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Analysing the natural population 
growth of a large marine mammal 
after a depletive harvest
M. A. Romero1,2, M. F. Grandi3, M. Koen-Alonso4, G. Svendsen1,2, M. Ocampo Reinaldo   1,2, N. 
A. García3, S. L. Dans3,5, R. González1,2 & E. A. Crespo3,5

An understanding of the underlying processes and comprehensive history of population growth after 
a harvest-driven depletion is necessary when assessing the long-term effectiveness of management 
and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most 
conspicuous marine mammal along the South American coasts, where it has been heavily exploited. 
As a consequence of this exploitation, many of its populations were decimated during the early 20th 
century but currently show a clear recovery. The aim of this study was to assess SASL population 
recovery by applying a Bayesian state-space modelling framework. We were particularly interested in 
understanding how the population responds at low densities, how human-induced mortality interplays 
with natural mechanisms, and how density-dependence may regulate population growth. The observed 
population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum 
increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 
40% of its pre-exploitation abundance. Considering that the SASL population in this region represents 
approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides 
insights into the potential mechanisms regulating the dynamics of SASL populations across the global 
distributional range of the species.

Over thousands of years, humans have exploited animal populations by fishing, hunting or harvesting, causing 
long-term changes in population abundances. At the same time, human activities have impacted the underly-
ing natural dynamics of many populations through habitat degradation and biodiversity loss1. These effects at 
the population level are then connected with changes to community structure and functioning that affect the 
provision of fundamental ecosystem services2. In this context, the prediction population dynamics is one of the 
mainstays of theoretical and applied ecology.

Models of population growth have many implications for management and conservation. Such models have 
been used to estimate extinction risk3, 4, harvest rates for exploited populations5, 6 and to predict the potential 
recovery rates of depressed populations7, 8. Models of exploited populations are used to understand the interplay 
of additional sources of mortality, such as human-induced, with natural mechanisms9.

The South American sea lion (SASL, Otaria flavescens) is the most conspicuous marine mammal along the 
South American coasts, where it has been heavily exploited. As a consequence of this history of exploitation, 
many of its populations were decimated during the early 20th century10, 11. Sea lions were taken mainly for leather 
and oil. Even though the harvest ceased by the 1990s, SASL populations are still exposed to several potential 
negative impacts linked to the development of marine coastal human activities (see 12 for a review). Today, the 
global SASL abundance is estimated to be approximately 400,000 animals, but local population trends vary widely 
within its range12. The populations in Uruguay and southernmost Chile are decreasing13, 14, those in central and 
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southern Chile are stable15, 16, while the populations in the Falkland (Malvinas) Islands, Peru, and northern Chile 
are slowly recovering from very low levels17, 18.

In Argentina, the most intense harvest occurred from 1920 to 1950 in northern Patagonia and Tierra del 
Fuego19, 20, impacting two distinct demographic units12, 21. The northern and central Patagonia population is 
steadily recovering, growing at an annual rate of 5.7%22, 23. However, current fisheries and coastal development 
could impact the rebuilding capacity of this population12, and it is expected that risk analyses will be needed to 
properly manage this population in the future. One important concern in such analysis is the population dynam-
ics, specifically how the population responds at low densities. At present, few attempts have been made to model 
the dynamics of any South American sea lion population.

The robustness of the predictions of population models, when used in the management and conservation of 
marine mammals, is usually limited because data are scarce and discontinuous24. However, the population of O. 
flavescens along the northern and central Patagonian coast of Argentina has been effectively monitored since 
1972. This monitoring has produced an unusually long and detailed time series for the study of marine mammal 
population dynamics. Additionally, historical data about sea lion exploitation, together with coarse estimations 
of population abundance from the late 1930s and 1940s are also available19, 20. Based on these data, it has been 
found that the northern and central Patagonia population dropped drastically in a few years (<10% of their 
pre-exploitation values). Even though the harvest ceased in 1962, the recovery of the population only became 
apparent in the early 1990s after 3 decades with no detectable change in population size25. When all these ele-
ments are considered, it becomes evident that the Patagonian SASL population provides a unique opportunity to 
investigate a natural experiment on reduction and posterior recovery in a marine mammal species.

We approached this exploration by applying a state-space model (SSM) framework to assess O. flavescens 
population recovery after a depletive harvest. From an ecological perspective, we were particularly interested in 
understanding how the population responds at low densities, how human-induced mortality interplays with nat-
ural mechanisms, and how density-dependence may regulate population growth. To achieve this, we summarized 
the sea lion harvest and bycatch history for the northern and central Patagonia population during the last century 
and integrated this information with recent abundance estimates using Bayesian state-space dynamic models. 
Understanding the population dynamics of this population, particularly the patterns and processes involved in 
the recovery, is essential to properly managing sea lions in the northern and central Patagonia region (Fig. 1). The 
results from this study can also provide insights into the potential mechanisms regulating the dynamics of other 
SASL populations, and thus contribute to understanding the observed differences in population trends across the 
global distributional range of the species. Overall, these results are expected to contribute to broader conservation 
efforts for SASL populations and constitute a baseline for future multispecies modelling studies about the effect of 
sea lion population recovery on the marine ecosystem in northern and central Patagonia, Argentina.

Figure 1.  Detailed studied area at Patagonia Argentina with the current distribution of Otaria flavescens 
colonies. ○: rookeries commercially exploited, ●: other colonies, 4B: four key and historically important 
breeding colonies. Grey polygons indicate area of operations of the trawling fishery in northern and central 
Patagonia, where bycatch rate were obtained. Map generated with ArcGIS 9.3, (http://www.esri.com/software/
arcgis).
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Results
The estimated annual SASL harvest rates for the northern and central Patagonia populations ranged between 7 
and 17,907 animals per year, reaching their maxima between 1938 and 1941 (see Supplementary Table S1). Sea 
lion bycatch occurred in all types of trawl fishing. Capture rates ranged from 0.002 to 0.02 sea lions per boat per 
day, with the highest rates being estimated for daytime bottom trawls directed at hake and pelagic nocturnal 
trawls targeting shrimp26, 27. The total annual mortality throughout the time series ranged from 216 to 1,703 
animals per year, depending on the bycatch assumptions considered (see Supplementary Table S1). Compared 
to commercial harvesting, bycatch levels remained relatively low since the very beginning of the fishery and had 
no impact on the model estimates (i.e., model runs with and without bycatch had similar overall performances).

Overall, the implemented models performed well and provided good estimates of population levels while 
predicting reasonable dynamics for the SASL population from northern and central Patagonia. Input data points 
(It) were compared with the median and 95% credible intervals of the corresponding posterior predictive distriu-
tions for all proposed models. Nearly all observed abundance points fell within the 25th and 75th percentiles of the 
predictions provided by the six models considered (linear and non-linear density-dependence models under the 
three different bycatch series) (Fig. 2). Even though all models provided satisfactory fits under both the linear and 
non-linear density-dependence scenarios, the non-linear density-dependence models had slightly better predic-
tive performances that reduced the uncertainty in the model outputs, hence producing smaller credible intervals.

Summary statistics for all posterior distributions are presented in Table 1. In general, posterior estimates of 
the maximum rate of increase (Rmax), detectability coefficient (q), process variance (σ2) and observation variance 
(τ2) remained relatively constant across different model formulations, but the non-linear density-dependence 
models had slightly less uncertainty for all parameters (i.e., narrower 95% Bayesian credible intervals). Means 
were generally greater than medians, showing positive skewness. The posterior median for Rmax was 0.06 for 
the linear density-dependence models and 0.055 for the non-linear density-dependence models. The observa-
tion error was slightly greater than the process error. The standard deviation of σ2 was estimated to be almost 
identical among the six proposed models, with posterior medians between 0.084 and 0.086. The observation 
variance τ2 showed similar trends, with a posterior median of 0.098. Posterior distributions for q had medi-
ans between 0.53 and 0.57. In the non-linear density-dependence models, the posterior medians for the shape 
parameter (z) were all significantly >1 (Table 1), varying between 5.8 and 6.12. This indicated a left-skewed 
surplus-production function (when z > 1, the surplus production is higher when abundance is above ½ of K) 
for the sea lion population. The main difference between the two alternative structural model formulations was 
the estimated pre-harvested population abundance, which was set at the environmental carrying capacity (i.e., 
N1900–1928 = K). The estimated K for the linear density-dependence models was approximately 25% lower than that 
in the non-linear density-dependence models (Table 1). In all cases, the posterior CV for K was lower (i.e., ranged 
from 73% to 82%) than the value used in the prior CV (100%). The marginal posterior densities for all parameters 
are shown in Supplementary Figure S1, together with their respective prior densities. Despite the relatively wide 
posterior distributions, most distributions were updated to lower or higher values, suggesting that survey data 
were informative for parameter estimation. Correlations among posterior parameter distributions were low for all 
models (see Supplementary Table S2), allowing for the estimation of individual parameters.

Figure 2.  Trend of observed annual number of South American sea lion Otaria flavescens. Time series of 
observed annual number (white dots), together with posterior medians (horizontal dashes in boxes), first and 
third quartiles (boxes), and 2.5/97.5 percentiles (whiskers), provided by (from left to right) the linear and non-
linear density-dependence models (It) according to the three bycatch estimated series. TC: Total Catch set; AC: 
Average Catch set; MC: Maximum Catch set.
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The performances of the different model variants can be compared through differences in the Deviance 
Information Criterion (DIC) and Bayesian p-values (Table 2). The effective number of parameters (pD), which 
should be a positive quantity, could not be estimated reliably in WinBUGS for any model. The alternative estima-
tor of model complexity28, =pV Var D( )1

2
, where D  is the posterior mean of the deviance, was considered as an 

estimate of the number of free parameters in the models. This estimate generally turns out to be remarkably 
robust and accurate28. Therefore, based on the = +DIC D pV , the non-linear density-dependence models pro-
vided a slightly better fit to the data than the linear density-dependence models (Table 2). Among non-linear 
density-dependence models, the model considering the Total Catch (TC) index for the bycatch series showed the 
lowest value of DIC. Nevertheless, there was no meaningful difference between all six models based on the DIC 
since its range was <2. An inspection of the standardized residual plots also confirmed that there were no system-
atic deviations in any of the models (see Supplementary Fig. S2). The Bayesian posterior mean abundance and 
observed counts, when centred on a 1:1 line, indicated good fit of all models to the observed data. Posterior 
checking revealed no inconsistency between the model a posteriori and the data. All six models had predictive 
Bayesian p-values close to 0.7 (with 95% C.I.s that include 0.5), indicating good a posteriori ability of all models 
to replicate the abundance data.

Convergence diagnostics were compiled to see if there were any problems with convergence in the MCMC 
simulations. Based on the Geweke test, the six models converged adequately in all three chains (i.e., p > 0.05). The 

Model Parameter Mean St. dev.

Bayesian credibility intervals

2.5% Median 97.5%

Linear density-dependence

  TC

Rmax 0.070 0.044 0.016 0.06 0.184

K 294.3 216.3 75.4 235.7 857.6

q 0.535 0.222 0.118 0.542 0.919

σ2 0.093 0.038 0.043 0.085 0.189

τ2 0.105 0.036 0.055 0.098 0.194

  AC

Rmax 0.069 0.044 0.016 0.059 0.183

K 299.9 224.9 78.3 239.5 888.7

q 0.532 0.224 0.111 0.542 0.918

σ2 0.092 0.038 0.043 0.085 0.188

τ2 0.105 0.036 0.055 0.098 0.193

  MC

Rmax 0.073 0.046 0.016 0.062 0.191

K 297.3 223.5 77.4 238.7 867.4

q 0.526 0.221 0.117 0.532 0.915

σ2 0.094 0.039 0.044 0.086 0.190

τ2 0.105 0.036 0.055 0.098 0.194

Non-linear density-dependence

  TC

Rmax 0.062 0.035 0.015 0.055 0.146

K 420.6 343.1 97.1 319.3 1346

q 0.558 0.21 0.156 0.566 0.922

σ2 0.091 0.036 0.043 0.084 0.182

τ2 0.104 0.036 0.055 0.098 0.193

z 5.518 2.852 0.376 5.817 9.803

  AC

Rmax 0.062 0.035 0.015 0.055 0.147

K 427.5 354.6 96.5 324.3 1379

q 0.563 0.21 0.158 0.572 0.923

σ2 0.093 0.038 0.044 0.085 0.187

τ2 0.105 0.036 0.055 0.098 0.195

z 5.626 2.843 0.392 5.958 9.816

  MC

Rmax 0.065 0.037 0.016 0.058 0.151

K 433.3 357.3 100.3 329.6 1385

q 0.547 0.208 0.155 0.553 0.916

σ2 0.093 0.037 0.044 0.085 0.186

τ2 0.105 0.036 0.055 0.098 0.195

z 5.753 2.814 0.431 6.128 9.832

Table 1.  Parameter estimates (posterior mean, standard deviations and credibility intervals) for maximum rate 
of increase (Rmax), carrying capacity (K, expressed in thousands of individuals), detectability coefficient (q), 
process variance (σ2), observation variance (τ2) and shape parameter (z) derived from the six Bayesian state-
space surplus production models (linear and non-linear density-dependence models under the three bycatch 
indices). TC: Total Catch set; AC: Average Catch set; MC: Maximum Catch set.
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Gelman and Rubin statistics for all parameters equalled 1.0, providing no evidence for a lack of convergence in 
the distribution of the MCMC samples with the posterior distribution (R̂). All parameters also passed the 
two-stage Heidelberger-Welch stationary test. The autocorrelation function plot indicated that a thinning interval 
of 50 was large enough to address potential autocorrelation in the MCMC runs. Lastly, the trace plots showed a 
satisfactory mixing of the three chains. Overall, the convergence diagnostics indicated that all models can be 
considered to have reliable results, the posterior distributions of the model parameters having been adequately 
sampled by the MCMC simulations.

The population trajectories (posterior distribution of mean abundances, Nt) for all proposed models showed 
a similar trend, with a rapid and severe depletion of the SASL population by hunting and the lowest abundances 
levels appearing between 1950 and 1980 (Fig. 3a). By the early 1970s, the population was estimated to be at <10% 
of the pre-exploitation abundance for both types of model. Thereafter, the models estimated a recovery in terms of 
population abundance at a growth rate close to Rmax despite the individuals taken by incidental catches. There are 

Bayesian p-values pV DIC

Linear density-dependence

  TC 0.70 29.35 179.80

  AC 0.70 29.03 179.44

  MC 0.71 29.00 179.47

Non-linear density-dependence

  TC 0.70 28.71 178.90

  AC 0.70 28.90 179.02

  MC 0.70 28.62 179.06

Table 2.  Model performance for six alternative models (linear and non-linear density-dependence models 
under the three bycatch indices) shown as Bayesian p-value, and DIC values giving the estimator of model 
complexity (pV). TC, AC, and MC respectively denote Total Catch, Average Catch and Maximum Catch set 
estimated to reconstruct bycatch history.

Figure 3.  Abundance trajectories for all proposed models. (a) Posterior distribution of mean population 
abundances (Nt) and harvest time-series (dashed line). (b) Predicted posterior mean (±SD) of observable states 
(It) compared to the observed survey data (white dots). Asterisks represent the first two coarse estimates of 
population abundance of sea lions in Argentina19, 20, 69. Black dot corresponds to survey data for 2015. This data 
point was not included in the model fitting exercise.
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essentially no differences between the mean estimates of current population size between models. The non-linear 
density-dependence models estimated that the total population abundance in 2013 was between 172 and 175 
thousand individuals compared with an abundance ranging from 189 to 192 thousand individuals estimated by 
the linear density-dependence models. The pristine population (here assumed to correspond to K) was generally 
less well estimated. The two models produced different population trajectories for the pre-1940 period. The trends 
for the predicted posterior means of observable states (It) from the six models are shown in Fig. 3b and compared 
to the observed abundance and catch series. Both models underestimated the survey from 1938, but the posterior 
means of the observable states (It) from the linear density-dependence models seemed far too low to be consistent 
with this survey. The early population estimate for 1947–1949 was relatively well approximated by all models, 
although these survey data may be underestimated.

Considering the sequential inference procedure, it is straightforward to estimate the one-step ahead density of 
the states (Nt+1). The projected observable states (It) of the SASL population for 2015 had posterior means ranging 
between 86.27 and 88.10 (SD: 73.14–76.26) thousand individuals in the non-linear density-dependence models 
and between 84.47 and 86.83 (SD: 73.09–77.33) thousand individuals in the linear density-dependence models 
(Fig. 3b). These values were much lower than the pre-exploitation abundance but higher than the observed data 
obtained from a terrestrial survey that year (72.59 thousand individuals) for northern and central Patagonia. This 
suggests a likely slow-down in population growth.

A sensitivity analysis of parameter estimates to prior probability specifications was conducted considering 
the non-linear density-dependence model with the Total Catch (AC) series of bycatch estimates as the base-case 
model. Moreover, as the goodness-of-fit statistics did not provide clear advice on model selection, this model was 
chosen among all the candidate models based on its slightly lower DIC, lower uncertainty for all parameters and 
posterior predictive distributions of the data and lesser likelihood to underestimate the pre-exploitation popula-
tion abundance. The examination of the model results considering plausible alternative variants of the base-case 
prior distributions showed that the data appeared to be informative for Rmax and q because the marginal posterior 
distributions for these parameters were quite insensitive to different choices of priors (Fig. 4). The estimated K 
was sensitive to the choice of its own prior distribution, which suggests that the data were not strongly informa-
tive with respect to carrying capacity. Specifications with lower carrying capacities showed a slight increase in the 
maximum rate of increase and detectability coefficient and a decrease in the shape parameter. We had no strong 
evidence as to what the upper limit of the carrying capacity might be, but increasing the upper limit further did 
not seem to significantly influence the posteriors of the other parameters in the model. The posteriors for z and 
the process and observation error variance were also sensitive to their prior distribution, but the effect on the 
other estimated parameters was limited (Fig. 4).

Discussion
We used Bayesian inference to integrate the time series of population abundances, commercial harvests, and 
fisheries bycatch into dynamic SSMs for the South American sea lion population from northern and central 

Figure 4.  Sensitivity of model parameters to prior probability specifications. Median estimates (solid black 
lines in boxes), first and third quartiles (boxes), and their 95% C.I. (bars) are presented. For each parameter 
considered (detectability coefficient q, carrying capacity K (in thousands), maximum rate of increase Rmax, 
shape parameter z, process variance σ2 and observation variance τ2), two grey dotted lines indicate as references 
the 95% confidence intervals obtained with the base-case model. Sen 1 modified z, sen 2–5 modified K and sen 
6–9 modified σ2 and τ2. See Table 5 for a description of sensitivity analyses.
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Patagonia. We relied on previous studies to define plausible prior distribution for the parameters and to set the 
likelihood function. This is particularly important for Bayesian inference because misspecification of prior dis-
tributions and the choice of an inappropriate likelihood function may result in unreliable posterior distributions 
for parameters29, 30. In the absence of a priori knowledge, as is the case for K, z, σ2 and τ2, it was crucial to assess 
the sensitivity of credible intervals to the choice of distribution for the vaguely informative priors considered.

We should also consider the form of the process and observation equations, as well as the distribution of pro-
cess noise, in order to assess the appropriateness of the proposed models. In this study, we represented the process 
dynamics using the theta-logistic equation, which has a shape parameter that allows for the exploration of differ-
ent relationships in the representation of the density dependence. Because this model is relatively simple and easy 
to implement, it is feasible to use more than one alternative formulation of the production function and conduct 
hypothesis testing31. Unfortunately, there were no age-structured harvest or bycatch data available for the SASL 
population to explore more complex Bayesian age- or size-structure models. The observation equation assumed 
that the survey data were proportional to the relative abundance. Using survey data avoids several problems that 
have been noted regarding the use of catch rates as a relative abundance indices, which is a common practice in 
fishery models32, 33. On the other hand, as expected, missing values in the data lead to wider posterior credible 
intervals for the abundance estimates. The Bayesian framework allows us to quantify the increased uncertainty 
for missing values and to potentially incorporate information from additional sources via the corresponding 
prior distribution. The process noise can come from several sources, mainly from demographic variability and/
or environmental variability34, 35. We assumed a multiplicative lognormal error structure considering that the 
process noise represents the joint effects of a large number of random multiplicative events that combine to form 
a multiplicative lognormal process error. We also considered multiplicative structure for observation error, which 
seems to be the most appropriate structure for biological or ecological models33. The observation error was found 
to be slightly greater than the process error, irrespective of the model used (Table 1). It is not surprising that a 
long-lived, slow-growing and late-maturing species such as the SASL would display few temporal fluctuations in 
the aggregated population abundance reflected in the slightly low process error.

The Bayesian SSM framework implemented here can be considered an efficient tool to assess the population 
recovery of the SASL in northern and central Patagonia. The low correlation between process and observation 
variances and the relatively similar magnitudes of these parameters indicate the absence of any major estimation 
problems, which have been recently associated with Gaussian SSMs35, 36. We found that the data on SASLs pro-
vided enough information to estimate all parameters in these six models, although there were some differences in 
the posterior distributions of some parameters (for example, carrying capacity, K) and abundance estimates. After 
an examination of all model results, the non-linear density-dependence model with the Total Catch (TC) bycatch 
series was selected as the most plausible model (i.e., narrower 95% Bayesian credible intervals for parameter and 
abundance estimates). This indicates that the observed population dynamics of SASLs have a non-linear rela-
tionship with density, assuming an “overcrowding” or compensatory density-dependent process that affects the 
population growth rate at high densities. The non-linear relationship adds flexibility in the shape of the surplus 
production function to model the population growth behaviour37, and this property leads to relative higher esti-
mates of the carrying capacity. From a conservation perspective, the selected model resulted in a higher carrying 
capacity, higher depletion level and lower recovery than that those estimated by the linear density-dependence 
models. These results highlight the importance of conservation efforts for this species.

The model estimated that the maximum depletion level occurred towards the end of the 1960s, reducing 
the population to just under 25,000 individuals. Previous studies also suggest that after commercial harvesting, 
the abundance of SASLs from Patagonia was less than 10% of the original size10, 22, 23. Different hypotheses have 
been proposed to explain the decline in Atlantic populations of O. flavescens. Gerber and Hilborn38 indicate that 
the harvest levels of O. flavescens between 1930 and 1970 alone would not account for the observed declines of 
Falkland (Malvinas) Islands and Península Valdés populations. They suggested that impacts from fisheries and/
or the oil industry may have contributed to the declines in these Atlantic populations. However, significant fish-
ing activities in the Patagonian region started more than a decade after harvest activities ceased39. Additionally, 
off-shore oil and gas exploration is only just now commencing40. Therefore, proposing that the concurrent/cumu-
lative effects of all these activities are responsible for the declines in the northern and central Patagonia popu-
lation is not a valid hypothesis. Other studies have suggested that SASL colonies in Argentina were unable to 
sustain the reported level of exploitation, thereby necessitating a migration from the Falkland (Malvinas) Islands 
to account for the number of SASLs killed17, 41. Recently, Baylis et al.8, using census data, and Hoffman et al.42,  
using molecular markers, tested this hypothesis and found that there is no inherent reason to assume that a win-
ter migration from the Falkland (Malvinas) Islands was necessary to account for the number of SASLs killed in 
Argentina. Furthermore, our analysis shows that the addition of a simple population reduction variable, such as 
the available harvest data, successfully explains both the abrupt decline and the subsequent trend of the popula-
tion abundance in the study area (Fig. 3).

Estimating the pre-exploitation abundance of marine mammal populations is not simply of historical inter-
est; it is essential to understanding the true impact of exploitation on the marine ecosystem and has impor-
tant management implications for the rebuilding and conservation of these populations43, 44. The most plausible 
model obtained in this study suggested that the pre-harvest SASL population abundance in northern and cen-
tral Patagonia was approximately 420,000 individuals. The weaker performance in estimating this parameter 
was associated with the lack of good quality data on historical abundance. On the other hand, the generalized 
logistic model used assumes that carrying capacity is constant through time. The carrying capacity of a marine 
mammal such as O. flavescens can be defined as a function of both food availability and space to reproduce. The 
reduction in abundance suffered by SASL over the past century was followed by a decrease in its primary prey, 
Argentine hake Merluccius hubbsi, due to the large impact of high-seas fisheries45–47. These changes led to a severe 
reorganization of the whole ecosystem off northern and central Patagonia46, 48, 49. All these changes may suggest 
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that the carrying capacity for SASLs could have changed over time and is now smaller than the value of K (the 
pre-exploitation abundance) estimated by the model. This may explain the slow-down in population growth that 
was observed when comparing the last survey with the projected observable states. Additionally, a recent study on 
craniometrical variables found that the somatic growth of SASL is density-dependent and suggested that indus-
trial fishing has reduced the SASL carrying capacity of the ecosystem off Patagonia49. Similarly, the carrying SASL 
capacity in the San Matías Gulf seem to be constrained by the fishing fleets that have been removing and replacing 
several fish predators in the food web since 1971, affecting at the same time the prey of SASL50.

The Antarctic fur seal Arctocephalus gazella population in the South Shetland Archipelago currently has a tra-
jectory converging on a tightly bound oscillation around an apparent equilibrium (the current carrying capacity), 
which is an order of magnitude lower than those levels before exploitation51. Huke-Gaete et al.51 suggest that this 
stable equilibrium may slowly be reached through a saltatory pattern in the next 100 years or so or that the sus-
pected pre-exploitation levels are unlikely to be attained again as a consequence of major changes to the Southern 
Ocean, and as such, the population will remain within the current levels, resulting in an alternative stable state51. 
Currently, the recovered SASL population still represents only 40% (175,000 individuals) of the pre-exploitation 
abundance. In this context, it would be necessary to test whether there is a new equilibrium state in the O. fla-
vescens population trajectory with a new dynamic model that incorporates a function of K with time as well as 
other components of its community.

The last commercial removals of O. flavescens were officially recorded in Patagonia in 196020, and marine 
mammal harvesting was prohibited by a National Decree in 197452. However, signs of population recovery were 
not detected until 1990, after 3 decades of stagnation10, 22. The model properly captured this delay in the recovery 
suffered by the SASL population. This relatively slow increase was interpreted at that moment as a consequence 

Year

Northern Patagonia Central Patagonia

Correction 
factors applied

Were all 4B  
rookeries surveyed?

Number of other  
sites surveyed Was surveyed?

1972 yes (only pups) 0 yes all

1973 yes (only pups) 0 no all

1974 yes (only pups) 0 no all

1975 yes (only pups) 0 no all

1981 yes (only pups) 0 no all

1982 yes (only pups) 0 no all

1983 yes 4 no all

1984 yes 0 no all

1985 yes 5 no 3

1986 no 1 no —

1987 no 4 no —

1988 no 1 no —

1989 yes 3 yes all

1990 yes 8 no 3

1993 no 3 no —

1994 yes 6 no all

1995 yes 10 yes 3

1996 yes 12 no 3

1997 yes 5 no all

1998 yes 12 no 3

1999 yes 7 no all

2000 yes 11 no 3

2001 yes 9 no all

2002 no 7 no —

2003 no 1 no —

2004 no 1 no —

2005 yes 18 yes 3

2006 yes 23 no 3

2007 yes 21 no 3

2009 yes 21 no 3

2010 no 3 no —

2011 no 1 no —

2013 no 5 no —

2015 yes 21 no 3

Table 3.  Synoptic view of the available survey data of South American sea lion Otaria flavescens from northern 
and central Patagonia. 4B are Punta Norte, Punta Buenos Aires, Punta Pirámide, and Punta León rookeries.
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of fishery development10. Nevertheless, it was demonstrated three decades later that sea lion population increase 
was not only a consequence of fishery development but rather the interplay of multiple factors that act through a 
density-dependent mechanism48, 53. Genetic studies showed that there was not a loss of genetic variability due to 
overexploitation, as genetic markers have revealed no population bottleneck within the SASL population from 
northern Patagonia54. The population’s slow recovery can also be attributed to changes in environmental condi-
tions (e.g., carrying capacity)10, 22, 46 combined with depensatory effects caused by reduced survival or fecundity. 
Considering that the survival of all age classes in northern Patagonia is higher in dense and big rookeries than in 
isolated or marginal breeding areas53, 55, 56, this vital rate could have had an effect on the regulation of the popu-
lation growth rate.

After the initial absence of any measurable recovery, the SASL population started to grow, finally reaching a 
5.7% annual rate of increase22. This observed rate, calculated through pup counts from 1983 to 2002, was sim-
ilar to the Rmax estimated here by the model. This fact suggests that after the depletive harvest, the population 
was increasing close to the maximum rate of increase, which is expected considering the nonlinearity in the 
density-dependence parameter. The resultant Rmax also agrees with the suggestion that the reduction in the pop-
ulation rate of increase at low densities in otariid populations may not be strong38. The estimated maximum 
rate of increase for SASL populations is similar to those recorded for other recovering populations such as the 
California sea lion (0.052)57 and Steller sea lion in the Eastern Gulf of Alaska (0.059)58. However, this population 
has low rates of increase when compared with other otariids, such as Arctocephalus spp. with rates ranging from 
0.04 to 0.26 for different species and populations59–61. Considering differences in body size and the age of first 
reproduction among sea lions and fur seals species62, this discrepancy would be expected but also highlights the 
importance of a knowledge on the biology of a species when it is necessary to use proxies from other species to 
parameterize dynamic models for management applications.

The South American sea lion faces several conservation problems related to the development of marine coastal 
human activities. Even though national and provincial laws in Argentina protect marine mammals, there is no 
framework that integrates the regulation of marine and coastal development with marine mammal conservation. 
This problem is particularly evident in relation to fisheries management regulations and is pervasive through-
out most South American countries63. Currently, most international management rules employed for marine 
mammal populations need accurate estimates of population rates (like Rmax) and/or the environmental carrying 
capacity (K)64. Therefore, the estimated population parameters obtained here should be useful for monitoring the 
sustainability of current and future levels of incidental mortality and for any subsequent policies that could be 
designed to integrate the management of multiple activities at the marine ecosystem scale.

Simple single-species models can be very effective in evaluating specific scenarios, but we have to consider 
that populations are embedded in a complex web of species interactions, in which human activities could impact 
each component of the community in different ways. At present, the northern and central Patagonia population 
of O. flavescens is one of the more important reproductive nucleuses for the species and holds approximately 
72% of the species abundance within the Atlantic Ocean12. Therefore, this analysis of its population growth after 
a harvest-driven depletion not only contributes to the understanding of the dynamic patterns and processes 
involved in its recovery but also provides a benchmark for comparison with other otariid populations. The base-
line generated by this study should also contribute to the understanding required for developing an integrative 
ecosystem management plan for the northern and central Patagonia ecosystem.

Methods
Study area.  The study area included the colonies located along the northern and central Patagonian coast, 
Argentina, between Punta Bermeja (41°09′S, 63°09′W) and Isla Quintano (45°14′S, 66°42′W) (Fig. 1). Genetic 
analyses based on molecular markers54, 65, 66, strong demographic connections, and similar population trajecto-
ries indicate a lack of geographical structure between these colonies22, 25, 40, which permits them to be treated as a 
single demographic unit.

Annual harvest and bycatch estimates.  The harvest activities occurred from 1929 to 1960 at seven 
rookeries within the study area (Fig. 1). Historical harvest data came from the number of leathers exported over 
five year periods by five factories from northern Patagonia20. In central Patagonia, commercial sealing occurred 

Dependent variable (y)
Independent 
variable (x) Equation n r2 Observations

Non-pups counted in 
4B rookeries

Pups counted 
in 4B rookeries y = 1.1152x* 18 0.99 4B refers to four key and historically important 

breeding colonies**

Total number of 
individuals counted in 
non-4B rookeries and 
haul-outs in northern 
Patagonia

Total number 
of individuals 
counted in 4B 
rookeries

ln(y) = −19.982 + 3.1236ln(x)* 11 0.95

The data for a given year were included in this 
analysis, only if all 4B rookeries were counted 
and the other surveyed sites were considered to 
contain a large proportion of the remaining sea 
lion abundance at that time.

Abundance in northern 
and central Patagonia

Abundance 
in northern 
Patagonia

y = 1.815x* 4 0.99
This calculation assumes a fixed relative 
proportion between the sea lion abundance in 
northern and central Patagonia.

Table 4.  Correction factors used to reconstruct the South American sea lion Otaria flavescens population 
abundance in northern and central Patagonia. *Regressions were carefully examined, and their residuals 
evaluated to detect departures from the statistical assumptions. **4B are Punta Norte, Punta Buenos Aires, 
Punta Pirámide, and Punta León rookeries.
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during a small number of isolated harvest periods at Isla Escondida in 1921 and at Punta Lobería in 1938–194020 
(Fig. 1). This area, in comparison with northern Patagonia, could almost be considered unexploited25. The 
information about leather exports20 is extremely useful because it represents the only record of the commercial 
exploitation of the SASL in Patagonia. Therefore, the annual harvest values (Ht) were obtained as the difference 
between consecutive years from a cumulative catch curve (Gompertz equation with additive normal error) fitted 
to these available harvest data (see Supplementary Table S1).

Since the beginning of the 1980s, fisheries have developed in Patagonia using a diversity of methods ranging 
from trawls, jiggings, and longlines. Initially, eighty percent of the vessels operating in northern and central 
Patagonia were trawlers, but jigging efforts targeting squid have increased since the 1990s. The Patagonian trawl 
fleet is very heterogeneous and includes a diversity of vessels sizes, types of fishing and gear, targeting mostly 
white meat fish, which are important food resources for sea lions45, 47. This fleet has operated from 41° to 48°S 
(Fig. 1). The incidental capture of marine mammals by the Patagonian trawl fleet was recorded and quantified 
during 1992–199412, 26. Taking into account the heterogeneity of the fleet, and assuming that net type could pro-
duce different effects on the marine ecosystem and different probabilities of marine mammal entanglement, the 
evaluation of the incidental mortality used nine fishing types defined according to trawl type, gear, target species, 
and time of operation (see the full fishing type description from 26,27). Among them, there were only seven 
recorded incidental catches of sea lions (see Supplementary Table S3). Bycatch rates were defined and estimated 
by Crespo et al.26 as the catch per unit of effort for each fishing type. Based on these bycatch rates and fishing 
effort time-series (from the Fisheries and Aquaculture National Department67, 68, see Supplementary Table S3), 
we reconstructed the SASL bycatch history for the period 1989–2013 under the assumption that the bycatch per 
unit effort rates remained constant during this period throughout the entire area. We postulated this assumption 
considering that fisheries did not show significant changes in fishing gear and location during this period (based 
on information available from the Fisheries and Aquaculture National Department). Conversely, recent estimates 
of bycatch per unit effort rates for the San Matías Gulf trawl fishery12 suggest that these rates remain at the same 
order of magnitude as those previously estimated by Crespo et al.26. Three time-series of annual bycatch values 
(Mt) were estimated based on different assumptions about the potential level of impacts (see Supplementary 
Table S1):

	(1)	 Total Catch (TC) set:

∑= .
=

M TCR E
(1a)t

i

n

i it
1

TC

where Eit is the nominal fishing effort (number of fishing days per year) for each fishing type i (see Supple-
mentary Table S3) and TCRi is the Total catch rate for each fishing type (TCRi values were taken from 26). 
This rate assumed that all vessels of each type exhibit the same bycatch rate per unit effort.

	(2)	 Average Catch (AC) set:

∑= .
=
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(1b)t

i

n
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1
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where ACRi is the average catch rate for each fishing type (ACRi values were taken from 26). This rate as-
sumed that there are variations in the catch between vessels under the same type, either by the vessel itself 
or by differences in the fishing methods of each crew.

	(3)	 Maximum Catch (MC) set:

∑= .
=

M MCR E
(1c)t

i

n

i it
1

MC

Parameter Description Default prior Alternative prior

z shape parameter z ~ unif(0.0001, 10) z ~ unif(0.0001, 20) (sen1)

Rmax maximum rate of increase Rmax ~ lnorm(μRmax = −2.9, 
σRmax = 0.5)

K carrying capacity K ~ lnorm(μK = 5.7, σK = 0.8)
K ~ unif(0.0001, 1000) (sen2) K ~ lnorm(μK = 7.4, 
σK = 0.8) (sen3) K ~ lnorm(μK = 4, σK = 0.8) (sen4) 
K ~ lnorm(μK = 5.7, σK = 1.25) (sen5)

q detectability coefficient q ~ beta(2.2, 2)

σ2 process variance σ2 ~ invgamma(1, 0.4) σ2 ~ invgamma(2, 0.8) (sen6) σ2 ~ invgamma(0.5, 0.2) 
(sen7)

τ2 observation variance τ2 ~ invgamma(3, 0.8) τ2 ~ invgamma(6, 1.6) (sen8) τ2 ~ invgamma(1.5, 0.4) 
(sen9)

Table 5.  Estimable parameters and prior specifications for Bayesian state-space models. Alternative prior 
specifications were considered in the sensitivity analyses (sen1–9).
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where MCRi is the maximum catch rate for each fishing type (MCRi values were taken from 26). This rate assumed 
a uniform catch rate that is equal to the maximum individual vessel rate within a fishing type. It assumed that each 
individual vessel exhibits the maximum bycatch rate per unit effort.

Abundance estimates.  The first two coarse estimates of SASL population abundance from Argentina cor-
respond to the period of commercial exploitation19, 20, 69. Even though these historical data are invaluable, they 
were not used for model fitting because they were obtained with different methodologies. The estimate for 1938 
was calculated from terrestrial surveys69 and could be over-estimated. The estimate for 1947–1949 was calculated 
from both aerial and terrestrial surveys19, but the sea lion abundance was probably underestimated because the 
reported figures correspond to the means of several surveys before, during and after the breeding season over 
different years. Although these earlier data cannot be used for model fitting, they still represent useful references 
for comparison with model results.

Abundance data were obtained from early surveys available from the literature and from our own surveys. 
The available dataset covered the period from 1972–2015 (Table 3, see Supplementary Table S1). For the periods 
1972–1975 and 1981–1982, databases were available from Ximénez (1975)70, Castello et al.71, and Lewis and 
Ximénez (1983)72. These early survey data only included pup counts for the four main breeding rookeries (this set 
of four rookeries will be referred as 4B, Table 2, Fig. 1).

Annual direct counts of sea lions ashore were carried out during the period 1983–2015. Total counts were 
made coinciding with the peak of the breeding season (i.e., between the last week of January and 1st week of 
February), when most of the individuals are present at the rookeries for reproduction and almost all of the pups 
are already born52, 73. The whole set of rookeries or haul-out sites were surveyed at the same time during the same 
breeding season whenever possible. However, in some years, both logistical and economic issues limited conduct-
ing surveys in certain subsets of colonies (Table 3).

To estimate population abundance, we developed three correction factors (given as the predicted values from 
a regression relationship) to be applied to the survey data (Tables 3 and 4). The first was used to estimate the 
non-pup fraction of the population in the periods 1972–1975 and 1981–1982. This factor was derived from the 
relationship between pups and non-pups in the 4B colonies (see Fig. 1) because these were surveyed in most 
years (Table 4). The second correction factor was developed to address the limitation emerging from incomplete 
survey coverage from 1983–2015 in northern Patagonia. During this period, not only were some surveys unable 
to cover all rookeries but the actual number of rookeries also increased, as new marginal breeding areas appeared 
as a result of population growth and changes in social structure74. To account for these effects, we developed a 
correction factor using the relationship between the total number of individuals counted in 4B rookeries and 
those counted in non-4B rookeries and haul-outs during the breeding season (Table 4). The third correction 
factor estimates the SASL abundance in northern and central Patagonia from a regression based on four surveys 
that considered both regions at the same time23, 25, 75 (Table 4). All these empirical relationships were applied to 
the survey data (Table 3) in order to estimate the total population abundance for 24 years between 1972 and 2015 
(see Supplementary Table S1).

Model structure.  The annual population abundance, harvest and bycatch estimates were integrated using 
a Bayesian state-space surplus production framework. This approach, originally developed for fisheries man-
agement, is regarded as powerful tool for modelling time-varying abundance indices because it simultaneously 
account for both stochastic process variability (the state model) and stochastic measurement error (the observa-
tion model)35, 76–79 and offers great flexibility in the mathematical construction of the model77, 80. SSMs have been 
increasingly applied in ecology to estimate the productivity and abundance of natural populations (e.g., refs 81, 
82) since approaches that only account for one source of error can lead to biases in the model predictions and 
parameter estimates and may even mask the form of the underlying population dynamics, such as the degree 
of density-dependence3, 83, 84. Moreover, surplus production models may even occasionally provide better esti-
mates of biological landmarks than age-structured models due to their high versatility and rather low parameter 
requirements85.

The model was run for the period 1900–2013. The survey data for 2015 were available but not used in model 
fitting; they were set aside for an a posteriori model performance evaluation. We predicted the size of the popu-
lation in 2015 under the selected model based on the population, harvest, and bycatch information from previ-
ous years. The annual abundances between 1900 and 1971 were treated as unobserved random variables in the 
Bayesian modelling framework.

The basic population dynamic process was modelled using the following discrete formulation:

= + − −− − − −N N f N H M( ) (2)t t t t t1 1 1 1

where Nt is the unknown underlying state variable in year t (in this case, the unobserved annual abundance for 
the SASL population exposed to harvesting and bycatch, t = 1900, …, 2013), Ht is the number of animals removed 
by the commercial harvests in year t, Mt is the number of animals incidentally caught by the fishing fleet in year t, 
and ⋅f ( ) is a surplus-production function. This function was specified as the following generalized theta-logistic 
equation37, 86:
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where Rmax is the maximum rate of increase (i.e., the intrinsic population growth rate when Nt ~ 0), K is the car-
rying capacity and z is a shape parameter that controls the level of nonlinearity in the density-dependence. Two 
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basic formulations were considered for density-dependence, one with z = 1 (i.e., linear density-dependence and 
gives the ordinary logistic, or Schaefer (1954)87 trajectory) and another involving non-linear density-dependence 
growth with z > 1 (i.e., z becomes an estimated parameter) which implies that density-dependence effects mani-
fest when the population is near carrying capacity (known in the fishery literature as a Pella–Tomlinson (1969)37 
surplus-production model). These two basic formulations were combined with the single harvest series and the 
three alternative fisheries bycatch series to generate a total of six alternative scenarios to describe the population 
dynamics of the SASL population in northern and central Patagonia.

The logistic model was reparametrized in terms of relative abundance =( )Pt
N
K

t  to improve the efficiency of 
the Markov Chain Monte Carlo (MCMC) algorithm used to estimate parameters and to reduce parameter corre-
lations (see 76). Process error (ut = eU

t) was accounted for in the state process by assuming independent and 
multiplicative lognormal error structures88. This model also assumed that the pre-harvested population was at the 
environmental carrying capacity (i.e., N1900–1928 = K). Therefore, the state process was assumed to follow a stochas-
tic transition model as:
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where Ut is the total variability in the population growth process in year t which was assumed to be a zero mean 
Gaussian process with variance σ2, i.e., Ut ~ N(0, σ2).

The observation process of the stochastic model assumed that the observed annual numbers of sea lions (It, 
t = 1972, …, 2013; considering the three correction factors) were noisy measurements that were roughly propor-
tional to the relative abundance (Pt)76. For process errors, observation error (vt = eV

t) was accounted for in the 
observation process by assuming a multiplicative lognormal error structure. Given the observation errors, the 
observation equations for each annual time period were:

=I qKP e( ) (5)t t
Vt

where q is the detectability coefficient (a proportionality constant representing the fraction of the population 
observed) and Vt was the extent of the observation error for year t and was assumed to have independent and 
identically distributed normal random variables with variance τ2, i.e., vt ~ N(0, τ2).

Parameter estimation.  Bayesian estimation in SSMs is a very flexible statistical modelling approach that 
can handle both process and observation error well. This approach was applied to estimate both the abundance 
trajectory (P1, …, Pt with t = 1900–2015) and the uncertainty in the parameter estimates. Ht and Mt were consid-
ered known in the estimation, and It was the observed vector. The unknown parameters in the model were Rmax, 
K, z, q, σ2 and τ2.

Although Bayesian models can include prior knowledge about parameters, here we used vaguely informative 
prior distributions for the model parameters K, z, σ2 and τ2 due to a lack of prior knowledge about their values 
and distributions for the SASL population. Prior distributions were centred at plausible values and constrained 
within realistic biological bounds (Table 5). For K to be greater than 0 while having a low likelihood of very large 
values (e.g., 6), we used a lognormal distribution to describe the prior for K with a coefficient of variation of 100%. 
In the case of z, we considered a uniform prior distribution over the interval 0.0001 to 10. This ensures a fair 
non-informative prior for the shape parameter. Priors for the process error variance p(σ2) and observation error 
variance p(τ2) were chosen to be diffuse inverse-gamma distributions. The choice of this distribution implied that 
the parameters are approximately uniform on ln(x) (Jeffrey’s prior) and have the property that lower weights are 
assigned to higher values of σ2 and τ2, which helps to prevent implausibly large posterior values of σ2 and τ2 29. As 
a result, inferences based on the gamma assumption were scale invariant and would not be affected by changing 
the scale of the variance parameter.

To specify a prior distribution for Rmax, we used the best guess estimates for this parameter from a determin-
istic surplus production model (maximum likelihood estimate) developed for the colonies of north Patagonia23 
and other analyses of SASL population trends for the Southwestern Atlantic Ocean8, 17, 22, 25, 40, 89. Estimates for 
Rmax were selected from models that had the strongest statistical fits and were judged to be biologically relevant. 
The different estimates suggest that mean values for Rmax range from 0.037 to 0.084. Due to uncertainty about an 
appropriate prior mean for Rmax, we choose a vague lognormal prior for Rmax with a prior mean μRmax = 0.055 and 
CV of 50%, allowing sufficient flexibility to estimate the probable value of Rmax given the observed data (Table 5).

The prior distribution for q was based on previous independent estimates developed to account for the pro-
portion of animals that are missed during surveys due to imperfect detection (i.e., animals at sea) and/or sampling 
variation23, 52. The different factors considered available data from life tables, mark-recapture or satellite-tracked 
studies to correct survey data using the percentage of the different age-sex classes present on land. The mean 
values varied between 0.38 and 0.74. Here, a beta distribution was assigned to q, with large bounds and a mean 
set equal to μq = 0.52 (Table 5). A beta distribution for q is particularly convenient because this distribution falls 
between 0 and 1 and can take on a wide variety of shapes.

For parameter estimates, their full posterior distributions and states for the SSM were approximated using 
Markov Chain Monte Carlo (MCMC) techniques. All the Bayesian estimations were performed using the 
WinBUGS software90, 91 (available at http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/) 
and implemented with the R programming language92 through the R2WinBUGS package93. WinBUGS uses the 
Gibbs sampling algorithm to sample from the posterior distributions of parameters. The WinBUGS code is shown 
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in Appendix A. In all MCMC simulations, three independent chains were run for 1,000,000 iterations. From each 
chain, the first 100,000 iterations were discarded to remove any dependence of the MCMC samples on the initial 
conditions. After this burn-in phase, a thinning rate of 50 was used (i.e., only every 50th iteration was kept to 
reduce the MCMC sampling autocorrelation6.

The convergence diagnostics of the MCMC draws onto stable estimates were checked using the CODA pack-
age for R (Convergence Diagnostics and Output Analysis94, 95), adopting minimal thresholds of p = 0.05 for 
Geweke’s diagnostic96, the two-stage Heidelberger-Welch stationary test97, and the Gelman-Rubin diagnostic 
( = .R̂ 1 05 for all variables)98, 99. We also monitored the trace plots of parameter estimates over the MCMC itera-
tions to understand the behaviour of the chain and diagnosed the autocorrelation plot for key parameters. 
Bayesian credibility intervals for all parameters were estimated by calculating the 2.5th and 97.5th percentiles of the 
posterior distributions generated in WinBUGS.

Posterior distributions may be highly influenced by the shape of the prior and by priors centred on inaccurate 
values, especially when the data are not very informative29. Hence, model runs with different prior distributions 
were conducted to test the sensitivity of the parameter estimates to the base-case set of prior probability specifica-
tions. We focused on parameters with vague prior specifications due to the lack of prior knowledge. The sensitiv-
ity of the results to the prior distributions was tested by changing the distribution of one parameter while keeping 
the others on the base-case set. These tests included (Table 5):

•	 Specifying a less informative prior for z, i.e., a uniform prior distribution over the interval 0.0001 to 20.
•	 To analyse the sensitivity to K, three tests were done: (a) specifying the prior for K as uniform rather than log-

normal; (b) using priors that were positively or negatively biased from the base-case. The probability distribu-
tion of K was assumed to have had means on the log scale that were 30% higher and lower than the base-case 
configuration. In contrast, the prior CVs were held constant; (c) specifying a prior that was even vaguer than 
the base-case. The lognormal distribution was used for K with a coefficient of variation of 200%.

•	 Specifying the inverse-gamma distributions on σ2 and τ2 to half/double the baseline canonical parameter.

The sensitivity of the results to the datasets used to fit the model was also tested. First, all models were fitted 
only to abundance and annual harvest estimates. Then, estimates for bycatch history were added in new runs. In 
those runs, the model priors were the same as in the previous models.

The goodness-of-fit of the competing surplus production models was inferred by the Deviance Information 
Criterion (DIC100). Model residuals were also used to measure the goodness-of-fit of the alternative production 
models. Non-random patterns in the residuals indicated that the observable vector (It) did not conform to one or 
more of the model assumptions.

The consistency between the model and the data was checked using Bayesian posterior predictive checking 
procedures101 designed to check the ability of the model a posteriori to replicate abundance data similar to those 
observed. We calculated the Bayesian p-value, which is the probability that the “ideal” data could be as extreme 
as or more extreme than the observed data101. We assumed a reasonable fit if 0.1< p-value < 0.9. To obtain the 
“ideal” datasets, replicate datasets were assembled using the same models that were fit to the actual dataset at each 
MCMC iteration using the current parameter values.
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