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Abstract 

Ti-containing mesoporous materials have been prepared by hydrothermal 

synthesis at 373 K and compared to pure siliceous MCM-41 synthesized in the same 

conditions. A detailed and correlative study about the effect of different synthesis 

parameters on the physicochemical properties of the material has been carried out. All 

the samples showed typical XRD patterns of a kind MCM-41 structure. It seems that the 

synthesis time and the surfactant chain length are critical variables to obtain good 

structures. Mesoporous structure allowed the incorporation of different degrees of Ti 

loading, although a lower degree of ordering was observed with the increase of metal 

content above 1%. Moreover, a high incorporation of Ti into the structure seems 

responsible for the development of a secondary mesoporosity confirmed by TEM and 

associated with a pronounced hysteresis loop in the N2 isotherm. DRUVA-Vis and XPS 

studies revealed that the Ti species are mainly found isolated and tetrahedral 

coordinated into the framework. The superego-Ti(IV) species generated by the 

interaction of Ti-MCM-41 with aqueous H2O2 have been studied by EPR spectroscopy 

and correlated to DRUVA-Vis and XPS measurements.  

Keywords: Ti-MCM-41; mesoporous materials; M41S; titanium; physicochemical 

properties 
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1. Introduction 

 

The ever-growing importance of the inorganic materials with controlled pore 

size distribution is mainly due not barely to the deep theoretical interest on such 

compounds, but also to the wide number of applications in which they are used (not 

only in catalysis) [1]. The major success in this subject has been the synthesis of a series 

of well defined mesoporous molecular sieves called M41S [2-4] which possess pore 

diameters ranging from 2 to 10 nm and large and accessible internal areas (higher than 

1000 m2/g). Instead of using single molecules as templates, like in the case of 

microporous zeolite synthesis, Chemists from Mobil utilized ordered long-range 

supramolecular aggregates of surfactant micelle molecules. By varying the chain length 

of the surfactant templates, it is possible to synthesize such mesoporous molecular 

sieves in a wide range of pore sizes [5] which fill the gap in catalytic chemistry between 

the crystalline microporous zeolites and amorphous disordered mesoporous supports, 

like silica gel. MCM-41, the member of the M41S family which possesses a hexagonal 

arrangement of uniformly sized mono-dimensional pores, has been the most widely 

studied. These materials opened an interesting field of applied research thanks to the 

several potential applications in the pharmaceutical and fine chemical industries, 

petroleum refining, adsorption and separation processes and heterocatalysis, mostly due 

to their large surface area and controlled pore dimensions with uniform pore size 

distribution [6-13]. A very interesting characteristic of these materials is that their large 

and accessible internal surface may contain several types of active sites: Lewis and 

Bronsted acids, transition metal ions, nanometric metal clusters. Many elements of the 

periodic table can be incorporated into the network or easily exchanged in extra-

framework positions. The introduction of transition metals such as titanium, chromium 
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 and vanadium is very important from the point of view of the preparation of 

mesoporous catalysts with redox properties. In particular, molecular sieves containing a 

transition metal cation, Ti+4, in framework positions have a very good activity in shape 

selective oxidation - reduction reactions especially of bulky molecules, showing a great 

potential in the fine chemicals industry [14-17]. Although there are many reports 

concerning the synthesis and characterization of Ti-MCM-41 materials, the influence of 

different synthesis variables on the structural properties and the chemical environment 

around the Ti atoms continues under discussion. Thus, because the rates of 

polymerization of the silicium and titanium species are different, the aging time of the 

synthesis result an important parameter that can change the physico-chemical properties 

of the final solid. Moreover, different Ti loadings in the catalyst may induce changes 

not only in the textural characteristics but also in the surface chemical properties of the 

material. In this work we study the influence of several synthesis parameters on the 

structural, textural and chemical properties of Ti-containing MCM-41 catalysts. In 

particular, the role of the Ti incorporation on the presence of an unusual nitrogen 

isotherm and intra-crystalline porosity was also discussed. On the other hand, it is 

known that the Ti species in MCM-41 framework positions are the active sites for 

carrying out selective catalytic oxidations of hydrocarbons using peroxides as oxidants. 

Moreover, TiO2 crystals with an anatase structure in the titanosilicates were proved to 

lower the catalytic performance by enhancing the decomposition of H2O2 into water and 

oxygen. Therefore, it becomes very crucial to control the synthesis parameters in order 

to obtain anatase-free titanosilicates with high structure quality, maximizing the 

presence of isolated framework Ti species. The catalytic performance of these materials 

in the oxidation of cyclohexene with H2O2 has been reported by us in reference 18. 

Here, the nature of the framework Ti sites and of the reactive oxo-species (oxo-

titanium) generated over these titanosilicates during oxidation with H2O2 has been 
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 investigated by electron paramagnetic resonance spectroscopy (EPR) and correlated to 

DRUVA-Vis and XPS results.  

 

2. Experimental 

Catalyst Preparation 

The titanium-containing mesoporous materials were prepared by hydrothermal 

synthesis using dodecyltrimethyl ammonium bromide (DTMABr) or cetyltrimethyl 

ammonium bromide (CTMABr) as a template. Tetraethoxysilane (TEOS) and titanium 

isopropoxide (TIP) were used as the Si and Ti sources, respectively. The catalysts were 

synthesized from gel of molar composition: Si/Ti= 20-180, OH/Si= 0.30, surfactant/Si= 

0.4, water/Si= 60. In a typical synthesis, TEOS (Fluka� 98 %) and TIP (Fluka�98 %) 

were vigorously mixed for 30 min. Then, 25 wt.% solution of DTMABr or CTMABr 

(Fluka�98 %) in ethanol and 70 % of the tetraethylammonium hydroxide 20 wt.% 

aqueous solution (TEAOH) (Fluka) were added drop wise under stirring  which was 

continued during 3 h. Finally, the remaining TEAOH and the water were added drop 

wise to the milky solution which was then heated at 353 K for 30 min to remove both 

the ethanol used in the solution and the additional produced in the hydrolysis of TEOS. 

The pH of the resultant gel was 11.5. This gel was transferred into Teflon-lined 

stainless-steel autoclave and kept in an oven at 373 K for 0-7 days under autogeneous 

pressure. The solid was then filtered off, washed with distilled water and dried at 333 K 

overnight. To remove the template, the samples were heated (heating rate of 2 °C/min) 

under N2 flow up to 773 K maintaining this temperature for 6 h and subsequently 

calcined at 773 K under air flow for 6 h. For comparison purposes, a pure siliceous 

MCM-41 sample was prepared by the same synthesis method. 

 

Physicochemical characterization 
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 The titanium content in the final solid products was determined by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) in a VGelemental Plasma 

Quad 3 mass spectrometer.  Calcined samples were previously dissolved and digested in 

a mixture of H2SO4-HF (3:1). The resulting solution was diluted and was ready for the 

ICP-AES measurement. X-ray powder diffraction patterns were collected in air on a 

Rigaku diffractometer at room temperature using CuK� radiation of wavelength 

0.15418 nm. Diffraction data were recorded between 1-40° at an interval of 0.01° and a 

scanning speed of 2° per minute. Diffuse reflectance UVA-vis spectra were recorded 

using an Optronicss OL 750-427 spectrometer in the wavelength range 200-500 nm. 

The specific surface area, the pore size distribution and the total pore volume were 

determined by N2 adsorption-desorption isotherms obtained at 77 K using 

Micromeritics ASAP 2010 equipment. The surface area was calculated by the BET 

method in the range p/p0 0.01-0.25. The total pore volume (Vp) was calculated by 

Gurvitsch rule. Density Functional Theory method (DFT) was applied to evaluate the 

pore size distribution since this method, based on molecular statistical approach, is 

applied over the complete range of the isotherm and is not restricted to a confined range 

of relative pressures or pore sizes [19]. For the transmission electron microscopy (TEM) 

experiments, the samples were crushed, dispersed in acetone and dropped on a holey 

carbon grid. Micrographs were recorded using a JEOL JEM 2000FX microscope 

operating at 200 kV equipped with an Oxford X-ray detector. X-ray photoelectron 

spectra (XPS) were acquired with a VG Escalab 200R spectrometer equipped with a 

hemispherical electron analyzer and a Mg K� (h� = 1253.6 eV) X-ray source. The 

sample was first placed in a small stainless-steel holder mounted on a sample-rod in the 

pretreatment chamber of the spectrometer, and then degassed at room temperature and 

10-5 mbar for 5 h prior to transfer to the analysis chamber. Residual pressure was 

maintained below 3 x 10-8 mbar. The binding energies (BE) were referenced to the C 1s 
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 peak (284.9 eV) to account for the charging effects. EPR spectra were measured at 107, 

220 and 295 K using a Bruker ESP 300�spectrometer operating at X band frequency and 

9.5 GHz field modulation. Before taking EPR measurements, the samples were 

activated in air at 373 K. In the experiments with H2O2, a defined amount of the solvent 

(acetonitrile, 0.5 mL) was added to a specific amount of Ti-MCM-41 sample (55mg), 

such that the catalyst was completely saturated in the solvent. Then 0.15 mL of aqueous 

H2O2 (30 wt. %) was added. After the addition of H2O2, the color of the solid changed 

from white to yellow rapidly. 

 

 

3. Results and Discussion 

 

Figure 1 presents the XRD patterns of calcined samples prepared using 

DTMABr and CTMABr as templates with a Si/Ti molar ratio of 60 in the synthesis gel 

and 3 days of hydrothermal treatment. Both samples exhibit an intense low-angle 

reflection at approximately 2.5-3.0°, characteristic of mesoporous materials. Even 

though both samples showed specific surface areas about 1500 m2/g, the mesostructure 

obtained with DTMABr exhibit, besides the main peak, two weak peaks ascribed to 

(110) and (200) reflections, which is characteristic of a MCM-41 structure. On the other 

hand, the sample obtained with CTMABr under similar synthesis conditions exhibited a 

XRD pattern not enough defined which indicates a lower structural regularity. This 

feature suggests that the cooperative character of the electrostatics assembly mechanism 

of anionic inorganic species with a cationic surfactant (S+I- ) could be affect by the alkyl 

chain length of the surfactant. For both samples, the structure was assumed to be MCM-

41 type and the lattice parameter (a0) was also calculated for comparative purposes. 



 

 

 

ACCEPTED MANUSCRIPT 

 Thus, as it was expected, this lattice parameter (a0) increased from 36.28 Å to 44.40 Å 

by increasing the surfactant chain length. 

Considering that the use of DTMABr allows obtaining a better pore ordering, we 

have chosen this surfactant as template in order to study the influence of other synthesis 

parameters on the mesostructures formed. 

Figure 2 shows the ordering degree of the pore structure (structural regularity) of 

a calcined mesoporous sample synthesized with DTMABr as surfactant and molar ratio 

Si/Ti= 60, versus the reaction time. The ordering degree of the structure was evaluated 

against internal standard sample (hydrothermal treatment for 1 day) which was 

arbitrarily considered as reference (100% regularity) as it showed the better defined 

XRD pattern with the highest intensity for the (100) diffraction peak. As it can be 

observed, the mesostructure was formed even before the hydrothermal treatment. 

However, the structural regularity was increased when the sample was hydrotermally 

treated, being enough 1-3 days of synthesis to reach a good structure and a high surface 

area around 1600 m2/g. On the other hand, it is remarkable that all the samples remained 

stable after calcination at 773 K.  

Table 1 summarizes the chemical composition and physical properties of 

calcined Ti-MCM-41 type materials prepared with different Si/Ti molar ratios 

(DTMABr as template and 1 day of hydrothermal synthesis), together with those of the 

corresponding pure siliceous MCM-41 sample. The XRD patterns of these samples are 

shown in Figure 3. All the samples exhibit the main reflection peak at low angles (2� = 

2.5-2.8°). The pure siliceous material and the sample with the lowest Ti content exhibit, 

besides the sharp (100) reflection peak, the other peaks ascribed to (110) and (200) 

reflections, characteristic of a highly ordered MCM-41 structure. As the content of Ti 

increases, there is a decrease in the intensity of the first peak besides an evident 

broadening for all peaks, which can be attributed to a reduction in the long-range order 
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 of the structure. On the other hand, all the samples show large surface areas above 1400 

m2/g and total pore volumes about 0.65-0.85 cm3/g, which are typical of mesoporous 

materials. However, when the Ti content in the material increases the surface area 

decreases which is clearly correlated to the decrease in the structural order observed. 

Due to the differences in the ionic radio of Ti+4 (0.68 Å) and Si+4 (0.41 Å), the 

substitution of the larger Ti+4 ion in place of Si+4 invariably should distort the geometry 

around Ti from an ideal Td. Therefore, the length of Ti-O-Si bond, different from that of 

Si-O-Si, should certainly lead to some structure deformation.  Moreover, an increasing 

Ti content may obstruct the structure-directing action of the template by changing its 

ionic strength, hindering the formation of the tubular mesoporous structure. This could 

result in the formation of partially broken pores and consequently low surface areas and 

structural regularity. In addition, as the content of Ti is increased, the main XRD peak 

slightly shifts towards a lower diffraction angle and a slight increase in the parameter 

“a0” and the pores size is detected (Table 1). Taking into account that the bond length of 

Ti-O-Si is longer than the Si-O-Si one, this feature may be consistent with the probable 

incorporation of Ti into the mesoporous framework [20]. On the other hand, no 

diffraction peaks in the region of higher angles (10-50°) could be observed suggesting 

the absence of a bulk anatase phase in the samples [21].  

Figure 4 shows N2 adsorption/desorption isotherms of these calcined samples 

prepared with different Si/Ti molar ratios. All the samples exhibit type IV isotherms 

typical of mesoporous structures with a sharp inflection at relative pressure (P/P0) of 

0.1-0.25 characteristic of capillary condensation inside the conventional mesopores 

present in MCM-41 structure (primary or structural mesopores). Such inflection 

provides also clear evidence for narrowly defined diameter range for mesoporous 

channels of these materials, as it can be seen in Figure 5. On the other hand, N2 

isotherm for the pure siliceous material was rather flat at relative pressures above the 
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 capillary condensation pressure characteristic of primary mesopores. No hysteresis loop 

is present, indicating that no other mesopores than those corresponding to the 

mesoporous channels, characteristic of MCM-41 materials, were detected [22-24]. For 

sample Ti-MCM-41(180), a very small hysteresis loop, which is closed at p/p0 ~ 0.45, is 

additionally observed in the isotherm. Meanwhile, the isotherms of the samples Ti-

MCM-41(60) and Ti-MCM-41(20), synthesized with the highest Ti contents, show the 

presence of a pronounced hysteresis loop with a sharp decrease of the desorption branch 

at p/p0 ~ 0.45-0.5. According to the references [22-24], this feature in these materials 

would be resulting from a capillary condensation in secondary mesopores. Indeed, it is 

noticeable how the increasing Ti content enhances the pore volume associated with the 

hysteresis loop (0.4 <p/p0<0.6 in Table 1). Therefore, the titanium ion seems to be 

responsible for the apparition of the hysteresis having a specific role in the development 

of this secondary porosity.  

According to some authors [25], the nonstructural porosity is consisting of large 

cavities eventually interconnected and accessible through necks which have an average 

diameter smaller than those of the main voids. Transmission electron microscopy 

studies of the calcined sample Ti-MCM-41(20) have been carried out in order to verify 

the presence of such cavities. TEM images of the sample are shown in Figure 6. It can 

be observed in the micrograph that regions of low contrast randomly interrupt the pores 

arrangement characteristic of the mesoporous material. Such weak regions can be 

attributed to the presence of cavities that permeate the entire bulk, giving rise to a 

secondary porosity [24]. 

Meanwhile the genesis of the secondary mesopores is not fully understood, I. 

Diaz et al. [24] have reported that a change in the micellar size might favor the change 

from cylindral micelles to more complex aggregates. These aggregates would be 

responsible for the building-up of such secondary porosity. As we mentioned above, a 
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 great amount of Ti in the synthesis medium may interfere in the formation of the 

micelles by changing its ionic strength, giving rise to these complex aggregates.   

DRUVA-Vis spectroscopy of all the calcined samples prepared with different 

Si/Ti molar ratios (DTMABr as template and 1 day of hydrothermal synthesis) (Figure 

7) allowed us to confirm that, no segregated anatase phase is present [18,20,26-29]. 

Moreover, an intense DRUVA-Vis band at 210 nm in all the samples indicate that most 

of Ti species are isolated and in tetrahedral coordination inside the framework 

[18,20,26-29]. For the sample with the highest Ti content (Ti-MCM-41(20)), a shoulder 

at 250-290 nm was also observed, which can indicate the presence of partially 

polymerized Ti-O-Ti species in the framework probably originated by the higher rate of 

polymerization of TIP than the one of TEOS [18,20,27]. Such Ti-O-Ti clustering, as 

result of a probably incipient polymerization of Ti species, could be contributing to the 

lower structural ordering and surface area observed for this sample. Furthermore, the 

presence of higher coordinated Ti species probably due to the insertion of water 

molecules upon hydration should be also considered [18]. 

XPS analysis has been done in order to obtain additional information about the 

chemical nature of the active species present on the catalyst. Figure 8 shows the Ti 2p 

spectra for the Ti-MCM-41(20) sample. As it is evident from the curve-fitted spectra, 

the Ti 2p regions show two doublets with an energy separation of 1.5 - 2 eV that, 

according to references [30-32], may correspond to titanium in tetrahedral (higher BE, 

square labels) and octahedral (lower BE,  rhombus labels) coordination. As it was 

mentioned above, the tetrahedral coordination is referred to titanium accommodated 

into the silica framework. According to the literature [32], the octahedral coordination 

may derive from conversion of tetracoordinated titanium located at the surface of the 

material to octahedrally coordinated titanium by reaction with H2O (g) in the 

atmosphere as well as to segregation of TiO2 species at the surface of the materials. 
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 Taking into account that, for our sample, the presence of extra-framework TiO2 has just 

been discarded by DRUVA-Vis, this higher Ti atoms coordination could be attributed 

both to water molecules adsorbed on the catalyst and to the formation of some Ti-O-Ti 

clustering in the framework (evidenced by DRUVA-Vis). As it can also be observed, 

the tetrahedral component (higher BE) is rather higher than octahedral component, 

corroborating that most of Ti species would be in isolated and tetrahedral positions in 

the framework.  

Although the characterization of titanium in titanosilicates by EPR is limited due 

to the diamagnetic nature of the most common oxidation state of Ti (Ti+4) , this 

technique is a powerful tool to elucidate the local structure of catalytically active 

species such as the oxo-titanium radical ions. The Ti sites in different structural 

environments can generate reactive oxygen species having different structures and 

reactivity. Thus, three types of oxo-titanium species (hydroperoxo-, peroxo- and 

superoxo-titanium) have been stated in the literature [33-36] as being generated by 

contacting titanosilicates with H2O2. Taking into account that the isolated tetrahedral Ti 

sites are the centers that can activate the H2O2 and yield these different oxo-Ti(IV) 

species, it is possible to conclude that the presence of any of these species can be 

attributed to framework Ti(IV) ions. Then, in order to corroborate the oxidation state 

and the coordination environment of the Ti and to infer about the nature of the reactive 

oxo-titanium species formed during the oxidation reactions with H2O2 over our Ti 

containing catalysts, EPR spectra were recorded before and after their interaction with 

H2O2. No EPR spectrum was observed for all the samples, revealing that all the titanium 

ions are present in the +4 oxidation state in the silicalite structure. On contact with 30% 

aqueous H2O2, the solid catalysts became yellow and exhibited three EPR signals, 

characteristic of a rhombic g tensor. Representative EPR spectra of a sample (Ti-MCM-

41(20)) after its contact with aqueous H2O2, recorded at 107, 220 and 295 K, are shown 
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 in Figure 9. These spectra are typical of superoxo-Ti(IV) anion radical species Ti(O2
•-) 

[37]. Previous spectral simulations [34,36] have revealed three types of Ti(IV)-superoxo 

radical species (A, B and C) in TS-1, which are shown in Scheme 1 . These species 

differ mainly in the values of their gz parameter, whereas gx and gy are almost the same 

for the three species. According to this, the spectra presented in Figure 9 show mainly 

the B-type species which is evidenced by its value of gz � 2.02 obtained from the graph 

[34,36]. Moreover, as it was mentioned, such species can be associated with framework 

Ti(IV) sites. Therefore, the EPR spectra of our Ti-MCM-41 sample allow us to confirm 

the presence of Ti ions in tetrahedral isolated sites inside framework evidenced by 

DRUV-Vis and XPS. 

On the other hand, it is known that the intensity of EPR signals depends on the 

population difference (n) of the two spin quantized energy levels (Ms= ±½). According 

to the Boltzmann function, the population difference is given by the following 

expression [38]: 

n = N*tg(�E/2kT) (1)  

where N is the total number of spins, k is Boltzmann´s constant, T is the absolute 

temperature, and �E is the energy separation between the two spin quantized energy 

levels. If �E/2kT < 1 [19] then the population difference can be rewritten as: 

n � (N/2)(�E/kT) (2) 

Hence, the intensity of the EPR signal varies linearly with 1/T.  

The intensity of the EPR signal of gz parameter for our Ti-MCM-41 sample was 

graphed in terms of 1/T in the Figure 10 and the Equation (2) could be corroborated. 

 

4. Conclusions 

Ti-MCM-41 type molecular sieves with various compositions have been 

successfully prepared by hydrotermal synthesis at 373 K and compared to pure siliceous 



 

 

 

ACCEPTED MANUSCRIPT 

 MCM-41. The influence of various parameters such as Ti loading, nature of surfactant 

and synthesis time on the textural and structural properties was systematically studied. 

Besides the modification of the structural parameter a0, it is probable that the nature of 

the surfactant used as a template affect to the cooperative character of the electrostatic 

S+I- assembly mechanism and consequently the structural regularity of the material. The 

incorporation of titanium to the silica structure was successfully achieved through 1 day 

of hydrothermal synthesis. Moreover, the MCM-41 material allowed the incorporation 

of different quantities of Ti (between 0.35 and 2.5 wt.%) without collapsing the 

structure. All the samples showed an ordered porous structure, high surface areas and a 

narrow mesopores size distribution. However, an incorporation of metal above 1 % 

affected both the degree of structural ordering and the values of surface area as well as 

the shape of the N2 adsorption isotherm. N2 adsorption and TEM studies of the samples 

with the highest Ti contents revealed the presence of large irregular cavities that 

permeate the entire bulk of the particles, in addition to the conventional mesopores 

present in MCM-41 type mesoporous materials. The existence of such secondary 

cavities might have relevance for catalysis, as it would probably enhance the diffusion 

of reagents through the particles. Ti was incorporated into the silica framework mainly 

in tetrahedral isolated sites, which was confirmed by DRUVA-Vis and XPS. In 

addition, superoxo-Ti(IV) species were identified over the catalyst surface after its 

contact with H2O2, and associated to the presence of tetrahedral titanium species in 

framework positions. 
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 Table 1: Physicochemical properties of the MCM-41 samples synthesized with 

different Ti contents and DTMABr as template, synthesis time = 1 day, 373 K. 

 

 

a in synthesis gel; b in final solid product; cPore diameter corresponding to the maximum 

of the pore size distribution obtained by the DFT method; dTotal pore volume; e Pore 

volume associated with the hysteresis loop;  f BET specific surface area 

  

Samples Si/Ti a Ti content b  

(wt.%) 

a0  

(Å) 

dDFT 
c 

( Å ) 

Vp 
d 

(cm3/g) 

Vp ( cm3/g) e 

0.4 <p/p0 < 0.6 

Surface area f 

(m2/g) 

Ti-MCM-41(20) 20 2.50 37.2 27.39 0.830 0.25 1440 

Ti-MCM-41(60) 60 1.12 36.4 27.25 0.7278 0.13 1649 

Ti-MCM-41(180) 180 0.35 36.0 25.39 0.7833 0.05 1700 

Si-MCM-41 � 0.00 36.0 25.19 0.659 0.03 1790 
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 Scheme 1. Tentative structures of Ti(IV) species after the interaction with H2O2 (S: 

solvent). 
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 Figure captions 

 

Figure 1: XRD patterns of Ti-MCM-41 prepared with (a) DTMABr and (b) CTMABr 

as templates. Si/Ti molar ratio = 60, synthesis time = 3 days, 373 K. 

Figure 2: Effect of synthesis time on the degree of Ti-MCM-41 structural regularity. 

Si/Ti molar ratio = 60, DTMABr as template, 373 K.  

Figure 3: XRD patterns of MCM-41 samples synthesized with different Ti contents and 

DTMABr as template, synthesis time = 1 day, 373 K. (a)Si-MCM-41, (b)Ti-MCM-

41(180), (c)Ti-MCM-41(60), (d)Ti-MCM-41(20).  

Figure 4: Nitrogen adsorption-desorption isotherms of the MCM-41 samples 

synthesized with different Ti contents and DTMABr as template, synthesis time = 1 

day, 373 K. 

Figure 5: DFT pore size distribution of the MCM-41 samples synthesized with 

different Ti contents and DTMABr as template, synthesis time = 1 day, 373 K. 

Figure 6: TEM images at low (left) and high (right) magnification of Ti-MCM-41(20) 

sample. 

Figure 7: DRUVA-Vis spectra of MCM-41 samples synthesized with different Ti 

contents and DTMABr as template, synthesis time = 1 day, 373 K. (a)Si-MCM-41, 

(b)Ti-MCM-41(180), (c)Ti-MCM-41(60), (d)Ti-MCM-41(20).  

Figure 8: XPS in the Ti 2p region of Ti-MCM-41(20) sample.  

Figure 9: EPR spectra of the superoxo-Ti(IV) species in Ti-MCM-41(20) after contact 

with aqueous H2O2 recorded at (a)107, (b)220 and (c)295 K.  

Figure 10: EPR intensity variation of the superoxo-Ti(IV) species in Ti-MCM-41(20) 

as a function of temperature. 
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Figure 1 
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Figure 2 

 

Synthesis time (days)
0 2 4 6 8

St
ru

ct
ur

al
 R

eg
ul

ar
ity

 (%
)

0

20

40

60

80

100



 

 

 

ACCEPTED MANUSCRIPT 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

2 3 4 5 6 7 8

(a)

(b)

(c)

(d)

In
te

ns
ity

 (a
.u

.)

 

2 theta (°)



 

 

 

ACCEPTED MANUSCRIPT 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8
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Figure 9 
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Figure 10 
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