells developed a large lamellar extension at the

front edge while KO cells produced transient lamellar extensions

in multiple directions (Fig. 4B; supplementary material Movies

7, 8). Long trailing tails were frequent in KO cells and rare in WT

cells. We quantified migration directionality as the ratio between

the shortest linear distance from the starting point of a time-lapse

recording to the end point (D), and the total distance (T) traversed

by the cell (Gu et al., 1999). This D/T ratio equals to one in the

case of ballistic motion. D/T ratios were significantly lower in

KO cells compared to WT cells (WT cells, 0.6460.02 versus KO

cells, 0.4260.04), suggesting a decrease of directionality

(Fig. 4C). KO cells also had slower migration speed (WT cells,

12.860.18 mm/hour versus KO cells, 9.660.13 mm/hour;

Fig. 4C). These results were confirmed by fitting the mean

square displacements (MSD) of cell paths over time to the

random walk equation. The MSD was calculated and plotted

against time using the Cell Motility software (Martens et al.,

2006). In pure random movement MSD variations would appear

as a straight line passing through the origin while in a ballistic

motion it would fit to an exponential curve. The averaged MSD

of .29 cells plotted against time showed higher displacements

and a more curved line in WT cells compared to KO cells

(Fig. 4C). To extract speed (S) and persistence (P) parameters,

MSD data were fitted to the random walk model using a Nelder–

Mead simplex non-linear regression algorithm (Martens et al.,

2006). S and P were significantly reduced in KO cells compared

to WT cells (S, WT cells, 15.161.9 mm/hour versus KO cells,

10.460.30 mm/hour; P, WT cells, 6.060.91 hours versus KO

cells, 3.360.66 hours). Since KO cells displayed persistent

trailing tails and unstable leading edges, we predicted an

alteration of the migration pattern. Thus, we examined arrays

of color-coded advance and pause phases, arranged as they occur

within the time-lapse series. Arrays revealed a seemingly higher

prevalence of pauses in KO cells compared to WT cells (Fig. 4D;

WT cells, 11.3561.40%, n528 versus KO cells, 21.1661.73%,

n531, P,0.0001).

Fig. 3. PTP1B regulates lamellar dynamics. WT and KO cells expressing

a-actinin–GFP were analyzed by kymography. (A,B) Individual frames at t0

and kymographs (insets) of representative cells. The fluorescence intensity

along line scans (1-pixel wide) drawn normal to the border of the protruding

lamella (yellow lines) was recorded every 30 seconds for 50 minutes. Note

the smooth advance of the leading edge in the WT cell compared to the

serrated, discontinuous advance of the leading edge in the KO cell. ‘t’ and ‘d’

indicate time and space dimensions, respectively. (C) Plot showing higher

frequencies of protrusion/retraction cycles in KO cells compared to WT cells,

n510 cells, P,0.0001. (D) Persistence time of protrusion phases was

markedly reduced (approximately threefold) in KO cells compared to WT

cells (P,0.0001) whereas persistence time did not differ. WT510 cells, 53

kymographs; KO511 cells, 106 kymographs. (E) Velocities of protrusion and

retraction phases were calculated from the slopes. Cell protrusions: n568

WT, n569 KO; retractions: n522 WT, n550 KO. P,0.0001. Data were

analyzed by the Wilcoxon–Mann–Whitney non-parametric test. N.S. indicates

a P.0.05. Scale bar: 35 mm.

Role of PTP1B in adhesion dynamics and migration 1823
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Integrin-dependent regulation of RhoA and Rac1 is impaired
in PTP1B null cells

Stimulation of integrins and growth factor receptors regulate

RhoA and Rac1 GTPases (Bar-Sagi and Hall, 2000; Schwartz

and Shattil, 2000; Burridge and Wennerberg, 2004). In turn,

GTPase activity coordinates the dynamics of the actin

cytoskeleton and cell–matrix adhesions during cell migration

(Vicente-Manzanares et al., 2009; Scales and Parsons, 2011).

Serum starved WT cells plated on fibronectin for 15 minutes
showed a well-defined F-actin-rich lamellipodium and few actin

stress fibers. In contrast, KO cells did not produce a
lamellipodium; instead they exhibited spiky margins and
prominent actin stress fibers (Fig. 5A). These observations
suggest impaired Rac1 and RhoA activities in KO cells. We

quantified the active GTP-bound RhoA and Rac1 by pull-down
assays. RhoA–GTP levels in WT cells were downregulated after
plating on fibronectin, reaching ,20% of the value of

cells in suspension by 30 minutes post-plating (Fig. 5B).
Downregulation of RhoA–GTP levels did not occur in KO
cells. We also quantified the Rac1–GTP levels. Soon after

seeding on fibronectin (10 minutes), WT cells increased Rac1–
GTP levels which almost doubled those of cells in suspension
(Fig. 5B). In contrast, KO cells showed no response. We
confirmed these results in individual cells by FRET analysis.

WT and KO cells were transfected with single-chain FRET
pRaichu biosensors, which monitor RhoA and Rac1 activities at
the cell membrane (Itoh et al., 2002; Yoshizaki et al., 2003).

GTPase activity, expressed as a FRET/CFP ratio for each pixel,
was visualized using the intensity modulation display mode,
which associates color hue with ratio values and the intensity of

each hue with the source image brightness (Tsien and
Harootunian, 1990). Red and blue colors in images represent
the spatial distribution of high and low GTPase activity,

respectively. In WT cells plated on fibronectin RhoA activity
was downregulated while Rac1 activity was induced. The
opposite was observed in KO cells (Fig. 5C). RhoA activity in
KO cells and Rac1 activity in WT cells were maximal at the cell

margin and decrease gradually towards the cell center. To
quantify these observations we calculated the FRET/CFP ratios
along line scans traced normal to the cell border. Adhesion to

polylysine, as a non specific substrate, showed a similar increase
of RhoA and Rac1 activity in WT cells and KO cells. However,
adhesion to fibronectin showed higher RhoA in KO cells, and

Rac1 in WT cells (Fig. 5C). These results suggest that PTP1B
promotes integrin-dependent Rac1 activation and RhoA
repression.

PTP1B targets substrata of the Src/FAK signaling pathway
in adhesions

Our previous time-lapse studies demonstrated that GFP–

PTP1BDA form fluorescent puncta over the distal pole of
peripheral mRFP–paxillin adhesions in a time-dependent manner
(Hernández et al., 2006). BiFC and FRET studies also have

observed PTP1BDA/substrate complexes as fluorescent clusters
(Haj et al., 2002; Anderie et al., 2007; Nievergall et al., 2010;
Monteleone et al., 2012). In the present study the BiFC signal for
YN-PTP1BDA/a-actinin-YC were also observed as puncta in

more peripheral adhesions. These puncta were absent in cells pre-
incubated with pervanadate (a general inhibitor of PTPs) or
transfected with the wild-type enzyme. Thus, we assumed that

GFP–PTP1BDA fluorescent puncta associated with peripheral
adhesions reflect the accumulation of enzyme/substrate
complexes, and predicted that removal of those substrates from

adhesion sites should prevent the formation of puncta. We
screened cell lines knockout for proteins that fulfilled three
conditions: (1) that were previously identified as PTP1B

substrates; (2) that were detected in cell-matrix adhesion sites;
and (3) that were involved in integrin-dependent signaling
pathways regulating RhoA and Rac1 GTPases. These included

Fig. 4. PTP1B promotes persistent migration. WT and KO cells were

analyzed by time-lapse phase-contrast microscopy. (A) Randomly selected

individual tracks of WT and KO cells were copied and combined into single

panels to avoid empty spaces. Scale bar: 100 mm. (B) Phase-contrast image

sequences of representative WT and KO cells. WT cells form broad and

persistent lamellar extensions in the direction of migration (red arrowheads)

whereas KO cells form narrow and low persistence lamellar extensions in

several directions (yellow arrowheads), and frequently have long trailing tails

(yellow arrows). Numbers indicate time in minutes. Scale bar: 50 mm.

(C) Quantification of migration speed and directionality. Averaged speed,

calculated with Metamorph software, was significantly reduced in KO cells

(P,0.0001). Migration directionality was determined by calculating the D/T

ratio, and by fitting the MSD to the persistent random walk model (RWM)

equation. Note that D/T in WT cells is significantly higher than that in KO

cells (P50.001). The MSD over time was used to extract values of speed

(S) and persistence time (P). Data were analyzed by the Wilcoxon–Mann–

Whitney non-parametric test. Bars represent the means 6 s.e.m. of 29–32

cells. (D) Time plots of the migratory pattern of WT and KO cells. Advance

and pause phases of each time-lapse series were color-coded (black

square5advance, white square5pause; each square5time interval of

8 minutes) and arranged in a horizontal row as they occurred. Intervals with a

net advance lower to 1.3 mm were considered as pauses.

Journal of Cell Science 126 (8)1824
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cells knockout for the adaptor proteins p130Cas and paxillin, and

for the protein tyrosine kinases FAK and Src. As control, we

examined a cell line derived from a littermate wild-type mouse.

On average, ,62.062.4% of vinculin peripheral adhesions in

control cells displayed associated GFP–PTP1BDA puncta

(Fig. 6A,H). This percentage was reduced in cells null for Src

(44.963.2%), paxillin (46.362.4%) and p130Cas (37.862.7%;

Fig. 7B–D,H). However, the most dramatic effect was observed

in SYF cells, which lack the expression of Src, Fyn and Yes

members of the Src family (1.860.5%) and in FAK KO cells

(2.760.9%) (Fig. 6E,F,H). A strong effect was also observed in

wild-type cells transfected with FRNK, a FAK-related non kinase

protein which displaces FAK from adhesions (supplementary

material Fig. S3) (Richardson et al., 1997). GFP–PTP1BDA did

not develop puncta in peripheral adhesions containing FRNK

(Fig. 6G,H). These results suggest that FAK expression and

localization at peripheral adhesions are both essential for the

generation of PTP1B substrates.

Downstream of integrin and growth factor stimulation, FAK is

autophosphorylated at 2397, providing a binding site for Src family

kinases (Schaller et al., 1994). Reconstitution of FAK KO cells with

GFP–FAK induced formation of mRFP–PTP1BDA puncta at

adhesions (52.465%) while reconstitution with FAK Y397F did

not (0.360.2%; Fig. 7B,I). These results suggest that Src recruitment

to adhesions by FAK Tyr397 is essential for trapping PTP1BDA.

Reconstitution of SYF cells with Src-HA rescued the

formation of puncta at adhesions (73.663.8%; Fig. 7C,I), and a

similar result was observed for Fyn-HA and Yes-HA

(supplementary material Fig. S4). These results suggest

compensatory roles among Src family members. SYF cells

reconstituted with a kinase-deficient (KD) Src mutant (Src

K297R), which as expected, was unable to phosphorylate FAK

Tyr925 (supplementary material Fig. S5) (Brunton et al., 2005),

showed a marginal effect (14.763.4%) to induce the formation of

GFP–PTP1BDA puncta associated with adhesions (Fig. 7D,I). In

contrast, reconstitution of SYF cells with Src-Y529F, a

constitutive active mutant that preferentially localizes in cell–

matrix adhesions and increase the phosphotyrosine content of

several substrata (Kaplan et al., 1994; Cary et al., 2002), induced

the accumulation of large puncta (69.564.1%; Fig. 7E,I). These

results demonstrate that localization and activity of Src at cell–

matrix adhesions are required for recruitment of GFP–PTP1BDA

puncta. Reconstitution of SYF cells with the double mutant Src

KD/Y529F, which localizes to adhesions but lacks both the

catalytic activity and the PTP1B target site pY529 (Bjorge et al.,

2000; Monteleone et al., 2012), was unable to induce the

formation of puncta (1.560.6%; Fig. 7F,I). Thus, the residual

fraction of puncta induced by Src KD expression is likely due to

the binding of the pTyr529 by PTP1BDA, in particular at high

expression levels of Src KD (supplementary material Fig. S5).

Consistent with this notion, no residual puncta of GFP–

PTP1BDA were observed in SYF cells at high expression

levels of the double mutant KD/Y529F (supplementary material

Fig. S6).

Fig. 5. PTP1B modulates fibronectin-dependent regulation of

RhoA and Rac1 activity. (A) Serum-starved WT and KO cells were

seeded on polylysine + fibronectin-coated coverslips for 15 minutes

and labeled with TRITC–phalloidin. WT cells showed a strong F-

actin staining at lamellipodia (yellow arrowheads). KO cells showed

F-actin in stress fibers (yellow arrows) and peripheral spikes (yellow

arrowheads). Scale bar: 25 mm. (B) Results of pull-down assays to

quantify GTP-bound RhoA and Rac1 in cells in suspension or plated

on fibronectin-coated dishes. Values of active GTPases were

normalized to total GTPases. Plots show the means 6 s.e.m. of three

independent experiments and are expressed relative to the

suspension value. Representative blots are also shown.

(C) Spatiotemporal distribution of RhoA and Rac1 activities, by

FRET. Cells were seeded on polylysine and polylysine + fibronectin

(FN) for the indicated times to determine the FRET signal.

Representative cells on FN are shown. Graphs show the

quantification of the FRET/CFP ratio values along line scans drawn

from the cell margin, as shown in the WT FN RhoA image (n515–

20 cells per condition). Scale bar: 25 mm.
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We also examined the effect of reconstituting SYF cells with

Src Y418F, which cannot autophosphorylate but could still be

activated by integrin stimulation (Kaplan et al., 1995; Cary et al.,

2002; Roskoski, 2005). Src Y418F induced a maximal effect, as

did Src wild type and Src Y529F (7062.4%; Fig. 7G,I).

However, the double mutant Src Y418F/Y529F induced a

reduced effect (49.665.3%) compared to Src wild type and the

individual mutants (Fig. 7H,I). Src Y418F (not shown) and Src

Y418F/Y529F phosphorylate FAK-Tyr925 at similar levels as

control Src (compare supplementary material Fig. S6 and Fig.

S5). Thus, basal or partly activated Src may be sufficient to trap

PTP1BDA at peripheral vinculin adhesions. The magnitude of

reduction of puncta formation (,20%) by Y418F/Y529F compared
to Src Y418F is similar to that between Src KD and Src KD/Y529F
suggesting that PTP1BDA is capable of recognizing the

phosphorylated Src Tyr529 in peripheral adhesions.

Discussion
PTP1B regulates focal complex dynamics

PTP1B anchored to the ER, and with the catalytic domain facing
the cytosol, has the potential for substrate dephosphorylation

throughout the extensive branching network occupied by the ER.
Here we demonstrated that paxillin adhesions targeted with ER
tubules bearing active PTP1B extended by approximately
fivefold their lifetimes compared to those not targeted, or

targeted with ER tubules bearing inactive PTP1B. Consistently,
we also found that short-lived adhesions (#10 minutes) were
significantly more abundant in KO cells compared to WT cells.

We propose that during lamellar protrusion, ER-bound PTP1B
targets newly formed adhesions and as a consequence bias their
fate towards maturation. During retraction phases adhesions grew

in size independently of PTP1B expression, suggesting that this
bias is overrode when additional mechanisms, e.g. contractile
forces, come into play. Consistent with this notion, lack of

PTP1B strongly affected protrusion persistence times but not
retraction times. Our results provide mechanistic insights to
previous findings suggesting a positive regulation of cell matrix–
adhesion and spreading by PTP1B in many cell types (Arregui

et al., 1998; Cheng et al., 2001; Pathre et al., 2001; Arias-Salgado
et al., 2005; Liang et al., 2005; Fuentes and Arregui, 2009).

The increased paxillin disassembly kinetics observed in KO cells
may contribute to shorten the lifetime of focal complexes. This view

agrees with results showing that adhesion lifetime correlates
positively with adhesion strength and inversely with paxillin
disassembly (Gupton and Waterman-Storer, 2006). Adhesion

strength and inhibition of paxillin adhesion disassembly at the
lamellipodium base were also positively correlated with the
incorporation of a-actinin and zyxin (Laukaitis et al., 2001; von
Wichert et al., 2003; Zaidel-Bar et al., 2003; Yoshigi et al., 2005;

Choi et al., 2008; Hirata et al., 2008). We previously demonstrated
that zyxin incorporation in focal complexes was significantly
impaired in KO cells (Hernández et al., 2006). Here we show that in

WT cells most focal complexes at the lamellipodium base
incorporated a-actinin–GFP and grow centripetally, while in KO
cells these processes were impaired. Our BiFC analysis demonstrate

the presence of catalytic PTP1B/a-actinin complexes in adhesions,
strongly suggesting that PTP1B dephosphorylates a-actinin and
promotes focal complex maturation. During lamellar retractions,

adhesions incorporate a-actinin similarly regardless of PTP1B
expression, suggesting that PTP1B did not play a major role during
this phase. Whether other PTPs, e.g. SHP-1 and SHP-2 (von Wichert
et al., 2003; Lin et al., 2004) may dephosphorylate a-actinin during

retractions remains to be determined.

PTP1B modulates integrin-dependent regulation of RhoA
and Rac1

We show that fibronectin stimulated the downregulation of RhoA

activity in WT- but not in KO cells. In contrast, Rac1 activity was
upregulated in WT cells but not in KO cells. WT cells response to
fibronectin was consistent with previous studies (Ren et al., 1999;

Arthur et al., 2000; del Pozo et al., 2000; Danen et al., 2002; Lim
et al., 2008). Spatial information provided by FRET analysis
showed maximal Rac1 and RhoA activity at the cell periphery, as

Fig. 6. PTP1B targets Src/FAK, paxillin and p130Cas in cell–matrix

adhesions. (A) WT control fibroblast cell, (B) Src null cell, (C) Paxillin null

cell, (D) p130Cas null cell, (E) SYF cell, (F) FAK null cell. Cell lines were

transfected with GFP-PTP1BDA. (G) WT control co-transfected with GFP-

PTP1BDA and c-myc FRNK. Cells were fixed and processed for

immunofluorescence microscopy to detect vinculin (A–F) or c-myc

(G). Immune complexes were revealed with Alexa-Fluor-568-conjugated

secondary antibodies. Insets are 26magnifications of part of each cell. GFP–

PTP1BDA puncta associated with peripheral adhesions are indicated by white

arrowheads. (H) Quantification of the percentage of peripheral adhesions

containing GFP–PTP1BDA puncta. Puncta were significantly reduced in Src,

Pax, and Cas knockout cells, and essentially absent in SYF, FAK KO cells

and WT cells + FRNK. Statistical significance was determined using one-way

ANOVA followed by the Dunnett’s multiple comparison post-hoc test, using

the WT cell line as the control (a,bP50.0002; a,cP,0.0001). Scale bar:

25 mm.
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described in other cell types (Nakamura et al., 2005; Pertz, 2010).

The high RhoA and low Rac1 activities in KO cells could explain

the lack of a lamellipodium and the development of actin stress

fibers shown by phalloidin staining. Unbalanced contractile

forces generated in the lamella could explain the low protrusion

persistence during migration.

PTP1B stabilizes lamellar protrusions and promotes

directional migration

The increased focal complex turnover in KO cells may be

causally related to the lower persistence of the leading edge and

the loss of migration directionality. Consistent with this notion

impairment of cell–matrix adhesion in CHO.K1 cells reduced the

stability of protrusions and migration directionality (Harms et al.,

2005). In a reciprocal manner, forced integrin clustering in

fibroblasts promoted focal adhesion development and lamellar

persistence (Cavalcanti-Adam et al., 2007). Our results suggest

that PTP1B is seemingly implicated in the regulation of processes

occurring at different time scales, like adhesion turnover,

lamellar dynamics and directional migration. Mechanistically,

PTP1B may facilitate integrin/cytoskeleton coupling by

dephosphorylation of a-actinin. PTP1B may also promote

integrin-dependent signaling regulating RhoA and Rac1

GTPases and the actin cytoskeleton, such as the Src/FAK

signaling pathway. Strikingly, several morphological and motility

alterations shown by KO cells resemble those reported in

fibroblasts deficient in FAK expression (Tilghman et al., 2005).

PTP1B substrates in adhesions

Our BiFC results strongly suggest that PTP1B dephosphorylate

a-actinin at cell–matrix adhesions. This event may facilitate

cytoskeletal coupling and focal complex maturation, as

previously reported (Laukaitis et al., 2001; Rajfur et al., 2002;

von Wichert et al., 2003; Choi et al., 2008). A previous model

proposed that phosphorylated a-actinin could form a complex

with Src and compete for the binding of Src to FAK (Zhang

et al., 2006). In accordance with this model, a-actinin

dephosphorylation by PTP1B would facilitate the assembly of

Src/FAK complexes and likely the phosphorylation of

downstream substrates. We showed that the substrate trap

mutant GFP–PTP1BDA formed puncta associated to peripheral

adhesions in control cells, but not in FAK KO cells, in cells

expressing FRNK, and in SYF cells. In addition, reconstitution

with catalytically inactive mutants were unable to recover the

formation of puncta. These results clearly indicate that FAK and

Src activity are essential for generating tyrosine phosphorylated

substrates of PTP1B in adhesions. We recently have shown that

PTP1B targets the negative regulatory site of Src, Tyr529, at the

plasma membrane/substrate interface (Monteleone et al., 2012).

This result suggests PTP1B could activate Src and FAK, and

initiate phosphorylation of downstream targets, including a-

actinin, paxillin and p130Cas. Paxillin and p130Cas are

phosphorylated by FAK and Src, and their phosphorylated

species localize in focal adhesions (Bellis et al., 1995; Schaller

and Parsons, 1995; Schaller et al., 1999; Sakai et al., 1997;

Tachibana et al., 1997; Fonseca et al., 2004). We observed a

modest, but significant decrease of GFP–PTP1BDA puncta in

paxillin and p130Cas KO cells, suggesting a direct

dephosphorylation of paxillin and p130Cas by PTP1B in

adhesions. Our results agree with previous biochemical data

proposing that paxillin and p130Cas are direct PTP1B substrates

(Liu et al., 1996; Takino et al., 2003; Dubé et al., 2004). Since

phosphorylation of paxillin and p130Cas are required for

adhesion turnover (Webb et al., 2004), PTP1B may negatively

modulate this process.

Collectively, our results suggest a complex interplay of PTP1B

effects. The effect on Src activation could initiate downstream

protein phosphorylation in adhesions, mounting an early integrin-

dependent signaling response channeled to GTPases. PTP1B

could also dephosphorylate specific Src/FAK substrates,

modulating the timing of complex events, like cell–matrix

turnover, lamellar dynamics, and directional migration. A

Fig. 7. FAK/Src activity is required to trap PTP1BDA in adhesions.

(A,B) FAK KO cells were transfected with mRFP-PTP1BDA and

reconstituted with (A) GFP–FAK or (B) GFP–FAK-Y397F. Colors were

inverted for better visualization. (C–H) SYF cells co-transfected with GFP-

PTP1BDA and Src (C), Src KD (D), Src Y529F (E), Src KD/Y529F (F), Src

Y418F (G) or Src Y418F/Y529F (H). In all these cells vinculin was detected

by immunofluorescence. GFP–PTP1BDA puncta associated with peripheral

vinculin adhesions (in red) are indicated by white arrowheads in the insets (26
magnification). (I) Plot shows percentages of peripheral adhesions containing

GFP–PTP1B puncta. Statistical significance was determined using one-way

ANOVA followed by the Tukey’s HSD post-hoc test (a,bP,0.0001;
c,d; c,eP,0.0001; c,fP50.001). Scale bar: 25 mm.
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scenario representing the interpretation of our data are shown
schematically (Fig. 8).

Materials and Methods
Cell lines, materials and treatments
The following cell lines were kindly provided by colleagues: KO and WT cells (B.
Neel, University Health Network, Toronto, Ontario; Haj et al., 2002), Src knockout
and wild type fibroblasts (P. Soriano, Fred Hutchinson Research Center, Seattle,
WA; Klinghoffer et al., 1999), paxillin wild-type and knockout cells (S. M.
Thomas, Harvard Medical School, Boston; Hagel et al., 2002), wild-type and
p130Cas knockout cells (H. Honda, Hiroshima University, Japan; Honda et al.,
1998). SYF and FAK knockout cell lines were purchased from ATCC (Manassas,
VA). All cell lines were cultured in high glucose DMEM containing L-glutamine
plus 10% fetal bovine serum and antibiotics (Invitrogen, Carlsbad, CA). Polylysine
and fibronectin were from Sigma-Aldrich (St. Louis, MO). For microscopy, cells
were on coverslips (Marienfeld GmbH & Co, Lauda-Königshofen, Germany) or
custom-made coverslip-bottom dishes. When indicated, cells were preincubated
for 30 minutes with 0.1 mM sodium pervanadate before processing, as described
(Hernández et al., 2010).

Antibodies and other labeling reagents
TRITC-conjugated phalloidin, and monoclonal anti-vinculin (clone hVIN-1), anti-
HA (clone HA-7), and anti-c-myc (clone 9E10) were from Sigma-Aldrich (St
Louis, MO, USA). Polyclonal antibodies against GFP, FAK-pY397, FAK-pY925,
Src-pY529, Src-pY418, and Alexa-Fluor-488- and 568-conjugated antibodies were
from Invitrogen. HRP-conjugated antibodies were from Jackson ImmunoResearch
(West Grove, PA).

DNA constructs and transfections
GFP-PTP1B, D181A and C215S, and mRFP-paxillin were previously described
(Arregui et al., 1998; Hernández et al., 2006). The following plasmids were
provided by colleagues: pRaichu-Rac1 (10266) and pRaichu-RhoA (12376) (M.
Matsuda, Osaka University, Osaka, Japan), chicken GFP-FAK and c-myc-FRNK
(J. T. Parsons, University of Virginia, Charlottesville, VA), a-actinin-GFP (C. A.
Otey, University of North Carolina at Chapel Hill, Chapel Hill), chicken c-Src
Y416F, mouse Fyn and Yes (J. Cooper, Fred Hutchinson Cancer Research Center,

Seattle, WA), mouse Src (S. Shattil, University of California at San Diego, San
Diego). Chicken c-Src Y416 was subcloned into BamHI/HindIII sites of
pcDNA3.1/zeo. Mouse Src, and Fyn were subcloned into XhoI/EcoRI sites of
phCMV3 (Genlantis), and Yes into KpnI/XmaI sites. This produces Src, Fyn and
Yes with an HA epitope at the C-terminus. GFP-FAK Y397F and mutants, Src
Y529F and Src Y418F/Y529F were constructed using the QuikChange site-
directed mutagenesis kit (Stratagene, La Jolla, CA). Src KD (K297R) and Src KD/
Y529F were generated by recombinant PCR. Preparation of YN-PTP1B WT/DA
constructs for BiFC was previously described (Monteleone et al., 2012). Alpha
actinin-YC was made by replacing GFP in a-actinin–GFP with YC (amino acid
155–239) obtained by PCR, using AgeI/XbaI restriction sites. The DNA sequence
of all constructs were verified by sequencing. Transient transfections were
performed using Lipofectamine 2000 (Invitrogen), as described (Hernández et al.,
2006).

Pull-down assays

RhoA and Rac1 activities were performed using pull-down assay kits
(Cytoskeleton, Inc., Denver, CO). About 350 mg of protein (0.5 mg/ml) of cells
in suspension or plated at 50–60% confluence on fibronectin-coated tissue culture
dishes were used to isolate GTP-bound RhoA and Rac1 using 50 mg Rhotekin-
RBD beads, and 20 mg PAK-PBD beads, respectively. Total RhoA and Rac1
proteins (from 10% of cell lysate) and the isolated active forms were detected in
Western blots using the Super Signal West Femto Substrate kit (Thermo
Scientific). For stripping, blots were incubated (30 minutes, 55 C̊) with TBS
containing 5% 2-mercaptoethanol and 2% SDS, blocked and re-probed. Integrated
optical densities of bands in scanned films were determined using ImageJ (Wayne
Rasband, NIH, Bethesda, MD, USA). Active RhoA and Rac1 proteins were
normalized to total GTPase.

Fluorescence microscopy

Cells attached on fibronectin-coated (10 mg/ml) coverslips were fixed with 4%
paraformaldehyde (20 minutes), permeabilized with 0.5% Triton X-100
(5 minutes), and blocked with 5% BSA (60 minutes), all diluted in PBS
(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4).
Primary and secondary antibodies were diluted in PBS/BSA and incubated in a
humid chamber (60 minutes). Cells were mounted in Vectashield (Vector
Laboratories, Burlingame, CA) and imaged using a Nikon TE 2000-U inverted
microscope (Melville, NY) equipped with a 606/1.4 NA objective, and an Orca-
AG cooled CCD camera (Hamamatsu Photonics, Hamamatsu, Japan). For time-
lapse experiments, cells were kept at 37 C̊ in Phenol-Red-free DMEM with high
glucose, supplemented with 4 mM L-glutamine and 25 mM Hepes buffer, 10%
fetal bovine serum, antibiotics and 0.5 U/ml oxyfluor (Oxyrase, Inc., Mansfield,
OH). Culture medium was overlaid with mineral oil to prevent evaporation. EGFP
and mRFP were detected using Nikon B-2E/C and G-2E/C filter sets. The
excitation light was attenuated using neutral density filters and shuttered using a
SmartShutter and a Lambda 10-B controller (Sutter Instrument, Novato, CA). All
peripherals were controlled with Metamorph 6.1 software (Molecular Devices,
Downingtown, PA). Image stacks were built using ImageJ. For display purposes
images were processed for unsharp masking.

Cell migration and kymographs

WT and KO cells (10,000 cells) were seeded in 24-well tissue-culture plates coated
with fibronectin and blocked with BSA. After overnight incubation, cell
movements were monitored under phase contrast using a 106 objective every
8 minutes during 10 hours. Light was attenuated by ND4 filters and shuttered
between acquisitions. Cells that divided or made contacts with others were not
analyzed. To reconstruct cell trajectories, positions of cell nuclei were determined
using the track object function of Metamorph. Velocities and persistence of
migratory directionality (D/T) were extracted from recorded data. ‘D’ refers to the
linear distance from the starting point to the end point of a time-lapse recording
and ‘T’ refers to the total distance traversed by the cell. A list of ‘x’ and ‘y’ pixel
coordinates for each cell was fed into the Cell Motility Suite software (Martens
et al., 2006) to calculate the MSD over time and extract the values of speed (S) and
persistence time (P) by fitting the MSD to the persistent random walk model
(RWM) equation (Dunn, 1983; Othmer et al., 1988).

For kymographs, cells were transfected with a-actinin-GFP and imaged every
30 seconds during 50 minutes, using 262 binning. Excitation light was attenuated
by ND4 filters. We used ImageJ to draw three lines (1-pixel-wide, 0.22 mm) per
cell in the direction of lamellar protrusion. Leading edge protrusion and retraction
rates, frequencies of switching between phases, and time of protrusion or retraction
persistence were calculated from kymographs using the kymograph plugin for
ImageJ (J. Rietdorf, FMI Basel, and A. Seitz, EMBL Heidelberg).

BiFC and FRET

Two a-actinin constructs were made, one fused to YN (amino acid 1–154) and
other fused to YC (155–239), both EYFP fragments were located at the C-terminus
of a-actinin. The correspondent PTP1B BiFC pairs were previously described

Fig. 8. Schematic representation of PTP1B functions in adhesion and cell

migration. (A) Adhesions near the leading edge (brown circles) are targeted

by ER-bound PTP1B (green), extending their lifetimes, incorporating a-

actinin (red oval), and coupling to actin filaments (in blue). (B) Within cell

adhesion complexes, PTP1B targets Src and also modulates the

phosphorylation level of downstream substrates. (C) PTP1B is required for

integrin-dependent FAK/Src signaling that regulates Rho GTPases.
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(Monteleone et al., 2012). Only the pair a-actinin-YC/YN-PTP1B DA gave a
strong positive BiFC signal and were used in the present paper. BiFC was analyzed

with an excitation filter of 500/20 nm, an emission filter of 535/30 nm and a
86002v2bs dicroic mirror (Chroma Technology, Brattleboro, VT). In cells

detecting BiFC and immunolabeled with red fluorescents the following Nikon
filter sets were used: for BiFC, excitation 480/30 nm, emission 535/40 nm, 505

(LP) dicroic mirror; for Alexa Fluor 568 nm, excitation 540/25 nm, emission 620/
60 nm, 565 (LP) dicroic mirror. To visualize cells by SRIC, a cube (Nikon) with a

green excitation filter, a UV dicroic mirror and without barrier filter was set in
place in the epifilter rotating turret.

Spatiotemporal activities of RhoA and Rac1 in WT and KO cells were
determined by FRET analysis using pRaichu-Rac1 (10266) and pRaichu-RhoA

(12946) probes (Itoh et al., 2002; Nakamura et al., 2005). Transfected cells were
starved 4 hours before plating on coverslips coated with 150 mg polylysine or

polylysine plus 10 mg/ml fibronectin, and blocked with 1 mg/ml BSA. Incident
light was attenuated using ND8 filters. Filters used for dual-emission ratio imaging

(CFP excitation 430/25, CFP emission 470/30; YFP emission 535/30) were placed
in filter wheels and combined with the dual dichroic mirror 86002v2bs (Chroma).

CFP and YFP (FRET) images were acquired using 262 binning and exposure
times ranging 0.5–1 seconds. After shade correction and background subtraction,

FRET/CFP ratio images were generated with Metamorph and used to represent
changes in the FRET efficiency by intensity modulated display (IMD). For
quantification, pixel values for FRET and CFP along three equidistant line scans

(3-pixels wide) perpendicular to the cell border were obtained, FRET/CFP ratios
were calculated and averaged per cell.

Additional quantitative procedures

ER targeting events (defined in Fig. 1 legend) on paxillin adhesion lifetimes
were determined in KO cells co-transfected with mRFP-paxillin and either

GFP-PTP1BWT or GFP-PTP1BCS. Cells seeded on fibronectin and grown in
complete DMEM were imaged every 30 seconds using 262 binning. The
contrast of image stacks was improved by unsharp masking using ImageJ.

Adhesion lifetimes were determined measuring the time elapsed between the
first and last frame in which each adhesion appeared. About 50 adhesions of 6–

8 cells were analyzed.

To determine adhesion lifetimes and paxillin kinetics of assembly and

disassembly WT and KO cells were transfected with GFP- or mRFP-tagged
paxillin and 24 hours post-transfection were resuspended and seeded at ,30%

confluence on coverslip-bottom dishes coated with fibronectin. After 16 hours
cells were analyzed using time-lapse acquired images every 0.5, 1 and 3 minutes.

Different time intervals allowed a better sampling of short- and long-lived
adhesions. Fluorescence intensities of individual adhesions from background-

subtracted images were measured over time using Metamorph as previously
described (Webb et al., 2004). For rate constant measurements, periods of

assembly (increasing fluorescence intensity) and disassembly (decreasing
fluorescence intensity) of adhesions were plotted over time. Semi-logarithmic

plots of fluorescence intensities as a function of time were generated using the
formulas, Ln([I]/[I0]) for assembly and Ln([I0]/[I]) for disassembly, where I0 is

the initial fluorescence intensity and I is the fluorescence intensity at various time
points. The slopes of linear regression trend lines fitted to the semi-logarithmic

plots were then calculated to determine apparent rate constants of assembly and
disassembly. At least 95 individual adhesions in 20 cells were analyzed per cell
line.

To determine a-actinin–GFP incorporation in mRFP–paxillin clusters cells were
imaged every 0.5 and 1 minute. After building the image stacks, plots of

fluorescence intensity over time were obtained for paxillin clusters using ImageJ.
Incorporation of a-actinin–GFP was considered positive when the signal intensity

is at least twice higher than the background and overlaps with that of the mRFP–
paxillin. Eight or nine cells and 36–47 adhesions were analyzed per condition.

To quantify the percentage of peripheral vinculin adhesions with GFP–
PTP1BDA puncta we generated a mask image containing puncta with

fluorescence intensity at least twice the average fluorescence intensity of the ER
in a peripheral flat region of the cell, and merged it with the image showing

vinculin. More than 20 cells from four independent experiments (average 26
peripheral adhesions per cell) were analyzed.
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Monteleone, M. C., González Wusener, A. E., Burdisso, J. E., Conde, C., Cáceres,
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