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Abstract: We show that Zwei-Dreibein Gravity (ZDG), a bigravity theory recently pro-

posed by Bergshoeff, de Haan, Hohm, Merbis, and Townsend in ref. [1], admits exact solu-

tions with anisotropic scale invariance. These type of geometries are the three-dimensional

analogues of the spacetimes which were proposed as gravity duals for condensed matter

systems. In particular, we find Schrödinger invariant spaces as well as Lifshitz spaces with

arbitrary dynamical exponent z. We also find black holes that are asymptotically Lifshitz

with z = 3, showing that these (non-constant curvature) solutions of New Massive Grav-

ity (NMG) are persistent after the introduction of the infinite tower of higher-curvature

terms of ZDG, provided a renormalization of the parameters. Black holes in asymptoti-

cally warped Anti-de Sitter spaces are also found. Interestingly, in almost all the geometries

studied in this work, the metric associated with the second dreibein turns out to be equiva-

lent, up to a constant global factor, to the first one. This phenomenon has been previously

observed in other bigravity theories in asymptotically flat and asymptotically Anti-de Sit-

ter backgrounds. However, for the particular case of the z = 3 Lifshitz black hole, here we

found that the second metric corresponds to a different black hole that coincides with the

former only in the asymptotic region. In fact, we find a new family of z = 3 black holes

that corresponds to a one-parameter deformation of the NMG solution.
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1 Introduction

The idea that a theory of quantum gravity must be ‘holographic’, in the sense that the

relevant degrees of freedom must be ‘on the surface’, was surrounding the theoretical physics

community for several years [2, 3]. The first concise and most successful realization of

holographic ideas was given by Maldacena in 1997 [4], relating type IIB string theory in

five-dimensional Anti-de Sitter space (AdS) with N = 4 Super Yang-Mills theory in four-

dimensional Minkowski space. Since then, it is commonly believed that this gravity/gauge

duality [5, 6] is an intrinsic property of any sensible candidate for quantum gravity, so it

must hold not only for string theory but for any gravity theory that is expected to be

well defined beyond the classical limit. Therefore, this relation must establish a connection

between any complete gravity theory on AdSd+1 and a conformal field theory (CFT) in

d-dimensional Minkowski space.

Since 2008, there have been attempts to extend AdS/CFT in order to apply holography

to non-relativistic field theories scenarios, like superconductors [7] and other problems in

condensed matter [8]. These proposals to generalize AdS/CFT had even involved non-

AdS bulk geometries; such is the case of spacetimes having the same symmetries as the

Schrödinger group with anisotropic scale invariance, which were conjectured to be gravity

duals of strongly coupled condensed matter systems [9, 10]; other example is the so-called
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Lifshitz spacetimes, which were proposed as gravity duals for Lifshitz fixed points [11].

The question then arised as to what kind of gravity theory would admit these anisotropic

scale invariant spaces as exact solutions. Notably, a three-dimensional higher-derivative

gravity theory, dubbed as New Massive Gravity (NMG) [12, 13], was shown to contain

in its spectrum both Schrödinger spaces [14] and Lifshitz spaces [15] as exact solutions.

In addition, the theory also contains Lifshitz black holes [15], which would be dual to

finite temperature systems of these type. This invites to consider NMG in the context of

condensed matter applications of holography, at least as a toy model. On the other hand,

NMG also admits as exact solutions other interesting non-AdS spaces that could be relevant

for holography, such as Warped Anti-de Sitter (WAdS) geometries, which are streched or

squashed deformation of AdS3, and which could provide another interesting playground

to study extensions of the AdS/CFT correspondence. The isometry group of WAdS3 is

SL(2,R) × U(1) and provides enough information to build a boundary field theory [16].

This kind of spacetimes and the black holes that asymptote to them are solutions of NMG

as well [17]. All this convinces ourselves that three-dimensional massive gravity seems to

be a good arena to study different non-AdS extensions of holography.

Very recently, a new 3D gravity model with very interesting properties, called Zwei-

Dreibein Gravity (ZDG), was proposed [1]. It was shown in [18] that this bigravity theory

can be viewed as a higher-derivative gravity theory of which NMG is a particular limit.

Some indications were found in [18] that ZDG at some particular points of the parameter

space can be interpreted as a gravity dual of the Logarithmic Conformal Field Theories

(LCFT) [19], which are also relevant in the context of condensed matter. Hence, a natural

question is whether ZDG can also be used in non-relativistic extensions of the AdS/CFT

correspondence. In order to answer this we should verify whether Lifshitz, Schrödinger and

Warped AdS spacetimes are solutions of ZDG as well. This would give a hint that ZDG

could provide another sensible model to test non-relativistic holography.

In this paper we will show that, indeed, the recently proposed ZDG theory does admit

all those spaces as exact solutions. We will construct explicit solutions of ZDG representing

Schrödinger spacetimes as well as black holes that asymptote to both Lifshitz and WAdS

spacetimes. An interesting feature observed in other bigravity theories considered in the

literature is that, when a black hole solution is considered, the two ‘metrics’ of the theory

are related each other by coordinate transformations and a global rescaling. Here, we will

show that this sort of ‘duality’ also appears in ZDG for some solutions. However, for the

asymptotically Lifshitz black hole, the second ‘metric’ represents a new Lifshitz black hole

that coincides with the first one only in the asymptotic region. In fact, here we find a new

one-parameter family of Lifshitz black holes.

The paper is organized as follows: in section 2, we will review NMG theory and its

non-AdS solutions. In sections 3 and 4, we will present ZDG theory and explicitly show

how the non-AdS geometries of NMG persists in this three-dimensional bigravity theory,

and we will give the explicit relation between the two spin-two fields. Finally in section 5,

we will conclude with some final remarks and outlook.
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2 Review of New Massive Gravity

In this section, we will review the important aspects of New Massive Gravity (NMG) [12, 13]

and the relevant solutions of this theory for this work.

NMG is a higher-derivative gravity theory that at linearized level is equivalent to a

Fierz-Pauli theory for a massive spin 2 field. Its action is given by the Einstein-Hilbert

term (with a sign parameter ς = ±1), a cosmological constant term, and a particular term

quadratic in the curvature; namely

SNMG =
MP

2

∫

d3x
√−g

(

ςR− 2Λ +
1

m2

(

RµνR
µν − 3

8
R2

))

,

where the free parameters of the theory are the Planck mass MP , the bare cosmological

constant Λ, and the mass of the gravitons m2. The specific choice of the relative coefficient

−3/8 between the squared curvature terms is necessary in order to eliminate a scalar ghost

mode from the spectrum.

An interesting feature of NMG is that it contains a large variety of solutions. In

particular, due to its higher-derivative nature, it is possible to circumvent the obstruc-

tions of Birkhoff-like theorems and find different static spherically symmetric solutions.

The spectrum of NMG contains hairy black holes, wormholes, gravitational solitons, and

kinks [20]. It is also possible to find asymptotically AdS3 spaces with weaker boundary

conditions relative to the Brown-Henneaux ones [21, 22]. Remarkably, this theory also

supports asymptotically dS3 black holes [13, 20], unlike three-dimensional General Relativ-

ity. Besides, as we said before, NMG provides a playground for non-relativistic holography

since it contains solutions whose isometries realizes non-relativistic symmetries. Let us

review some of these solutions below.

2.1 Lifshitz spacetimes in NMG

Lifshitz spacetimes have an anisotropic scale invariance under

t → λzt , x → λx .

As we said before, geometries that realize this kind of symmetries were conjectured to

be gravity duals of condensed matter systems of Lifshitz type [11]. The so-called Lifshitz

spacetimes in d+ 1 dimensions are given by

ds2 = −r2z

ℓ2z
dt2 +

ℓ2

r2
dr2 +

r2

ℓ2
d~x · d~x , (2.1)

where ~x is a (d − 1)-dimensional spacelike vector. It is worth noticing that for z = 1 the

spacetime (2.1) correspond to AdSd+1. The three-dimensional version of (2.1) is an exact

solution of NMG [15]. The curvature radius ℓ and the mass parameter m2 are related with

the parameter z by

m2ℓ2 =
1

2ς
(z2 − 3z + 1) , Λℓ2 = − ς

2
(z2 + z + 1) . (2.2)

Notably, NMG also contains asymptotically Lifshitz black holes as we will see below.
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2.2 Lifshitz black hole in NMG

In order to study condensed matter theories at finite temperature it is necessary to find

black holes that coincide with the Lifshitz space in the asymptotic region. In [15] a black

hole was found that is asymptotically Lifshitz with z = 3. It was recently shown that this

is the only asymptotatically Lifshitz black hole with z 6= 1 in the theory [23].1 The metric

of this three-dimensional z = 3 Lifshitz black hole is given by the following line element

ds2 = −r6

ℓ6

(

1− Mℓ2

r2

)

dt2 +
r2

ℓ2
dx2 +

(

r2

ℓ2
−M

)

−1

dr2 .

The metric above solves the equations of motion of NMG provided

m2ℓ2 =
1

2ς
, Λℓ2 = −13ς

2
.

The above conditions are just (2.2) evaluated at z = 3. We will see that this solution

also persists in Zwei-Dreibein Gravity (ZDG) [1].

2.3 Schrödinger spacetimes in NMG

Other interesting geometries for non-AdS holography applications are Schrödinger spaces.

These spaces realize geometrically the non-relativistic conformal group, also known as

the Schrödinger group. These spacetimes are particular cases of AdS waves [14] and are

also equivalent to null WAdS spaces, which we will discuss in the next subsection. The

Schrödinger line element is given by

ds2 =
ℓ2

y2

(

− ℓ2ν

y2ν
du2 − 2dudv + dy2

)

,

and happens to be a solution of NMG if

m2ℓ2 = −2ς
(

1 + 8ν(ν + 1)
)

, Λ =
1− 4m2ℓ2ς

4m4ℓ4
.

Next, let us discuss the WAdS spaces.

2.4 Warped Anti-de Sitter spacetimes in NMG

Warped Anti-de Sitter space can be obtained as a Hopf fibration of R over AdS2 and

multiplying the fiber by a constant warp factor. In a convenient system of coordinates the

line element reads

ds2 =
1

4

(

− cosh2 x dτ2 + dx2 +
4ν2

ν2 + 3
(dy + sinhx dτ)2

)

.

For ν = 1 this line element is equivalent to AdS3 in a rotating frame. There are different

types of deformations of AdS3 producing timelike, spacelike, and null WAdS3 spaces. As

we said before, the Schrödinger space correspond to the null WAdS3. It is interesting to

1At least for spacetimes that can be written as a Kerr-Schild deformation of a Lifshitz space.
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notice that the timelike version of WAdS3 actually corresponds to the three-dimensional

part of the Gödel solution of General Relativity [24].2 The Gödel spacetime can be written

as a direct product Σ3×R, and this Σ3 piece is precisely the timelike WAdS3 geometry. In

this work we will focused on the spacelike WAdS3. Notably, there are exact solutions that

represent black holes that are locally and asymptotically equivalent to spacelike WAdS3
spaces in the same way as how the BTZ black hole is locally and asymptotically equivalent

to AdS3. The WAdS3 black holes are given by

ds2 = −N2dt2 + ρ2 (dϕ+Nϕdt)2 +
ℓ2dr2

4ρ2N2
, (2.3a)

with

ρ2 =
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r
−
)− 4ν

√

(ν2 + 3)r+r−

)

,

N2 =
(ν2 + 3)(r − r+)(r − r

−
)

4ρ2
,

Nϕ =
2νr −

√

(ν2 + 3)r+r−
2ρ2

.

(2.3b)

In the context of parity even massive gravity theories, these black holes were first

discussed by Clément in ref. [17]. They are solutions of NMG if m2 and Λ satisfy the

following relations

m2ℓ2 = −(20ν2 − 3)ς

2
, Λℓ2 =

ς(9− 48ν2 + 4ν4)

2(20ν2 − 3)
.

The WAdS3 black holes of NMG were studied in detail in ref. [25]; see also [26].

3 Zwei-Dreibein Gravity

Now, let us describe the main aspects of the Zwei-Dreiben Gravity theory (ZDG) proposed

in ref. [1].

ZDG is a bigravity theory whose dynamical fields are the two dreibein 1-forms eI
a =

eIµ
adxµ and the two spin-connection 1-forms ωI

a = ωIµ
adxµ. While the subindex I = 1, 2

identifies each of the two spin-2 fields, the superindex a = 1̂, 2̂, 3̂ refers to the coordinates

in the tangent bundle. Index µ = 0, 1, 2 labels spacetime coordinates. The Lagrangian of

the theory is given by

LZDG = −MP

{

σe1 aR1
a + e2 aR2

a +
1

6
m2ǫabc

(

α1e1
ae1

be1
b + α2m

2e2
ae2

be2
c
)

− 1

2
m2ǫabc

(

β1e1
ae1

be2
c + β2e1

ae2
be2

c
)

}

,

(3.1)

where we suppressed the wedge symbol ∧ and where all the products between forms must

be understood as exterior products.

2The author thanks Geoffrey Compère and Stéphane Detournay for clarifying comments about this

subject.
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The curvature and the torsion 2-forms are given by the following expressions

RI
a = dωI

a +
1

2
ǫabcωI bωI c , TI

a = DIeI
a ≡ deI

a + ǫabcωI beI c ,

where the usual rank-2 valued 2-forms have been replaced by its dual tensors, e.g. T a =

(1/2)ǫabc T bc.

The independent parameters in (3.1) are the two cosmological constant parameters

αI , the two interaction constants βI , and the Planck mass MP . The parameter m2 is a

convenient but redundant mass parameter, and σ = ±1 is a sign parameter.

For arbitrary values of the parameters β1 and β2 the theory contains three bulk degrees

of freedom, two corresponding to the helicity ±2 modes of a massive graviton. The remain-

ing degree of freedom is potentially a ghost mode. One way to avoid this presumably ghost

mode is by restricting the parameter space of the theory, for example, choosing β2 = 0,

and assuming that e1 is invertible [1, 27–29].3

Therefore, the equations of motion for e1
a, e2

a, and ωI
a, with β2 = 0, and with an

invertible e1, derived from the Lagrangian density (3.1) are given by:

0 = σRa
1 +

1

2
m2ǫabc

(

α1e
b
1e

c
1 − 2β1e

b
1e

c
2

)

, (3.2a)

0 = Ra
2 +

1

2
m2ǫabc

(

α2e
b
2e

c
2 − β1e

b
1e

c
1

)

, (3.2b)

0 = T a
I , (3.2c)

respectively.

Notice that the curvature and torsion 2-forms satisfy the Bianchi identities

DIRI
a = 0 , DITI

a = ǫabcRI beI c .

The kinetic terms of e1 and e2 in (3.1) are invariant under their respective diffeomor-

phisms and local Lorentz transformations. Notice that the presence of the interaction term

breaks the symmetries to their diagonal subgroup, given by the identification of the gauge

parameters of each group.

An interesting remark is that ZDG can be understood as a theory with a single dreibein

that, however, contains an infinite number of higher-derivative terms [18]. The fact that

bigravity theories can be viewed as higher-derivative theories of one metric field was first

noticed in [30]. A similar procedure was followed in [18] for the ZDG case. To see this,

first we observe that we can solve the equations of motion (3.2a) to obtain an expression

for e2
a in terms of e1

a. Then, using the property ερστR1στ
a = det(e1)e1

σ aG1
ρ
σ, we obtain

the following expression for e2
a:

e2µ
a =

α1

2β1
e1µ

a +
σ

m2β1
S1µ

a , (3.3)

3The most general way to ensure that ZDG is a ghost free theory is to assume the invertibility of the

linear combination β1e1
a + β2e2

a (for more details see [29]). The choice made in this work (e1 invertible

and β2=0) is a particular case of the former one.

– 6 –
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where S1µ
a ≡ S1µνe

ν a
1 and where S1µν = R1µν− 1

4
R1g1µν is the Schouten tensor associated

with the metric g1µν ≡ e1µ
ae1 ν

bηab. Here, we identify g1µν with the physical metric since,

as we said before, we have assumed e1 to be invertible. The ‘auxiliary field’ e2 represents

the higher-derivative content of the theory. The dreibein e2 is auxiliary in the sense that

it can be solved for algebraically from the equations of motion (3.2a), in the same way as

in the second derivative formulation of NMG [31].

It is worth pointing out that the resulting higher-derivative equations of motion for

g1 up to order 1/m2 can be integrated to an action if the parameters of the theory satisfy

a relation consistent with the NMG limit (see appendix B of [18] for more details). This

does not mean that ZDG with generic values of its coupling constant is a higher-derivative

completion of NMG. However, we remark that the resulting action at order 1/m2 is precisely

the NMG action. In general, the intrepretation of ZDG as a higher-derivative gravity theory

of one metric, only holds at the level of the equations of motion without matter fields.

3.1 A relation between g1µν and g2µν

Besides the relation (3.3) between eµ
1 a and eµ

2 a and the corresponding metrics g1µν =

e a
1 µe

b
1 νηab and g2µν = e a

2 µe
b
2 νηab, one can wonder whether for a particular class of solu-

tions, there exists a coordinate transformation that maps g2 into g1 and viceversa.4 It is

worth mentioning that here and in what follows we will refer to the g2 field as a ‘metric’, as

a consequence of the form that it takes that resembles a metric. Since we are only assuming

the invertibility of e1, g1 is the physical metric.5 Whether both spin-two fields have a clear

geometric interpretation is not yet understood.

In this subsection we will explore whether both ‘metrics’ g1 and g2 are related by

coordinate/scale transformations. This sort of ‘duality’ between the two spin-two fields

were found in the so-called f-g theory [33], where the two metrics (gµν and fµν) represent

the Schwarzschild-(A)dS solution at the same time [34]. In [35], hairy black hole solutions

were found that asymptote (A)dS in the Hassan-Rosen bigravity theory [36] and a similar

phenomenon happens there. All these are examples of four dimensional bigravity theories;

however, there also exists an example of this type in three dimensions: in [32] the three

dimensional version of the f-g theory was studied and it was found asymptotically AdS3
black hole solutions for the two metrics. Therefore, it is natural to ask whether ZDG

has this ‘duality’ as well. In the particular case in which g1 is a maximally symmetric

space, provided R1µν = 2Λg1µν , using the expression (3.3) it becomes clear that g2 will

be proportional to g1. This is also true for the Bañados-Teitelboim-Zanelli (BTZ) black

hole [37], since it is locally equivalent to AdS3. More precisely, if the metric associated to

e1 is given by

ds1
2 = −

(

r2

ℓ2
−M

)

dt2 + 2Jdtdϕ+ r2dϕ2 +

(

r2

ℓ2
−M +

J

4r2

)

−1

dr2 ,

4The author thanks Gastón Giribet for draw his attention to this point, specially to the reference [32].
5In the footnote 4 of ref. [18] the authors said that it is possible to find the inverse of e2 as a power

expansion in 1/m2. On the other hand, even when the invertibility on the dreibein e2 is not imposed

as a necessary condition, notice that the explicit solutions we found here for the two spin-two fields are

manifestly invertible.
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then, the ‘metric’ associated to e2 is given by a constant conformal factor times the BTZ

black hole metric

ds2
2 =

1

4m2ℓ4β2
1

{

−
(

r2

ℓ2
−M

)

dt2 + 2Jdtdϕ+ r2dϕ2

+

(

r2

ℓ2
−M +

J

4r2

)

−1

dr2
}

.

The same happens for the AdS waves studied in [18]. In the latter case, the metric

associated to e1 is given by

ds1
2 =

ℓ2

y2
{

−f(u, y)du2 − 2dudv + dy2
}

,

where the wave profile f(u, y) is polynomial in y

f(u, y) = f0(u) + f2(u)

(

y

ℓ

)2

+ f+

(

y

ℓ

)n+

+ f
−
(u)

(

y

ℓ

)n−

, (3.4)

and {0, 2, n+, n−
} are the roots of the characteristic polynomial obtained from the equations

of motion (3.2a)–(3.2b).6

On the other hand, the ‘metric’ of e2 is given by

ds2
2 =

(m2ℓ2α1 − σ)2

4m2ℓ4β2
1

ℓ2

y2
{

−F (u, y)du2 − 2dudv + dy2
}

,

where

F (u, y) =
(

1− 2σy(y∂2
y − ∂y)

)

f(u, y) ,

is identified with the g2 wave profile. Here we will assume that m2ℓ2α1 6= σ.

Therefore, we observe that in ZDG we have a similar phenomenon: for some solutions,

spin-two fields g1 and g2 represent the same type of geometry, what we mean is that when

one dreibein field solution corresponds to a given geometry, the other dreibein field solution

is given by the same geometry up to parameter redefinitions and diffeomorphisms. It would

be interesting to find out if the same ‘duality’ holds in the case of non-AdS geometries. As

far as we known, all the known solutions for which such a ‘duality’ between metrics holds,

either in three or four spacetime dimensions, are asymptotically flat, dS or AdS geometries.

Here we will show that, indeed, ZDG bigravity theory, possesses non-AdS solutions which

exhibit this sort of ‘duality’ between the two dynamical fields. This suggests that this

phenomenon is much more universal of what we thought and it is not necessarily related

to the simplicity of asymptotically constant curvature solutions.

4 New exact solutions of Zwei-Dreibein Gravity

In this section we will construct explicit non-AdS exact solutions of ZDG.

6The special cases where the roots n± degenerate where studied in detail in [14] for the NMG case, and

in [18] for the ZDG case.
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4.1 Lifshitz spacetimes in ZDG

Let us begin with Lifshitz type solutions. The expression (3.3) gives us a hint to propose

an ansatz to find a Lifshitz solution of ZDG. It is convenient to rescale the parameters α1,

α2, and β1 by defining α ≡ m2ℓ2α1, A ≡ m2ℓ2α2, and β ≡ m2ℓ2β1. The dreibein e1 will

be related to the Lifshitz metric in the usual way g1µν = e1µ
aηabe1ν

b; and using (3.3) the

ansatz for e2
a is

e2
1̂ =

α− σ(z2 + z − 1)

2β

(r

ℓ

)z
dt ,

e2
2̂ =

α+ σ(z2 − z − 1)

2β

(r

ℓ

)

dx ,

e2
3̂ =

α− σ(z2 − z + 1)

2β

(

ℓ

r

)

dr .

(4.1)

Three-dimensional Lifshitz spacetime is a solution of the ZDG equations of mo-

tion (3.2a)–(3.2b) provided A and β satisfy the following relations

A = −
(

α(α− 2σz)− (z2 + z − 1)(z2 − z − 1)
)2(

α− σ(z2 + z + 1)
)

2σ
(

α− σ(z2 − z + 1)
)4

,

β = −α(α− 2σz)− (z2 + z − 1)(z2 − z − 1)

2σ
(

α− σ(z2 − z + 1)
) ,

(4.2)

or, equivalently,

A
β

=

(

α(α− 2zσ)− (z2 + z − 1)(z2 − z − 1)
) (

α− σ(z2 + z + 1)
)

(

α− σ(z2 − z + 1)
)3

, (4.3)

assuming in particular ασ 6= z2 − z + 1.

As we said in the previous section, it would be interesting to investigate whether there

exists non-AdS solutions to bigravity theories like ZDG that exhibit the mentioned ‘duality’

between the two spin-two fields. To give a first answer to this question we can observe that

the ‘metric’ associated with (4.1) can be put in the following form

ds2
2 = Ω2

(

−r2z

ℓ2z
dt̃ 2 +

r2

ℓ2
dx̃2 +

ℓ2

r2
dr2

)

,

where we have (re-)defined

Ω2 =

(

α− σ(z2 − z + 1)
)2

4β2
, t̃ =

α− σ(z2 + z − 1)

α− σ(z2 − z + 1)
,

x̃ =
α− σ(z2 − z − 1)

α− σ(z2 − z + 1)
.

Thus, g2 also represents a Lifshitz spacetime with the same dynamical exponent z, that is

a global rescaling of g1, assuming additionally α 6= σ(z2 ± z − 1).

– 9 –
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4.2 Lifshitz black holes in ZDG

Remarkably, for the special case z = 3, ZDG also admits a static circularly symmetric

black hole solution that asymptotes Lifshitz space. This shows that the Lifshitz black hole

of NMG

ds2 = −r6

ℓ6

(

1− Mℓ2

r2

)

dt2 +
r2

ℓ2
dx2 +

(

r2

ℓ2
−M

)

−1

dr2 , (4.4)

persists as an exact solution after the infinite set of higher-curvature terms of ZDG were

introduced.7 This is notable due to the fact that Lifshitz black holes do no exhibit constant

curvature invariants.

To prove that the black hole metric (4.4) is solution of ZDG, it is convenient to consider

the following ansatz for e2

e2
1̂ =

(α− 11σ)r2 + 4Mℓ2σ

2βr2

(r

ℓ

)3

√

1− Mℓ2

r2
dt ,

e2
2̂ =

α+ 5σ

2β

r

ℓ
dx ,

e2
3̂ =

α− 7σ

2β

(

r2

ℓ2
−M

)

−1/2

dr .

(4.5)

The three-dimensional Lifshitz black hole of [15] solves the ZDG equations of motion

if A and β satisfy the conditions (4.3) evaluated at z = 3; namely

A = −
(

α(α− 6σ)− 55
)2
(α− 13σ)

2σ(α− 7σ)4
, β = −α(α− 6σ)− 55

2σ(α− 7σ)
, (4.6)

or, equivalently,
A
β

=

(

α(α− 6σ)− 55
)

(α− 13σ)
(

α− 7σ
)3

. (4.7)

Here we are assuming α 6= 11σ, α 6= 7σ, and α 6= −5σ for (4.5)–(4.6) to be well defined.

We can see that the ‘metric’ associated with the second dreibein (4.5) can be re-

written as a global factor times an asymptotically z = 3 Lifshitz black hole. Actually, the

line element of g2 reads

ds2
2 = Ω2

{

−
(

r2

ℓ2
−M

)(

r2

ℓ2
+ µ

)2

dt̃ 2 +
r2

ℓ2
dx̃2 +

dr2
(

r2

ℓ2
−M

)

}

, (4.8)

where we (re-)defined

Ω2 =
(α− 7σ)2

4β2
, µ =

4Mσ

α− 11σ
, t̃ =

α− 11σ

α− 7σ
, x̃ =

α− 5σ

α− 7σ
. (4.9)

The parameter µ is positive provided sign(Mσ)(α− 11σ) > 0.

The ‘spacetime’ described by the line element (4.8) has non-constant curvature invari-

ants with the same divergences structure than (4.4). However, it is important to remark

7As we said in section 3, ZDG is not a higher-curvature completion of NMG.
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that black hole (4.8) is different from the one found in [15], representing a one-parameter

deformation of the latter. The presence of the parameter µ makes the black hole (4.8) not

locally equivalent to (4.4), and it may also contribute to global properties of the geometry

like the value of its mass. Both black holes share, however, the same asymptotic behaviour,

approaching z = 3 Lifshitz space at large r.

Notice that, provided both M and µ are positive, black hole (4.8) has positive tem-

perature, given by

T =

√
M(M + µ)

2πℓ
.

It remains an open problem how to define conserved charges in this setup, in order to

study, for example, the thermodynamics of the new black hole (4.8).

4.3 Schrödinger spacetimes in ZDG

Now, let us consider other anisotropic spaces, the Schrödinger spacetimes. These are a

special case of the AdS-waves studied in [18], for which the wave profile functions (3.4)

takes the values f+(u) = 0, f
−
(u) = f0, and n

−
= −2ν. The dreibein e1 in this case is

given by

e1
1̂ =

ℓ

y

(

ℓν

yν
du+

yν

ℓν
dv

)

, e1
2̂ =

ℓ

y

yν

ℓν
dv , e1

3̂ =
ℓ

y
dy ,

while e2 is given by

e2
1̂ =

ℓ

y

[(

γ − 2σν(1 + ν)

β

)

ℓν

yν
du+ γ

yν

ℓν
dv

]

,

e2
2̂ =

ℓ

y

[

−2σ(1 + ν)

β

ℓν

yν
du+ γ

yν

ℓν
dv

]

,

e2
3̂ =

ℓγ

y
dy .

For this geometry to be a solution of ZDG, the parameters of the theory must satisfy the

following relations

α = −σ
(

2β + 1− 8ν − 8ν2
)

, A = − β 2(β − 1)
(

β − 4ν(1 + ν)
)2

, γ = −σ
(

β − 4ν(1 + ν)
)

β
.

Since the Schrödinger spaces are particular cases of the AdS waves, the spin-two field

g2 is a global rescaling of g1 as we discussed in section 3.1. To avoid repetition we address

the reader’s attention to ref. [18] for details.

4.4 Warped Anti-de Sitter spacetimes in ZDG

We already mentioned that a special case of Schrödinger spaces is the so-called null WAdS

geometry. This is therefore a solution of ZDG as well. Besides, the theory admits also

spacelike and timelike WAdS spaces. Interestingly, the spacelike streched WAdS as well

as the black hole that is locally equivalent (and asymptote) to it, namely (2.3) solves the

– 11 –
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ZDG equations of motion (3.2a)–(3.2b). So, the first dreibein has the form

e1
1̂ = dt+

(

νr − 1

2

√

(ν2 + 3)r+r−

)

dϕ ,

e1
2̂ =

1

2

√

(ν2 + 3)(r − r+)(r − r
−
)dϕ ,

e1
3̂ =

ℓ
√

(ν2 + 3)(r − r+)(r − r
−
)
dr ,

(4.10)

while the second dreibein has the form

e2
1̂ =

α− σ(4ν2 − 3)

4β

[

2dt+
(

2νr −
√

(ν2 + 3)r+r−

)

dϕ
]

,

e2
2̂ =

α+ σ(2ν2 − 3)

4β

√

(ν2 + 3)(r − r+)(r − r
−
)dϕ ,

e2
3̂ =

ℓ

2β

α+ σ(2ν2 − 3)
√

(ν2 + 3)(r − r+)(r − r
−
)
dr .

(4.11)

For these black hole geometries to be solutions of ZDG, the parameters α,A, and β

must satisfy

A
β

=

(

α− σ(4ν2 − 3)
)

(α+ σ(2ν2 − 3))6
(

20ν4 − 12σ(α+ σ)ν2 + (α− 3σ)2
)

×
(

8σν6 + 12(α− 3σ)ν4 − 12σ(α2 − 3)ν2 + (α− 3σ)3
)

.

(4.12)

The ‘metric’ associated to the second dreibein of the spacelike WAdS black hole (4.11)

can be put in the following form

ds2
2 = Ω2

{

dt̃ 2 + 2

(

νr − 1

2

√

(ν2 + 3)r+r−

)

dt̃dϕ̃+
ℓ2dr2

(ν2 + 3)(r − r+)(r − r
−
)

+
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r
−
)− 4ν

√

(ν2 + 3)r+r−

)

dϕ̃2

}

(4.13)

where we (re-)defined

Ω2 =
9(ν2 − 1)2

4β2
, α = ν2σ , t̃ = −t , ϕ̃ = −ϕ , (4.14)

and where the coupling constants take the values

A = −(ν2 − 3)

2
, β =

3(ν2 − 1)

2
.

It is worth mentioning that the ‘spacetime’ described by (4.13) does not differ globally

from (2.3) since the parameter rescaling given by (4.14) does not introduce any angu-

lar deficit.
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5 Conclusions

In this paper we have constructed explicit solutions of the recently proposed Zwei-Dreibein

Gravity (ZDG) theory, which is a consistent bigravity theory in three dimensions. Among

the exact solutions of this theory we have found geometries with anisotropic scale invari-

ance with and without Galilean invariance. These are three-dimensional analogues of the

Schrödinger and Lifshitz spaces, respectively, which were conjectured to be dual to strongly

coupled condensed matter systems. We have also found static circularly symmetric black

holes that asymptote Lifshitz space, which is remarkable as they represent non-constant

curvature solutions of New Massive Gravity that persist after the introduction of the infinite

set of higher-curvature terms of ZDG. Warped Anti-de Sitter black holes were also derived.

For the Lifshitz, Schrödinger and Warped Anti-de Sitter spacetimes, the two spin-two fields

of the theory are related each other by a global rescaling and a coordinate transformation.

For the Lifshitz black hole, in contrast, the second ‘metric’ represents a new Lifshitz black

hole that asymptote z = 3 Lifshitz geometry, representing a new family of one-parameter

Lifshitz black holes. Whether the two dynamical fields of the theory have a clear geometric

interpretation remains as an open problem. In addition, it would be interesting to find

out whether ZDG contains in its spectrum new anisotropic scale invariance solutions, like

Lifshitz black holes with z 6= 3. An open problem is how to define conserved charges for

this theory; finding a method to do so would be important in order to study, for example,

the thermodynamics of the bigravity black holes. The results of this paper give additional

motivations to study three-dimensional massive (bi)gravity theories as toy models to study

AdS/CFT holography and its ramifications.
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